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In this article, we present the recognition of nonintrusive disaggregated appliance signals through a reduced dataset computer
vision deep learning approach. Deep learning data requirements are costly in terms of acquisition time, storage memory re-
quirements, computation time, and dynamic memory usage. We develop our recognition strategy on Siamese and prototypical
reduced data few-shot classi�cation algorithms. Siamese networks address the 1-shot recognition well. Appliance activation
periods vary considerably, and this can result in imbalance in the number of appliance-speci�c generated signal images.
Prototypical networks address the problem of data imbalance in training. By �rst carrying out a similarity test on the entire
dataset, we establish the quality of our data before input into the deep learning algorithms.�e results give acceptable performance
and show the promise of few-shot learning in recognizing appliances in the nonintrusive load-monitoring scheme for very limited
data samples.

1. Introduction

�e nonintrusive load monitoring (NILM) [1–4] has
achieved high automatic recognition of appliances’ opera-
tional status, through the measurement of the complex
signal from a single point on the mains supplying the
building. Today, a number of issues attribute to the suc-
cessful implementation of NILM appliance recognition
systems. �ese issues include higher data acquisition
throughput and more storage hardware, better simulation
software, better imbedded implementation hardware, and
the use of deep learning (DL) algorithms. Machine-learning
(ML) algorithms premised on hand-engineered features
achieve acceptable performance when the data count is
relatively low. DL algorithms inherently achieve better
feature extraction, and usually, the data count is very high.
�e performance of DL algorithms greatly outperforms that
of the rest of hand-engineered algorithms. As a way of
increasing the data count, data augmentation methods [5, 6]
normally complement data obtained from direct measure-
ment. Data processing in MILM systems is either time series

(TS) [2] or the image (IM) [7, 8] equivalent of the appliance
TS signals. �e IM data approach aims at availing more
appliance features in a smaller space for improved but
simpler identi�cation through convolutional neural network
(CNN) computer vision (CV). We can improve the feature
base of the IM dataset to mimic a larger dataset by
implementing multivariate IMs, information, and IM fusion
inputs into the DL algorithms [9, 10]. However, the cost of
acquiring large amounts of data becomes high, mainly in
terms of increased data acquisition time and increased
storage memory requirements. Computation time and dy-
namic memory usage become higher during model execu-
tion in such situations. In addition, if used, data
augmentation and fusion inherently add to the complexity of
the IM preprocessing stages.

Few-shot learning (FSL) [11, 12] allows the successful
implementation of ML recognition algorithms on very
limited input datasets. In FSL, ML algorithms mimic the
ability of humans to identify an object in a di£erent or new
situation, based only on minimal or no prior interaction
with that object [11]. �e ability to learn-to-learn (also
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known as meta-learning (MEL)) from a previous situation
makes it possible to achieve this type of recognition capa-
bility. )run & Pratt [13] give a detailed description of the
learn-to-learn process and the expected outcomes of a
machine or algorithm that can learn-to-learn. MEL is
achieved by using two algorithm approaches, namely, metric
[11, 14–16] and gradient-descent [17, 18] learning
approaches.

In literature, usually to evaluate the effectiveness of FSL
algorithms, we have a comparison to Baseline and Base-
line++ models. )e building of Baseline models is through a
normal transfer learning classification approach. Baseline++
models are an improvement on the standard Baseline
models [14, 16, 19]. )e Bayesian, k-nearest neighbours
(kNN), and the Siamese network [20, 21] are successful early
one-shot learning attempts to classify IMs. )e Bayesian
method learns the relationship between inputs by using a
probabilistic approach to relate the attributes of these inputs.
In KNN (K� 1), the algorithm maps the feature space for
two input IMs such that any new input IM outcome is
determined by its nearest neighbour.)eMEL approach can
considerably enhance the performance of Bayesian, KNN,
and Siamese classification networks.

