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Multimodal sentiment analysis (MSA) aims to infer emotions from linguistic, auditory, and visual sequences. Multimodal
information representation method and fusion technology are keys to MSA. However, the problem of difficulty in fully obtaining
heterogeneous data interactions in MSA usually exists. To solve these problems, a new framework, namely, dynamic invariant-
specific representation fusion network (DISRFN), is put forward in this study. Firstly, in order to effectively utilize redundant
information, the joint domain separation representations of all modes are obtained through the improved joint domain separation
network. +en, the hierarchical graph fusion net (HGFN) is used for dynamically fusing each representation to obtain the
interaction of multimodal data for guidance in the sentiment analysis. Moreover, comparative experiments are performed on
popular MSA data sets MOSI and MOSEI, and the research on fusion strategy, loss function ablation, and similarity loss function
analysis experiments is designed. +e experimental results verify the effectiveness of the DISRFN framework and loss function.

1. Introduction

Multimodal sentiment analysis (MSA), as an emerg-
ing field of natural language processing (NLP), aims to
infer the speaker’s emotion by exploring clues in
multimodal information [1–3]. Many methods in MSA
focus on exploring the complex fusion mechanism to
improve the performance of MSA [4–6]. However,
these fusion technologies present a bottleneck due to
the difficulty in obtaining interaction between het-
erogeneous modes. +e common method to solve this
problem is to map the heterogeneous feature to the
common subspace in the representation learning
process [7]. However, some unique features of each
mode are ignored by those methods. +ese unique
features can be used as complementary information
between modes. Effective use of this complementary
information can help the network improve perfor-
mance. For this consideration, this paper intends to
use supplementary information on the basis of shared
representation. And then, a dynamic fusion mecha-
nism is established to fuse the modal features to

obtain the interactive information. +is study mainly
aims to explore a sentiment analysis framework based
on multimodal representation learning and the dy-
namical fusion method.

For multimodal representation learning methods, since
multimodal data is usually a sequence with different feature
dimensions, long-short memory neural network (LSTM) is a
powerful tool to deal with such problems [8]. +erefore,
different LSTMs are used to extract features of different
modalities in many methods, such as memory fusion net-
work (MFN) [9], graph-memory fusion network (Graph
-MFN) [10]. However, a single LSTM is difficult to apply to
the feature distribution of each mode at the same time.
+erefore, there are studies using different networks to
represent different modal information, such as tensor fusion
network (TFN) [11], low-rank multimodal fusion net (LMF)
[12]. It is worth mentioning that the information between
modalities was not used fully before fusion in these methods.
+e shared features and special features of two data sources
are captured by domain separation network (DSN) using
adversarial learning and soft orthogonal constraint [13]. And
then, these features are used to perform domain adaptive
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tasks. +e combination of shared features and special fea-
tures can effectively solve the problem that the redundant
information between different data sources is not fully
utilized. In other words, the DSN is improved and adopted
to perform multimodal sentiment analysis tasks in this
paper. It is named improved joint domain separation net-
work (improved JDSN).

In this paper, the improved JDSN is adopted to learn the
joint representation of modality-invariant and modality-
specific of all modes in the common–special subspace. +e
former aims to map all the modes of discourse to the
common subspace to shorten the distance between modes to
effectively reduce the extra burden of fusion work. +e latter
aims to extract special representation from each mode as
complementary information. +en, the combination of two
representations can fully use the complementary informa-
tion between modes. In addition, the modal interactions
were mostly obtained by feature connection fusion in early
work [14]. However, these methods are unable to dynam-
ically adjust the contribution of each mode in the fusion
process. Mai et al. assumed that the multimodal fusion
process is a hierarchical interactive learning process [15, 16]
and designed a ARGF network to solve the problem [15].+e
ARGF was comprised of two stages: a joint embedding space
learning stage and a hierarchical graph fusion net (HGFN)
stage. In the HGFN stage, firstly, the unimodal dynamic
layer, bimodal dynamic layer, and trimodal dynamic layer
are modelled, and then the outputs of each dynamic layer are
connected to obtain the interaction features of each mode.
However, the method of joint embedding space learning also
has a problem that the redundant information was not fully
utilized. +erefore, the improved JDSN and HGFN are
combined to optimize the network’s ability to capture modal
interactions by rationally using redundant information in
this paper.

In summary, firstly, the applied DSN in this paper is
improved in the aspects of the following: (1) +e mode of
DSN is extended; (2)+e orthogonal constraint loss between
special representations of different modes is additionally
considered (See Section 3.3.1); (3) Adversarial loss is
replaced by a more advanced similarity metric (CMD) (See
Section 3.3.2); (4) Invariant and specific representation are
jointed at the output of the network (see Section 3.2.3).+en,
combining the improved JDSN and HGFN, a new frame-
work (DISRFN) is proposed in this paper to deal with MSA
problems. +e main contributions are as follows:

(1) A multimodal sentiment analysis framework
(DISRFN) is proposed in this study. It can perform
the fusion of various representations dynamically
while emphasizing learning invariant and specific
joint representations of various modes.