)ere has been successful application of FSL in areas
such as robotics, natural language processing, acoustic signal
processing, drug recovery, and CV [12]. However, there is
scant documentation of FSL as specifically applied to NILM
classification [20–22]. )e difficulty in realizing one-shot
classification has slowed its adoption in NILM systems[23].
Nonetheless, we show some FSL literature developments in
NILM.)e authors in Ref. [22] proposed the classification of
a number of appliance signals using FSL. In Ref. [22], the
authors make a comparison of the few-shot performance of
the KNN, decision trees (DT), random forest (RF), and long
short-term memory (LSTM) models. )e models gave F1-
scores that varied from 0.898 to 0.930, which is an assess-
ment of a model’s accuracy on a given dataset. Moreover, the
algorithms are not MEL and use power series (PS) appliance
signal lengths determined by a sliding window to capture the
minimum appliance activations. In Ref. [20], the authors
proposed the Siamese neural network for classifying V/I
trajectory images. Training of the Siamese networks is based
on one-shot pairs of the same and different label V/I tra-
jectory IMs. Similar appliances belonging to the training set
form a cluster, with unrecognized appliances forming their
own new cluster. )e density-based clustering of appliances
with noise (DBSCAN) technique provides improved clus-
tering [20]. However, there is still need to improve on the
classification performance of the system in [20], as some
appliances are not recognized.

In this article, we propose the development of metric-
based Siamese and prototypical FSL algorithms for the
classification of the limited disaggregated appliance signal
images in the NILM recognition. Contrary to the method in
Ref. [22], we attack the FSL from a MEL CV perspective to
improve the appliance signals’ classification performance. We
obtain a very limited in-house input dataset for the intended
experiment from fourteen PS appliance operational status
signals transformed into the signal IM equivalent form using

Gramian angular summation fields (GASFs) [7, 8]. )e
fourteen appliances considered in this article are made up of
four light-emitting-diode (LED) mains lamps, two compact
fluorescent (CFL) mains lamps, three modes of HP laptop
operation, a refrigerator, a microwave oven, a desktop
computer, a two-plate cooking stove, and a kettle. )e
contributions of this article are as follows:

(i) )e development of high NILM appliance classifi-
cation Siamese and prototypical FSL algorithms
based on CV. )is results in a reduced dataset to as
low as one appliance signal sample per class (one-
shot) that effectively eliminates the negative volu-
minous data-related issues to NILM classification
systems.

(ii) To establish the level of closeness between data
samples by carrying out a similarity test on the entire
dataset. )e similarity test value should be STV ≥ 0.6.
A lower similarity value would require data pre-
processing. We arrive at a value of 0.6 by attempting
to have data that are easily separable at first sight,
leaving the extra-involved 0.4 separation to a better-
designed metric-learning network structure.

We organized the remaining parts of the paper as fol-
lows. In Section 2, we present the similarity, loss functions,
and meta-learning theory. Section 3 gives a presentation and
detailed design of the proposed system. We also explain how
the data are organized. In Section 4, we present and give a
discussion of the experimental results. Section 5 gives a
closure to the article through the conclusion.

2. Similarity Theory, Loss Functions, and Meta-
learning

2.1. Similarity 'eory. Standard ML method classifies ob-
jects by assigning a probability or class value to the object in
relation to the known class labels.)eML algorithms sample
a large number of labeled objects to be able to achieve a good
classification. In contrast, the ML similarity approach as-
sesses the level of similarity between two objects to show
whether they belong to the same class.

Definition 1. Two sets X and Y give a Cartesian product
between them of X × Y � (x, y): x ∈ X andy ∈ Y􏼈 􏼉. If
X � Y, the Cartesian product of X with itself is X × X � X2.
A similarity measure S [24] is a function with nonnegative
real values defined on the Cartesian product X × X:

S: X × X⟶R, (1)

such that the following three properties are satisfied:

(1) ∃s0 ∈R: −∞< S(x, y)≤ s0 < +∞, ∀x, y ∈ X

(2) s(x, x) � s0, ∀x ∈ X

(3) s(x, y) � s(y, x), ∀x, y ∈ X

If in addition,

(1) s(x, y) � s0↔x � y

(2) s(x, y)s(y, z)≤ [s(x, y) + s(y, z)]s(x, z)∀x, y, z ∈X.
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)e S is called a metric similarity measure [24].
)e aim of metric similarity measure learning is to de-

crease the separation between the embedding points of similar
inputs. To evaluate the similarity between objects, various
similarity measures exist [25]. )ese include the Euclidean
distance, the Pearson’s correlation for time series data, the
Mahalanobis distance, which is a variation in the Euclidean
distance with correlation, Dynamic Time Warping for time
series comparison, cosine distance, Jaccard, and Tanimoto
similarity measures [25]. For discrete systems, the similarity
measures include the Jaccard index, Sorenesen coefficient,
and the symmetric difference [24]. )e most popular distance
metric in ML is the Euclidean. )e separation between the
embedding of points of dissimilar inputs is to be increased. If
xi􏼈 􏼉 ∈ Rn is a number of points, then for similar points xi and

xj to satisfy similarity [26],

S: xi, xj􏼐 􏼑 ∈ S. (2)