(2) A new loss function is designed, which can improve
the effect of semantic fusion clustering whilst
assisting the model in learning the target subspace
representation effectively.

(3) +e performance analysis experiments of MSA tasks
is designed on the benchmark data sets MOSI and

MOSEI. +e results confirm the advancement of the
DISRFN model and fusion strategy, the effectiveness
of the loss function, and the rationality of similarity
loss function selection.

+e remainder of this paper consists of the following
parts. In Section 2, the correlation work is briefly reviewed.
Section 3 introduces the structure of the DISRFNmodel and
the proposed learning method in detail. Section 4 explains
the experimental details, parameter settings, and network
component design. +e experimental results are analyzed in
Section 5. Section 6 shows the summary and prospects.

2. Correlation Work

In multimodal sentiment analysis, the mainstream multi-
modal learning methods include multimodal fusion repre-
sentation and multimodal representation learning, which
will be discussed in this section.

2.1. Multimodal Fusion Representation. In recent years,
some complex and efficient fusion representation mecha-
nisms have been gradually proposed. Amir Zadeh et al. put
forward TFN to obtain the trimodal fusion representations
by using the outer product [11]. On this basis, a low-rank
multimodal fusion net (LMF) was proposed. +is network
performs multimodal data fusion employing a low-rank
tensor and obtains better results [12]. Mai et al. proposed a
strategy “divide and rule, unite many into one” to transfer
local tensor and global fusion, which was extended in
multiconnected bidirectional long-short time memory
network (Bi-LSTM) [17, 18]. In addition to the tensor fusion
method, the recursive fusion method has been developed
better. For example, a recursive multilevel fusion network
(RMFN) is used for specialized and effective fusion through
decomposing the fusion problems into several parts [19].
+e more attention-based recursive network (MARN) is
used to fuse cyclic memory representations of different
modes of long-short term hybrid memory networks
(LSTHM) by using a more attention block [20]. Hierarchical
polynomial fusion network (HPFN) is used to recursively
integrate and transfer the local correlation to the global
correlation through multilinear fusion [21]. Moreover, the
multiview learning method plays an important role in
multimodal fusion [22]. For example, MFN designed by
Amir Zadeh et al. is used to fuse the memory of different
modes of LSTM system based on incremental attention
memory network (DAMN) and gated memory network
(MVGN) [9], and it is successfully used to solve multiview
problems. Furthermore, to analyze the explainability of
MFN, the dynamic fusion graph model (DFG) is embedded
into MFN, and a Graph-MFN obtained finally has excellent
performance and is explainable [10]. Recently, word-level
fusion representation has also been a wide concern [23]. For
example, a repeated participation variation network (RA-
VEN) is used to model multimodal language through work
representation transfer based on facial expression [24]. Chen
et al. modeled the time-dependent multimodal dynamics
through cross-modal work alignment [25]. However, most
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of these methods use complex fusion mechanisms or add
additional fusion modules, which will increase the amount
of calculation and slow down the speed of network con-
vergence. In contrast, this paper uses a hierarchical mech-
anism to model the dynamics of each fusion layer, which can
quickly fuse the information of each mode.

2.2. Multimodal Representation Learning. Multimodal
representation learning is mainly divided into two types,
namely, common subspace representations and factorised
representations. +e two types of study on common
subspace representations amongst modes are the corre-
lation-based model and adversarial learning-based model.
In terms of a correlation-based model, Shu et al. proposed
an extensible multilabel canonical correlation analysis
(sml-CCA) for cross-modal retrieval [26]. Kaloga et al.
proposed a multiview graph canonical correlation anal-
ysis based on variational graph neutral network for
classification and clustering tasks [27]. Verma et al.
proposed a deep network with high-order information
and single sequence information (Deep-HOSeq) for
fusing multimodal sentiment data [28]. Mai et al. learned
the embedding space within invariant mode based on a
new encoding-decoding classifier framework in con-
frontation [15]. Pham et al. proposed a robust joint
representation method to learn by shifting between modes
under the constraints of cyclic consistency loss [29]. In
terms of the adversarial learning-based model, Wu and
Qiang et al. proposed the generative adversarial net based
on specific mode and sharing and the adversarial hashing
algorithm based on deep semantic similarity, respectively,
to obtain cross-modal invariance [30, 31]. However, these
methods only learn about the shared representation of the
model and lack the consideration of the special repre-
sentation of the modal. For factorized representations,
Amir Zadeh et al. proposed a multimodal factorized
model (MFM) to factorize multimodal representations
into multimodal discriminant factor and multimodal
special generation factor [32]. Liang et al. proposed a
multimodal baseline model (MMB) to learn the cases of
multimodal embedding based on the factorized method
[33]. Wang et al. proposed a joint and separate matrix
factorized hashing method, which could be used to learn
common and specific attributes of multimodal data at the
same time [34]. Fang et al. proposed a new semantic
enhanced discrete matrix factorized hashing (SDMFN),
which could directly extract the common hashing rep-
resentation from the reconstructed semantic polynomial
similar graph, causing the hash code to be more dis-
criminative [35]. Caicedo et al. proposed a multimodal
image representation based on nonnegative matrix fac-
torisation to synthesise visual features and text features
[36]. However, most of these factorized methods adopt
the form of matrix decomposition, which may have the
problem of incomplete feature representation. In con-
trast, the improved JDSN designed in this paper can
obtain a richer shared-special representation of each
mode in a simpler way.