)e distance learning function in (2) is able to bring
similar points together and dissimilar points apart in the
embedding space:

d(x, y) � dA(x, y) � |x − yA| �

���������������

(x − y)
T
A(x − y)

􏽱

, (3)

where A is an optimum matrix. For metric learning, A is
semi-positive definite, A≥ 0, and when A� I, we obtain the
Euclidean distance [25, 26].

2.2. Loss Functions. )e constructive loss function is well
suited to metric learning. )is function works on pairwise
data samples and optimizes the training based on closeness
or the absence of it between the samples. Let dW(x, y) � DW

be the parameterized Euclidean distance between the out-
puts embedding of xi, xj as defined in (3). )en, the con-
trastive loss function is

% Lcontrastive � (1 − Y)
1
2

DW( 􏼁
2

+(Y)
1
2
max 0, m − DW( 􏼁

2
,

(4)

where m> 0 is a margin. )e margin is the radius encap-
sulating the embedding area, such that dissimilar samples
will only contribute to the loss function if the metric distance
is within the margin. Y is a binary indicator for the samples.
As an example for a pair of similar inputs, this value is 0 and,
for two dissimilar inputs, it is 1 [27]. In other words, the first
part of (3) deals with similar points, while the last part of the
same equation deals with dissimilar points.

)e triplet loss (TL) [28] is another widely used metric
loss function mainly in Siamese learning. In this particular
case, we identify three input images (an Anchor (AC), a
Positive (PO), and aNegative (NE)) each passed through one
of three CNN shared weights parallel models (Siamese
network) with the three embedding models concatenated.
)e TL attempts to bring the embedding of the AC and PO
closer, while it pushes further apart those of the AC and NE.
)e distance between the AC encoding (f(AC)) and the PO
encoding (f(PO)) is

d(AC, PO) � f(AC) − f(PO)
2����
����. (5)

)e distance between the AC encoding (f(AC)) and the
NE encoding (f(NE)) is

d(AC, NE) � f(AC) − f(NE)
2
. (6)

)e aim is to have d(AC, PO)≤ d(AC, NE), that is,

d(AC, PO) − d(AC, NE)≤ 0. (7)

To avoid a trivial solution for (6) in which case the
embedding would be equal, it is necessary to incorporate a
hyperparameter margin ∝ as shown in the following
equation:

d(AC, PO) − d(AC, NE) + ∝ ≤ 0. (8)

)e margin makes sure that there is an appreciable
separation between d(AC, PO) and d(AC, NE). )e TL is

L(AC, PO, NE) � max(d(AC, PO) − d(AC, NE) + ∝ , 0).

(9)

2.3.Meta-andFew-ShotLearning. )emeta-learning system
works by training a large number of unrelated tasks. Each
training task learns to classify images in a query set from the
support set of that task (each task has its own support set and
query set images. However, all tasks have the same classes
and samples in the support set. )e query set has the same
number of samples across tasks. )e images in each task are
different). )e test task that contains entries completely
different from the training tasks would have learned a way of
classifying the query test set from the support test set. )e
generation of a large number of training tasks (to optimize
the training model) can only be achieved from datasets that
have a large number of classes and relatively few samples per
class. In few-shot learning, two popular datasets contain a
very large class count to meet the requirements of training
few-short models. )e first is the Omniglot dataset com-
prising 50 alphabets with varying hand-written character
(class) numbers each and having 20 samples per character
for a total of 1623 characters (classes) [14, 29]. )e class
count in the Omniglot dataset is high, but the samples per
class are few. On the other hand, the Modified National
Institute of Standards (MNIST) dataset used as a baseline for
testing image ML algorithms has only 10 classes but many
samples per class. )e second is the miniImagenet dataset
that uses 100 image classes divided into 80 training and 20
testing samples [14]. Each class in the miniImagenet has 600
samples. )e authors in [23] used the few-shot method on
the full Imagenet dataset for 1000 classes to achieve high
accuracy, having just a few samples per class that varied from
1 to 3. Although these datasets provide a baseline for de-
veloping and testing successful few-shot algorithms, in this
article, we have produced a more applicable in-house NILM
dataset. As in Ref. [23], only in respect to the number of
samples per class, our in-house NILM dataset is processed in
three ways: (1) 14 (Way)× 3 (Shot), (2) 14 (Way)×2 (Shot),
and (3) 14 (Way)× 1 (Shot). We evaluate and test the
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performance of our system on these three data presentations;
however, our ultimate goal is the 1 (Shot) model since this
allows for the minimum possible data sample without
considering the zero-shot scenario.

With N (Way) classes in the support set and each class
having K (Shot) images for a total of N×K support set
images, we aim to classify an image out of Q images in the
query set. )e classification problem is one-shot, three-shot,
or five-shot when the value of K is one, three, or five, re-
spectively. In few-shot learning, the dataset samples (K) are
usually less than ten samples. A special case arises when K is
zero (zero-shot learning (ZSL)). ZSL first learns a projection
of labeled (train) data into a new feature space. It then places
projections of unseen (test) data into the same feature space
and evaluates the distance or similarity value between the
train and test entries to establish their relationship [30, 31].
Few-shot is an inductive transfer learning process where we
optimize a new task based on previous knowledge about a
different task with the same underlying structure. Metric-
learning algorithms that include the MatchingNet [14],
ProtoNet [15], and RelationNet [16] evaluate the distance or
similarity function between images. By so doing, the algo-
rithms can group images together that have smaller distance
functions between them.

2.3.1. Siamese Network. )e Siamese network comprises
single-input two-parallel-shared weight CNN networks that
are both connected to the same distance function block that
in-turn connects to a loss function block. )e output of each
CNN network before the distance function block is a vector
space containing the features or embedding of each input.
)e similarity between the input embedding points is
evaluated in the distance function block through the L2
norm (Euclidean distance) |x − y2|, L1 norm |x − y1| or
cosine similarity cos(x, y). )e loss function implements the
contrastive or triplet loss-based model optimization during
training. )e Siamese network is most appropriate for one-
shot learning [20, 21].

2.3.2. Matching Network. )e matching network uses two
different functions gθ and fθ to extract the embedding of the
support and query sets, respectively. )e cosine similarity
function compares each support set image features (em-
bedding) to the query set features, followed by softmax
classification. Full context embedding (FCE) through LSTM
networks allows the production of an embedding that is the
resultant of all the support set image features. FCE improves
the performance of the MatchingNet especially in compli-
cated situations [14]. In (9), we show the relationship be-
tween the query test sample 􏽢x, and query predicted label (􏽢y)

from classification as [11, 14]

P(􏽢y | 􏽢x, S) � 􏽘
k

i�1
a 􏽢x | xi( 􏼁yi, (10)

where k is number of support set samples, xi, yi represent the
support set object-label pairs, S � (xi, yi)􏼈 􏼉

k

i�1, and a is the
attention mechanism. )e attention mechanism a(., .)

chooses the most significant attributes in evaluating the
similarity in embedding points.

2.3.3. Prototypical Networks. )is is a less complex metric-
learning algorithm that is capable of higher performance
that matching networks. In this algorithm, we first find the
prototype (ck) mean class of every object in that class.
Secondly, we realize the softmax classification of the test
object (query) by establishing the Euclidean distance be-
tween the query and prototype embedding [15].

)e calculation of the prototype point is as follows:

ck �
1
Sk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

xi,yi( )∈Sk

f∅ xi( 􏼁, (11)

where Sk represents the k class support point, xi is feature
point with label yi, and f∅ is the embedding function having
∅ trainable parameters. )e evaluation of the query where d
is the Euclidean distance between the query and prototype
class is as follows [15]:

p∅(y � k|X) �
exp −d f∅(X), Ck( 􏼁( 􏼁

􏽐kexp −d f∅(X), Ck( 􏼁( 􏼁
. (12)

A bigger training class count than that for testing
normally achieves better results, but maintains the class
samples the same in both training and testing situations [11].
)e training episode for the negative log-probability J∅ �

−logp∅(y � k|X) through SGD where k is the true class [15]
is given in Algorithm 1.