3. The Proposed Method

3.1. Task Setting. In general, the proposed framework is
mainly used to study the trimodal data. Figure 1 shows the
flowchart of the proposed multimodal fusion framework.
+is framework consists of two parts, as follows: (1) im-
proved JDSN for learning trimodal data-specific shared
subspace joint representation; (2) HGFN for fusing trimodal
joint representation, thereby realizing dynamical effective
semantic clustering. +is study introduces this network
framework in the following section.

Moreover, the discourse data are divided into N se-
quences composed of segment S to facilitate detecting
emotion in video by using multimodal data. Each segment S
includes three low-level feature sequences in linguistic (l),
visual (v), and auditory (a) modes. +ese feature sequences
are represented as Sl ∈ Rtl×dl , Sv ∈ Rtv×dv , Sa ∈ Rta×da .
Amongst them, tm and dm (m∈{l, v, a}) represent the length
of discourse and the dimension of the corresponding feature,
respectively. Given this data sequence, the study aims to
predict the emotional state of the predefined set. +is
emotional state is a continuous dense variable y ∈ R. In
addition, to effectively use multimodal data, linguistic (l),
visual (v), and auditory (a) trimodal feature sequences, they
should be aligned with emotional state label y.

+e framework of DISRFN is shown in Figure 1: (1) +e
data of the three modes are fed into the corresponding Bi-
LSTM and BERT models to obtain the discourse-level fea-
ture representations; (2) +e discourse-level feature repre-
sentations of each mode are fed into the corresponding MLP
to obtain the representation of unified dimension; (3) +e
unified representations of each mode are fed into the cor-
responding encoder and shared encoder to obtain the shared
representations and special representations; (4) +e shared
representations are added with a special representation of
each modal to obtain the joint domain separation repre-
sentations; (5) +e joint domain separation representations
of each mode are fed into the corresponding decoder to
obtain the reconstruction loss; (6) +e joint domain sepa-
ration representations of each mode are fed into HGFN for
dynamic fusion to perform MSA task.

3.2. Dynamic Invariant-Specific Representation Fusion
Network

3.2.1. Discourse-Level Feature Representation. Firstly, the
stacking bidirectional long-short time memory neural net-
work (sLSTM) is used to map the feature sequence (Sv, Sa) in
visual (v) and auditory (a) modes to obtain the underlying
features of the sequence. Its output includes the hidden
representations of LSTM end state, namely, Fv and Fa, as
follows:

Fv � sLSTM Sv; θ
LSTM
v􏼐 􏼑,

Fa � sLSTM Sa; θ
LSTM
a􏼐 􏼑,

(1)

where θLSTMv and θLSTMa refer to the parameters of sLSTM on
visual and auditory modes.
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Secondly, for the text feature sequence (Sl) in linguistic
mode, most linguistic features are embedded through Glove
[37]. However, in recent studies [38], such as the advanced
ICCN [39] model, the pretraining BERTmodel is used as the
feature extractor of text discourse. A better result than the
Glove method is obtained. +erefore, the feature repre-
sentation Fl of text is obtained through the pretraining BERT
model, as follows:

Fl � BERT Sl; θ
BERT
l􏼐 􏼑, (2)

where θBERTl refers to the parameter of the BERT model.

3.2.2. Unified Representation of Features. +e dimensions of
discourse-level features are different. In order to facilitate the
encoding-decoding operation in the back-end network,
multilayer perceptron (MLP) is used to unify mapping these
features to Om, as follows:

Om � MLP Fm; θMLP
m􏼐 􏼑, (m ∈ l, v, a{ }), (3)

where θMLP
m refers to a parameter of multilayer perceptron

networks in different modes; MLP consists of dense con-
nection layers and a normalized layer activated by relu
function.

3.2.3. Improved Joint Domain Separation Representation.
In this part, based on the improved JDSN, the unified
mapping representation of each mode is factorized into two
parts, namely, modality-invariance and modality-specificity.
Amongst them, the sharing encoder Ec is used to learn

invariant representation in the common subspace to narrow
the gap in the heterogeneity between modes [40]. +e
specific encoder E

p
m is used to capture the specific repre-

sentation in a specific subspace. +e process is as follows.
Firstly, after obtaining the unified mapping vector Om of

each mode, the mode-sharing encoder Ec (weight sharing) is
used to obtain modality-invariant representation (hc

m), and
the mode-specific encoder E

p
m is used to extract modality-

specific representation (hp
m), as follows:

h
c
m � E

c
Om; θc

( 􏼁, h
p
m � E

p
m Om; θp

m( 􏼁, (m ∈ l, v, a{ }), (4)

where θc refers to a parameter of mode-sharing encoder; θp
m

refers to a parameter of mode-specific encoder; Ec has the
same structure as that of E

p
m, which is composed of a dense

connection layer activated by sigmoid function.
+en, hidden layer vectors h

p
m and hc

m are generated
through feedforward propagation of neural network, and the
joint domain separation representation is obtained through
vector addition “+”, as follows:

hm � h
c
m + h

p
m, (m ∈ l, v, a{ }), (5)

where hm refers to the joint domain separation represen-
tation of mode m, and it has the feature representation of
shared subspace and specific subspace characteristics.