2.3.4. Relation Network. In this model, there is concate-
nation of the support set (fφ(xi)) and query set (fφ(xj))

feature maps produced by the same embedding function.
)e function that concatenates the feature maps is
∁(fφ(xi), fφ(xj)). )e concatenated result is processed in
the relation module to output a similarity measure (relation
score) between xi and xj of value 0 to 1. )e number of
relation scores depends on the number of classes in the
support set. Equation (12) shows the expression for the
relation score [16]:

ri,j � g∅ ∁ fφ xi( 􏼁, fφ xj􏼐 􏼑􏼐 􏼑􏼐 􏼑, i � 1, 2, . . . , ∁, (13)

where ∁ is number of classes in support set, xi is support set
objects, and xj is query set entry during model training.

2.3.5. Model-Agnostic Meta-Learning (MAML). )eMAML
[18, 32] is unique among meta-learning methods since it is
implementable on any gradient-descent model. To address
the meta-learning problem, if the MAMLmodel successfully
solves a previous task, then it should learn to deal with a new
task in a faster way with improved performance.)eMAML
seeks to have a learnable parameter θ move close to the
optimized θ∗i parameter values of different tasks [18]. )is θ
becomes the initialization value, which is specific task fine-
tuned.)e θ trajectory involves the continuous optimization
of the loss functions Li for the tasks [18]. We define a task as
Ti � pi(x), pi(y|x), Li􏼈 􏼉 that shows the distribution over the
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input pi(x), the distribution over the labels given the input
pi(y|x), and the loss Li. )e distribution of tasks is p(T). If
fθ represents the classification model, then the training set
loss is

min
θ

􏽘
Ti ∼p(T)

LTi
fθ( 􏼁.

(14)

)e gradient descent optimizes the loss as

min
θ

􏽘
Ti ∼p(T)

∇θLTi
fθ( 􏼁.

(15)

When the learning rate is α, the complete gradient-
descent update is

θi
′ � θ − α∇θLTi

fθ( 􏼁. (16)

Training of the model to minimize LTi
(fθi
′) then follows

in the meta-objective as

% min
θ

􏽘
Ti ∼p(T)

∇θLTi
fθi
′􏼐 􏼑 � 􏽘 LTi

fθ − α∇θLTi
fθ( 􏼁􏼐 􏼑.

(17)

Covering all the tasks, the stochastic gradient descent
(SGD) updates the meta-optimization parameter θ as

θ←θβ∇θ 􏽘
Ti ∼p(T)

LTi
f θi( 􏼁,

(18)

where β is the meta step size [18–33].

3. Methodology

3.1. Proposed System. Based on literature review, compared
to other metric networks, the matching network is more
involved to realize [14] and normally achieves less perfor-
mance. Due to this, we do not consider the matching net-
work for application in this article. Due to its simplicity, it is
possible to implement a relational metric-learning network.
However, for now we only explore the prototypical network.

Appliance activation periods vary considerably, and this
can result in imbalance in the number of appliance-specific
generated signal images. )ere is no effect on the perfor-
mance of few-shot prototypical metric-learning networks by
this data imbalance. In this article, we propose the appli-
cation of prototypical networks. Prototypical networks only
produce a prototype (average) value embedding point of the
samples in each class during training. A comparison is made
of the average prototypes with a test embedding point
through the Euclidean distance metric. We first carry out a
similarity test on the entire dataset to establish the level of
similarity between the data samples. )e application stage of
the prototypical network will require a similarity test value of
at least 0.6 to increase the accuracy of our few-shot learning
model.

We give the flowchart of the proposed system in Fig-
ure 1. Our proposed system allows for quick determination
of the suitability of disaggregated appliance data for metric
learning before the actual few-shot learning. By so doing, we
are able to preprocess the data before conversion into ac-
ceptable TensorFlow file formats, which can result in im-
proved model training. We assign an acceptable data
similarity value in the overall data similarity search.

In the proposed train and test few-shot metric model
block exploded in Figure 2, we seek to address the recog-
nition of limited appliances signals by employing a model
(Modelmetric) based on testing the similarity or dissimilarity
between a known appliance signal image in the support set
(Dsupport) and an unknown disaggregated appliance signal
image in the query set (Dquery). A conventional image-based
deep learning neural model would require training by a very
large sample count in (Dsupport). )e proposed system in-
cludes a training dataset (Dtrain) to train the Modelmetric.
Training of the model is through a larger base set split into a
specific number of different tasks ( Ti, i ∈ h􏼈 􏼉for1≤ i≤ h), for
h tasks to optimize the loss function. )e Modelmetric is the
prototypical network. A 1 shot Siamese model can also be
realized. )e training allows for the realization of a model