3.2.4. Hierarchical Graph Fusion Representation. After
obtaining the joint domain separation representation of each
mode, it is necessary to fuse each representation to obtain
the interaction information of each mode.
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Figure 1: +e framework of DISRFN. Note: Bi-LSTM: bidirectional short and long memory network; BERT: bidirectional encoder
representation from transformers; MLP: multilayer perception; audio encoder (decoder): encoder (decoder) of auditory mode; linguistic
encoder (decoder): encoder (decoder) of linguistic mode; visual encoder (decoder): encoder (decoder) of visual mode; share encoder: shared
encoder of three modes; HGFN: hierarchical graph fusion net.
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As shown in Figure 2, HGFN is composed of three
dynamic layers (unimodal dynamic layer, bimodal dynamic
layer, and trimodal dynamic layer). Unimodal dynamic layer
is modeled by self-attention weighting each unimodal in-
formation vector. Bimodal dynamic layer is modeled by
weighting bimodal information vectors (e.g., Mal) using the
correlation weight between unimodal vectors. Trimodal
dynamic layer is constructed through weighting trimodal
information vectors (e.g., Malv or Mallv) by the correlation
weight between unimodal vectors. Finally, three dynamic
layers are used for vector connection and fusion to realize
the dynamic fusion of multimodal features in HGFN. +is
hierarchical modeling method is more conducive to ex-
ploring the interaction between modes [12]. +erefore,
HGFN, which can preserve all modal interactions, is in-
troduced to fuse the obtained joint domain separation
representations of different modes to explore multimodal
interaction in this section. +e fusion representation is as
follows:

Fusion � HGFN hl, hv, ha; θHGFN
􏼐 􏼑, (6)

where “Fusion” refers to the output of HGFN; θHGFN refers
to the parameters of HGFN. +en, the predictive neural
network (P) is used for prediction, as follows:

Pred � P Fusion; θPre􏼐 􏼑, (7)

where “Pred” refers to the output of the predictive network;
“P” refers to a predictive network, including a standardized
layer and the fully connected layers; θPre refers to the pa-
rameter of the predictive network. Moreover, the specific
parameters of the model are described in the experimental
section.

3.3. Learning Process. A joint loss function is newly set to
effectively learn the network model, as follows:

Ltotal � Ltask + αLdiff + βLsim + cLrecon + ηLtrip, (8)

where α, β, c, and η refer to weights of the interaction. +ey
determine the contributions of each loss Ldiff, Lsim, Lrecon,
and Ltrip to total loss Ltotal. In addition, each loss is analyzed
and introduced in the remaining section.

3.3.1. Differential Loss. Some studies have shown that a
nonredundant effect can be achieved by applying soft or-
thogonality constraint to two representation vectors [13, 41].
+erefore, the constraint is used to drive the sharing-en-
coder Ec and specific-encoder Ep

m to perform encoding
representation to different aspects, that is, modality-in-
variant and modality-specific representations. Soft orthog-
onality constraint is defined as follows.

When training a batch of data, Hc
m and H

p
m are set as the

two matrices, respectively. +e rows of the two matrices
correspond to invariant representation hc

m and specific
representation h

p
m of mode m in each batch of data, re-

spectively. +e orthogonality constraint of the modal vector
is calculated as follows [13]:

Ldiff � 􏽘
m∈ l,v,a{ }

H
cΤ
m H

p
m

����
����
2
F

+ 􏽘

m1,m2( )∈ (l,a),{

(l,v),(a,v)}

H
pΤ
m1

H
p
m2

�����

�����
2

F
,

(9)

where || · ||2F refers to squared Frobenius norm.

3.3.2. Similarity Loss. Similarity loss (Lsim) used to constrain
shared subspace can reduce the difference in the hetero-
geneity between the shared representations of different
modes [42]. Central moment discrepancy (CMD) is used to
measure the difference between two distributions by
matching order-wise moment differences of two represen-
tations [43]. Compared with other methods (e.g., MMD and
DANN), it is a more efficient and concise distance mea-
surement. +erefore, CMD is selected as the similarity
loss in this paper. It is defined as follows.

X and Y are set as bounded random samples with
probability distributions p and q in a compact interval
[a, b]N, respectively. CMD is defined as follows [43]:

CMD(X, Y) �
1

|b − a|
‖E(X) − E(Y)‖2 + 􏽘

K

k�2

1
|b − a|

k
Ck(X) − Ck(Y)

����
����2

Ck(X) � E (x − E(X))
k

􏼐 􏼑

E(X) �
1

|X|
􏽘
x∈X

x,

(10)

where E(X) refers to the empirical expectation vector of
sample X; Ck(X) refers to the vector of all k-order sample
centre moments in the X coordinate.

In this paper, the similarity loss is calculated by summing
the CMD distances of the shared representations of every
two modes. Its representation is as follows:
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Lsim � 􏽘

m1 ,m2( )∈ (l,a),{

(l,v),(a,v)}

CMD h
c
m1

, h
c
m2

􏼐 􏼑,
(11)

Moreover, the reason for selecting CMD as the similarity
loss will be discussed in Experimental part 5.4.

3.3.3. Reconstruction Loss. When soft orthogonality con-
straint is enforced, the risk of specific encoder learning trivial
representation exists. However, the reconstruction loss can
be added to ensure that the encoder can capture the details of
each mode to solve these problems [13]. Initially, the modal
decoder Dm is used to reconstruct the joint domain sepa-
ration representation vector hm of mode m, and the output
of reconstruction is 􏽢hm. +en, the reconstruction loss is
represented by the mean square error loss between hm and
􏽢hm, as follows [13]:

Lrecon �
1
3

􏽘
m∈ l,v,a{ }

hm − 􏽢hm

����
����
2
2

⎛⎝ ⎞⎠, (12)

where || · ||22 refers to squared L2-norm.

3.3.4. Cosine Triplet-Margin Loss. In the fusion represen-
tation of joint domain separation representation vector, to
ensure the high-level relationship of the similarity between
all projects, the representation distance of discourse seg-
ments with similar semantics between different modes is
minimized through cosine triplet-margin loss Ltrip, and the
distance between different discourse segments is maximized
[44].

For example, in linguistic and visual modes, a triple
representation (hl, h+

v , h−
v ) is established. Amongst them,

visual representation h+
v is positively correlated with lin-

guistic representation hl in semantics. At the same time,
visual representation h−

v is the contrary.+erefore, the cosine
triplet-margin loss of linguistic mode is shown as follows
[44]:

L
l
trip � 􏽘

m∈ v,a{ }

max cos hl, h
−
m( 􏼁 − cos hl, h

+
m( 􏼁 + margin, 0( 􏼁,

(13)

where h+
m, h−

m refers to the joint domain separation repre-
sentation vector of mode m; “margin� 1” is a boundary
parameter.

In the same way, the cosine triplet-margin loss of visual
mode and auditory mode can be described as follows:

L
v
trip � 􏽘

m∈ l,a{ }

max cos hv, h
−
m( 􏼁 − cos hv, h

+
m( 􏼁 + margin, 0( 􏼁,

(14)

L
a
trip � 􏽘

m∈ l,a{ }

max cos hv, h
−
m( 􏼁 − cos hv, h

+
m( 􏼁 + margin, 0( 􏼁.

(15)

Based on formulas (13)–(15), the total cosine triple
margin loss is represented as follows:

Ltrip � L
l
trip + L

v
trip + L

a
trip. (16)

3.3.5. Task Loss. +emean square error (MSE) is used as the
task loss of the network to predict continuous dense vari-
ables. For Nb discourse data in one batch, this loss calcu-
lation is as follows:

Ltask �
1

Nb

􏽘

Nb

i�0
yi − 􏽢yi

����
����
2
2. (17)

where yi refers to the actual emotional label; 􏽢yi refers to the
predictive value of the network.

4. Experiment

In this section, the required data sets, evaluation index, and
experimental details (experimental environment, experi-
mental parameters, and network structure) are described.

4.1. Datasets. +e data set is introduced in this section. +is
data set includes two parts, namely, CMU-MOSI and CMU-
MOSEI.

CMU-MOSI data set: this data set is a collection of
monologues on YouTube, including videos with 93 com-
ments from different speakers.+ese common videos consist
of 2199 subjective discourses. +ese discourses are manually
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Figure 2: +e framework of HGFN.
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marked with continuous opinion scores in the range of −3 to
3. Amongst them, −3/+3 represents strong negative/positive
emotions. A total of 1283 segment samples are used for
training, 229 segments are used for verification, and 686
segments are used for testing.

CMU-MOSEI data set: it is an improved version of
MOSI; it includes 23453 annotated discourse segments,
which are from 5000 videos, 1000 different speakers, and 250
different topics. A total of 1283 segment samples are still
used for training, 229 segments are used for verification, and
686 segments are used for testing.

+e problems on multimodal signal (linguistic, visual,
and auditory) acquisition and modal data pretreatment are
solved based on CMU-Multimodal SDK1 in many studies
[45].+is tool library is a machine learning platform used for
developing high-level multimodal models and acquiring and
processing multimodal data by Amir Zadeh et al. It inte-
grates the acquisition and alignment method of benchmark
data sets (MOSI and MOSEI). Similarly, this tool library is
used to solve the problems of data acquisition and
alignment.

4.2. Evaluation Index. +is experiment is a regressive task.
+erefore, the mean absolute error (MAE) and Pearson
correlation coefficient (Corr) are adopted to measure the test
results. In addition, the classification index is considered in
the experiment, including five-classification accuracy (Acc-
5) in affection domain (−2,2), two-classification accuracy
(Acc-2) including positive and negative emotion (p/g), and
F1score (F1-Score).