Input: Training set D � (x1, y1), . . . , (xN, yN)􏼈 􏼉 , where each yi ∈ 1, . . . , K{ }. Dk denotes the subset of D containing all elements
(xi, yi) such that yi � k.
Output: )e loss J for a randomly generated training episode.
V←RANDOMSAMPLE ( 1, . . . , K{ }, NC) ⊳ Select class indices for episode
for ki in 1, . . . , Nc􏼈 􏼉 do

Sk←RANDOMSAMPLE (DVk, NS) ⊳Select support examples
Qk←RANDOMSAMPLE (DVk/Sk, NQ) ⊳Select query examples
ck←1/Nc􏽐(xi,yi)∈Sk

f∅(xi) ⊳Compute prototype from support examples
end for
J←0 ⊳Initialize loss
for k in 1, . . . , NC􏼈 􏼉 do

for(x, y) in Qk do
J←J + 1/NCNQ[d(f∅(x), ck ) + log􏽐k′

exp(−d(f∅(x), ck))] ⊳Update loss
end for

end for

ALGORITHM 1: [15] Prototypical single training episode loss computation.N gives the number of training set samples,K gives the number of
classes in the training set, NC≤K is the number of classes per episode, NS is the number of support examples per class, and NQ is the
number of query examples per class. RANDOMSAMPLE(S;N) denotes a set of N elements chosen uniformly at random from set S, without
replacement [15].
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that learns to learn to place the embedding of similar classes
together in the test task.

3.2. Dataset Preparation. )e dataset is made up of fourteen
appliance categories or classes placed in an ALL_IMAGES
main directory on the computer. )ese appliances include
four light-emitting-diode (LED) mains lamps (LED1-1
(5W), LED1-2(5W), LED2-1 (5W), and LED3-1 (5.5W)),
two compact fluorescent (CFL) mains lamps (CFL1-1(12W),
CFL2-1(14W)), three modes of HP laptop operation (lap-
top_boot, laptop_ms_word, laptop_video), a refrigerator
(fridge), a microwave oven (microwave), a desktop com-
puter (desktop), a two-plate cooking stove (stove), and a
kettle (K). A sample of our raw few-shot train support
dataset is shown in Figure 3 and is comprised of GASF IMs
initially in RGB format and shape 400 × 400× 3. In Figure 3,
we have shown only two samples out of ten samples per
class. Using a PA1000 Tektronix [34] power analyzer in a
laboratory setup, we measure the operational TS signals over
the complete activation of the appliance. We then transform
the appliance’s activation signals to IM equivalent by using
GASF.

Figure 4 shows the images used in the test support and
never seen before by the few-shot model.

As clearly seen in Figures 3 and 4, the sample images
have different features and this property is used to suc-
cessfully train and test the few-shot meta-learning model. It
is important at this point to note that for the similarity test
model, the samples in Figures 4 and 5 are considered one
dataset, which is then split using the sklearn train_test_split.
Converting the RGB images to grayscale and reducing image
size helps to decrease the complexity of developed algo-
rithms, speed up the process, and use less computation
resources.

)e use of both the omniglot and miniImagenet datasets
for evaluating developed FSL algorithms is widespread. We
observe that typical file formats in FSL algorithms include the
NumPy array (.npy), tar.gz (.tgz), or just straight image file
folder. However, the IMs in these FSL algorithms are nor-
mally converted to grayscale (L) and resized to 28× 28. )e
.npy grayscale images have an initial shape of 28× 28. To take
advantage of existing few-shot coding in literature, we prepare
our custom dataset more or less in the samemanner as for the
omniglot and niniImagenet datasets. TFRecords files present
data in binary record sequences. TFRecords is the recom-
mended TensorFlow data format. We do not evaluate our
final models on TFRecords as the conversion of various data
formats to TFRecords requires different coding approaches.
However, we do experiment with TFRecord files.

No

Yes

Begin

14 appliances with 
140 image samples

Similarity search 
algorithm (Ssearch)

Ssearch ≥ 0.6

Train and test few-shot 
metric model

Train and test 
Siamese model

Pre-process data
to make each 
sample unique

Consider other meta-
learning algorithms

End

Figure 1: Proposed system with data presimilarity test.
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For each appliance, we are able to capture at least ten
activation signals, which results in ten signal IM samples per
appliance class. )e total number of resized IMs per one
measurement exercise is 140. When we take the NumPy
route, the produced IM NumPy array is reshaped to
[number of classes, samples per class, IM width, IM height,
channels] to give shape (14, 10, 28, 28, 1). We then split this
into train, test, and validation data. We follow the directory
structure of the omniglot dataset to achieve the NumPy and
reshape above. )e execution of the create-miniimagenet.py
converts the image miniimagenet folder into train.npy and
test.npy. On the other hand. the helper.py script converts the
omniglot dataset to .npy.