4.3. Experimental Settings. +is method is tested on Pytorch
in this section. +e grid searching of hyperparameter is
performed in a data verification set to identify appropriate
hyperparameter, and the best model and hyperparameter are
saved. In grid searching, limited option sets for setting
hyperparameters are as follows: α∈{0.3, 0.4}, β∈{0.7, 0.8, 0.9,
1.0}, c∈{0.1, 0.2, 0.3, 0.4, 0.5}, η∈{0.01, 0.1} and drop∈{0, 0.1,
0.2, 0.3, 0.4}; the hidden layer sizes of the representation and
predictive network can be reviewed from the following:
Hid∈{128, 256}, P_h∈{50, 64}.

In the iterative optimization process, Adam optimizer
with max epoch� 20, batch_size� 16, and learning rate of
0.0001 are used to train the network. +e grid searching
results of all data sets are shown in Table 1, and based on the
hyperparameter settings, Figure 3 shows the model com-
ponent structural diagram. Note: (1) FC Layer is the di-
mension of the fully connected layer; (2) LSTM is the
dimension of the LSTM hidden layer; (3) Layer-Norm is a
dimension of the batch normalization layer; (4) Dropout is
the rate of dropout; (5) BERT is the output dimension of the
BERT model; (6) Hid/drop/P_h is hyperparameters.

4.4. Experimental Process. +is section mainly introduces
the experimental process, the specific experimental steps are
as follows:

(1) Manual feature extraction of video and audio: for
CMU-MOSI and CMU-MOSEI, Facet2 and
COVAREP [46] are used to extract the manual
features of visual and auditory sequences. Amongst
them, the dimensions dv of the visual feature are 47
and 35, respectively, and the dimension da of the
auditory feature is 74.

(2) Discourse-level feature extraction: for linguistic
mode, because the BERTmodel has text embedding
and representation functions, the pretraining model
of BERT is directly used to extract linguistic features.
Its discourse-level feature is represented as feature
representation Fl with dimension of 768 [47]. And
then, visual and auditory features at the discourse-
level Fv and Fa are obtained based on sLSTM.

(3) Unified representation mapping: MLP is adopted to
map linguistic, visual, and auditory representation
vectors Fl, Fv, and Fa to an output Om with the
unified dimension size.

(4) Improved joint domain separation representation:
Om is input to sharing encoder and specific encoder
to obtain hidden layer representation hc

m, hp
m. And

then, an improved joint domain separation repre-
sentation hm is obtained through vector addition
(hp

m + hc
m).

(5) Fusion inference: the joint domain separation rep-
resentation vector is sent to the HGFN to perform
fusion and prediction tasks.

(6) Calculating loss function and training: loss function
is calculated to train the neural network and make
cyclic iteration.

5. Results and Analysis

Model comparison experiments, research on fusion strategy,
research on loss function ablation, and research on similarity
loss selection are designed in this section. All experiments
are discussed by combining visualization and quantitative
analysis.

5.1. Model Comparison Experiments Result. In the com-
parison experiment, some classical models (TFN, LMF,
MFN, Gragh-MFN, MARM, and MISA) are reproduced. In
addition, some derived fusion model based on LSTHM [17]

Table 1: Hyperparameter settings in this article.

Hyperparameter MOSI MOSEI
CMD K 5 5
Batch_size 16 16
α 0.3 0.4
β 1.0 0.8
c 0.4 0.4
η 0.1 0.01
Drop 0.4 0.1
Hid 256 256
P_h 64 50
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is designed to comparison with the proposed framework
(DISRFN). +e result is shown in Tables 2 and 3.

Tables 2 and 3 show that our method achieves the best
performance under two data sets. +at is, it exceeds the
comparison model in terms of MAE, Corr, Acc, and other
comprehensive indexes. +ese results show that the pro-
posed model exceeds some complex fusion mechanisms
(e.g., TFN, MFN, and Gragh-MFN) in the performance. +e
reason is that these methods ignore the exploration of modal
invariant space while the proposed method obtains a joint
representation of invariant-specific space.

Moreover, it can be seen from the “CPU Clock” items in
Tables 2 and 3. Compared with the model that also applies
mechanism fusion (TFN, LMF, MFN, Gragh-MFN, MARM,
ARGF, LSTHM-DFG, LSTHM-Out Product), the proposed
method is at a disadvantage in the aspect of real-time due to the
relatively large number of parameters in the representation
learning. However, compared with the model that uses ad-
ditional networks in the fusion part (MISA, LSTHM-AttFu-
sion, LSTHM -Concat), the proposedmethod has an advantage
when it comes to real-time. +erefore, compared with the
baseline model, the proposed method has moderate real-time
performance when the various MSA indicators are optimal.

In Section 3.2.1, the reason for using the BERT
pretraining model to extract discourse-level features of lan-
guage modality instead of Glove method is explored. Tables 2
and 3 show that, compared with the baseline model based on
the Glove word embedding method, and LSTHM-derived
fusion model, various evaluation indexes are improved sig-
nificantly by the model using BERT (DISRFN and MISA). It
proves that the application of the BERTmethod is reasonable.
Moreover, compared with the MISA model using BERT, the
proposed model still has a slight advantage. +e difference is
probably caused by different fusion strategies. +e compar-
ative experiment is carried out in the next section to further
discuss the effectiveness of the fusion strategy of this model.