We then run a custom-developed script to convert our
ALL_IMAGE folder into train.py and test.py. In some in-
stances, we performed the data split by producing train, test,
and validation CSV files that contain the IM file name and
label. )e labeled IMs in this case are stored in their own
separate folder.

3.3. Training Procedure. Due to the extensive coding re-
quired for the FSL algorithms, we had to experiment with
code examples from numerous GitHub repositories and
from keras.io code examples [35, 36]. We implemented the

code in both python and keras in IPython and Jupyter
platforms, respectively. In training some code, we used the
Google Colaboratory (Google Colab.) notebooks platform in
which we could easily install such packages as PyTorch.
Google Colab also allowed us to use the graphics processing
unit (GPU) facility not available on our HP 650 Notebook to
speed up training. However, in these codes, we modified the
utilities (utils) data handling part to accommodate our in-
house datasets. We also modified or added code for specific
data results’ visualization and experimented with various
hyper-parameters. In some instances, we experimented with
different number of convolutional layers. We also experi-
mented with different epochs, episodes, and different
number of support and query set classes and shots. However,
our target system was the 1-shot model.

We trained the similarity test model in colab, with data
loaded into My Drive in Google Drive. )e RGB images of
size 400× 400 are resized to 28× 28. Training is performed
with a train-to-test split ratio 0.75 : 0.25 and batch size of
one. )e train shape is (105× 28× 28× 3), and test shape is
(35× 28× 28× 3). High numbers of batch size did not im-
prove system performance, probably due to our limited
training samples. )e embedding model is a three-layer
VGG 2D convolutional network with filter sizes 32, 64, and
128 from the input and kernel size of 3. During training, we
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Class 2

Class 3 

Class 3 

Class 4 

Class 5 

Class 6 

Class 8

Class 1

Class 2

Class 4 
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Class 8 
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Figure 2: Few-shot metric-learning nonintrusive appliance recognition framework.
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stove.0.jpg

laptop_boot.0. laptop_boot.2. laptop_ms_word. laptop_ms_word. led1-1.0.jpg led1-1.2.jpg

led1-2.0.jpg

fridge_0_jpg fridge_2_jpg

led1-2.2.jpg led2-1.0.jpg led2-1.2.jpg led3-1.0.jpg led3-1.2.jpg

stove.2.jpg CFL2-1.0.jpg CFL2-1.2.jpg Desktop.0.jpg Desktop.2.jpg
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Figure 3: Two samples each of the ten (10) train support classes.

CFL1-1.0.jpg CFL1-1.2.jpg K.0.jpg K.2.jpg

laptop_video_0_
jpg

laptop_video_2_
jpg

microwave_0_jpg microwave_2_jpg

Figure 4: Two samples each of four (4) test support classes.
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experimented with various hyper-parameters and we would
get slightly different classification results. However, for best
classification results, we settled for the Adam optimizer with
a learning rate of 1e− 3 as in [35], and we used the sparse-
categorical-cross-entropy loss function.

To train the Siamese network, we create two directories
each with four grayscale images of dimension 400× 400×1.
)e directories are the 2_plate_stove and CFL1-1(12W)
appliance classes. After preprocessing, the new data shape is
16, 2, 1, 200, 200, where 32 is the total sample size, 16 for 2
pairs input into the Siamese network. )e 1, 200, 200
represents the new dimensions of the images in pgm format.
As in Ref. [37], the base model consists of two 2D con-
volutional layers followed by flatten operation and two dense
layers. )e first 2D CNN layer had 6 filters each of size 3,
ReLU activation, followed by max. Pooling (2, 2) and
dropout 0.25. )e second 2D CNN layer had 12 filters each
of size 3, ReLU activation, followed by max. Pooling (2, 2)
and dropout 0.25. )e first dense layer is 128 units with
dropout 0.1, and the last layer has 50 units with reLu ac-
tivation. We used the contrastive loss and RMS optimizer. In
addition, we developed a Siamese model based on the triplet
loss function with a margin (alpha) of 0.2, 98 train grayscale
samples and 42 grayscale test samples. We experimented
with different image formats that proved to be difficult to
implement in the coding of [37].