5.2. Fusion Strategy Comparison Result. In this section, a
fusion strategy comparison experiment is designed in the
MOSI data set to verify the effectiveness of the HGFN fusion

strategy. +e improved JDSN component remains un-
changed in the experiment, and the fusion component is
replaced with Multi-Attention Fusion (AttFusion), vector
concatenation fusion (Concate), dynamic fusion net (DFN),
and other strategies. +en, the results are concluded, as
shown in Tabel 4.

+e results shown in Tabel 4 indicate that HGFN has a
significantly improved performance compared with other
fusion methods. +e reason for these results is that HGFN
not only models single-modal, bimodal, and trimodal layers
dynamically but also obtains trimodal fusion representations
more comprehensively by the splicing mode of various
modal layers. Moreover, to verify the dynamicity of the
graph fusion network, the weight change of the fusion
process is visualized as follows.

As shown in Figure 4, the vertical axis represents the
iteration order, and the horizontal axis represents the in-
teraction information vector in the dynamic layer. +e value
in the figure represents the weight of the corresponding
information vector. +e results of vertical axis analysis in-
dicate that the contributions of different discourse segments
to the same modal interaction information vector are almost
unchanged. +e reason is that the modal data are affected by
the similarity constraint in the domain separation repre-
sentation learning prior to fusion, which reduces the fluc-
tuation in the difference amongst all sample representations.
+rough the observation of the horizontal axis, for single-
modal vector weight (the first three columns), the contri-
butions of linguistic mode to the prediction result are the
most evident. +e reason is that language text is usually the
most important information in MSA. For bimodal vector
weight (fourth–sixth column), weight “tv” is closer to “ta”
and significantly greater than weight “va”.+e reasonmay be
that linguistic mode plays a more important role in bimodal
fusion than other modes. +rough observation of the tri-
modal vector weight (the seventh–twelfth column), the
vector weight obtained by fusing one bimodal vector and
one single-modal vector is close to 0. However, the vector
weight obtained by fusing two bimodal vectors is dominant
in the trimodal information. It indicates that modeling the
interaction process of every two bimodal vectors is
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necessary. And it is also verified that the fusion network can
dynamically fuse the multimodal data.

5.3. Ablation Study. +e loss functions of various compo-
nents discussed in Section 3.3 play an important role in the
implementation of an improved joint domain separation
network in Section 3.2. +erefore, the loss function is an-
alyzed and discussed, and visualised and quantitative
analysis is conducted based on ablation study.

5.3.1. Visual Presentation. An ablation experiment is
designed in this section. +e network is retrained after
obtaining a zero setting of the loss weights (α, β, λ, η) of other
components except for the basic task loss Ltask, and the best
performance model parameters are saved. Moreover, to
intuitively observe the effects of various loss functions on the

model results, the fusion representation of MOSI test
samples is visualized by T-SNE, as shown in Figure 5.

As shown in Figure 5, the red spots represent positive
emotions, and the blue ones represent negative emotions.
When the distance between spots of the same color is shorter
and the distance between spots of different colors is farther,
the effect of semantic clustering and emotion analysis is
better. +e figure shows the T-SNE graph of the test data
fusion representation, showing different distribution fea-
tures under different loss function training. When all
component losses exist, the model has the best semantic
clustering effect. When the weight c of the reconstruction
loss Lrecon is zero, it has the suboptimal clustering effect.
When similarity loss Lsim does not exist, the clustering effect
of the model is the most divergent. +e impact of the loss
Ldiff and Ltrip is between similarity loss and reconstruction
loss. Furthermore, to explore the effect of each loss more

Table 2: Comparison experiments of multimodal models in MOSI

Model MAE Mul_Acc2 Mul_Acc5 Corr F1_Score CPU_Clock
TFN [11] 1.016 0.765 0.386 0.604 0.765 0.404
LMF [12] 1.009 0.767 0.362 0.604 0.769 0.395
MFN [9] 1.007 0.773 0.329 0.632 0.773 0.379
ARGF [15] 0.857 0.814 0.423 0.712 0.815 0.147
Gragh-MFN [10] 1.003 0.784 0.360 0.623 0.785 0.454
MARM [20] 1.028 0.756 0.351 0.625 0.755 0.345
LSTHM [20]-AttFusion 1.087 0.745 0.375 0.608 0.744 1.527
LSTHM [20]-Concat 1.056 0.750 0.370 0.581 0.752 1.524
LSTHM [20]-DFG 0.992 0.758 0.401 0.626 0.757 0.357
LSTHM [20]-Out_Product 1.092 0.764 0.332 0.569 0.764 0.708
MISA [41] 0.827 0.819 0.440 0.726 0.819 0.839
DISRFN (ours) 0.798 0.834 0.468 0.734 0.836 0.737

Table 3: Comparison experiments of multimodal models in MOSEI.

Model MAE Mul_Acc2 Mul_Acc5 Corr F1_Score CPU_Clock
TFN [11] 0.714 0.760 0.443 0.507 0.761 0.417
LMF [12] 0.729 0.761 0.436 0.520 0.760 0.412
MFN [9] 0.715 0.773 0.432 0.530 0.772 0.418
Gragh-MFN [10] 0.714 0.765 0.448 0.526 0.766 0.46
MARM [20] 0.708 0.772 0.449 0.530 0.773 0.363
LSTHM [20]-AttFusion 0.852 0.733 0.383 0.403 0.733 1.585
LSTHM [20]-Concat 0.861 0.704 0.383 0.383 0.721 1.6
LSTHM [20]-DFG 0.837 0.748 0.391 0.437 0.748 0.369
LSTHM [20]-Out_Product 0.905 0.722 0.383 0.405 0.723 0.715
MISA [41] 0.600 0.858 0.538 0.776 0.857 0.975
DISRFN (ours) 0.591 0.875 0.541 0.781 0.875 0.948

Table 4: Experiments of fusion methods.

Method MAE (↓) Mul_Acc2 (↑) Mul_Acc5 (↑) Corr (↑) F1_Score (p/g) (↑)
JDSN-AttFusion 0.924 0.791 0.378 0.687 0.782
JDSN-concat 0.839 0.814 0.443 0.724 0.813
JDSN-DFG 0.825 0.816 0.459 0.727 0.817
DISRFN (ours) 0.798 0.834 0.468 0.734 0.836
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specifically, the evaluation indexes of the best model of each
experiment are recorded in Table 5 for quantitative analysis.

5.3.2. Quantitative Analysis. As shown in Table 5, the model
achieves the best performance when all losses are involved.

+is finding indicates that each component loss is effective.
+e observation results show that the model is sensitive to
Lsim and Ldiff. It means that decomposing modes into in-
dependent space is conducive to the performance im-
provement of the model. +e effect of cosine triplet-margin
loss on the model is smaller than Lsim and Ldiff. Because
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semantic clustering effect is observed in the process of modal
similarity feature acquisition.+erefore, the effect of this loss
is weakened. In addition, the model is less dependent on
reconstruction loss. +e reason is that the trivial repre-
sentation features of a specific encoder can be learned by
Ltask in the absence of reconstruction loss.+emodel is most
sensitive to similarity loss; thus, the selection of similarity
loss is very important. +erefore, an in-depth analysis is
discussed in the following section.

5.4. Comparison of Similarity Measures. In this section, the
selection of similarity loss function in 3.4.2 is discussed. For
this reason, the following experiment is designed. Domain
adversarial loss (DANN) [48], maximum mean square
measure (MMD) [49], CMD, and their combinations are
used for network training tests, as shown in Figure 6. +e
first three columns in the figure show that the performance
of CMD in a single form is better than that of MMD and
DANN in various indexes.

+e reasons are summarised in the following points: (i)
CMD can directly perform exact matching of the high-order
moment without expensive distance and kernel matrix
calculation; (ii) compared with CMD, DANN obtains modal
similarity through minimax game using discriminator and

shared encoder. However, in adversarial training, additional
parameters are added, and fluctuations may be encountered
in training. Moreover, through the observation of joint form
(the last three columns), the effect of similarity loss with
CMD is better than that of the loss without CMD but worse
than that of single CMD loss. +is finding indicates that the
increase in computation cost reduces the efficiency of net-
work learning and further verifies the rationality of selecting
CMD as similarity loss.

6. Conclusions

+is paper studies multimodal emotion analysis. In the
research, we have the following findings: (1) feature rep-
resentation with more comprehensive information can re-
duce the burden of fusion network; (2) the redundant
information of each mode can be used more effectively by
jointing modality-invariance and modality-specificity rep-
resentations of each mode; (3) simple dynamic fusion
mechanism can obtain the interaction between modes more
efficiently. +us, this study puts forward a multimodal
sentiment analysis framework consisting of two parts,
namely, improved JDSN and HGFN. Firstly, modal in-
variant-specific joint representation of each mode is ob-
tained through an improved JDSN module to effectively

Table 5: Experiments of ablation study.

Method MAE Mul_Acc2 Mul_Acc5 Corr F1_Score
Without diff loss 0.868 0.811 0.404 0.728 0.816
Without sim loss 0.999 0.784 0.351 0.723 0.782
Without recon loss 0.833 0.817 0.464 0.711 0.816
Without CosineTriplet loss 0.857 0.799 0.469 0.705 0.798
ALL loss 0.798 0.834 0.468 0.734 0.836
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utilize the complementary information amongst modes and
reduce the heterogeneity gap between modes.+en, the joint
representation of each mode is input to the HGFN for fusion
to provide input for the prediction network. Moreover, a
new combined loss function is designed to encourage the
DISRFN model to learn the representation of expectation.
Finally, the performance analysis experiment is carried out
on MOSI and MOSEI data sets, obtaining acceptable results.
In practice, the multimodal data usually have an unbalanced
phenomenon, which will lead to the task bottleneck of the
model. However, the study does not consider this issue.
+erefore, we plan to study the problems of multimodal
imbalance in the future.
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