In the prototypical recognition system, the data were
based on the RGB IMs of size 400× 400. )ese IMs from a
total IM count of 140 are reshaped to 28× 28 × 3. Two
approaches were then used to format the input data into the
prototypical network. )e first approach involved the

internal model augmentation through rotation at different
angles to obtain a final train set shape of (400, 28, 28, 3) and a
test shape of (160, 28, 28, 3). )e second approach took the
140 IM samples and reshaped to train set shape (10, 10, 28,
28, 3) and test set shape (4, 10, 28, 28, 3), where 4 represents
the test classes and 10 the number of samples per class for the
test set. )e second approach implementable on CPU be-
cause of the low memory requirements provided the results
captured in this article. It was necessary to combine the
different modules available in GitHub to come up with a
TensorFlow prototypical network [38], which was also ex-
ecuted in colab under GPU. )e codes are executed with the
SGD optimizer and a learning rate of 0.1. )e recognition
efficiency generally increases as the number of episodes
increases. In the first approach, the highest accuracy was at
30000 episodes for a frame size of 1000. However, in the
second CPU approach, the maximum episode count was 600
episodes.

4. Experimental Results

4.1. Similarity Search. In Figure 5, we see the appliance
recognition results based on similarity.

To evaluate the suitability of our dataset for metric
learning, we use the code in [35]. In this similarity test
algorithm, we infer images of the same class as being similar,
while those between classes are not. A requirement in model
training is the pairing of images in the same class for the
similarity test. One image is the AC and the other the PO
[35]. )ere are 38 test samples out of the 140 total appliance
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IM samples. By pairing the test samples, we obtain 76
samples. For 14 classes, that translates to six (6) samples in
the test set assigned to each class.

)e 2_plate_stove and cfl1-1 attained one hundred per
cent recognition. )e refrigerator and microwave oven also
attained high levels of recognition. However, their relative
high powers especially with the inclusion of the refrigerator
switching spike some activations are almost similar between
the two. )e system also had difficulty in recognizing be-
tween the different operating modes of the laptop. However,
the system was able to cluster all sample points as laptop
among laptop_boot, laptop_video and laptop_ms_word,
which in itself represents the success of the similarity test.
With improved network and data, the similarity test system
has potential for attaining high classification and hence
passes the test criteria of 0.6. We give the similarity loss plot
in Section 4.4

4.2. Siamese Network 1 Shot Learning. In Siamese network
training, we have two authentic (similar) images to which we
assign an authentic label of 1 to the pair. For a pair of images
between classes, we assign a not-authentic label of zero (0).
During training, the input into the Siamese network is either
the pair of authentic images or a pair of not-authentic
images. )e trained model provides the set coordinate of the
embedding of each similar pair per class. In our case, we
obtain the Siamese 1 shot experimental results on both the
contrastive and triplet loss functions. When the contrastive
loss function trained Siamese network is tested against the
compact fluorescent lamp (CFL2-1(14W)), it returns a true
target value of 1 as given in the part sample code:

In [34]: x_testsia[target_index:target_index + 1,
0].shape
Out [32]:
(1, 1, 200, 200)

In [34]: predsia�model.predict([x_testsia[targe-
t_index:target_index + 1, 0], x_testsia[target_index:
target_index + 1, 1]])
predsia� predsia <0.5
print(“y_test[target_index]:”, y_testsia[target_index,
0]� �True, “pred:” ,predsia)
y_testsia[target_index]: True predsia: [[True]].

In triplet loss Siamese model, the train set shape is (98,
28, 28, 1) and the test shape is (42, 28, 28, 1). On the other
hand, a part test code for the triplet loss is

In [15]: btch_size� 9
epchs� 200
steps_per_epch� int(x_train.shape[0]/btch_size)

3

2

1

0

-1

-2

-2 -1 0 1 2 3

Figure 6: Triplet loss test embedding results.

Table 1: Prototypical network few-shot learning test results.

Test Ns Nc Nq Test episodes Avg. test accuracy %

1 1 2 9
600 91.343
250 89.844
100 91.167

2 2 2 8
600 94.406
250 94.95
100 94.50

3 3 2 7
600 94.976
250 94.743
100 95.429

4 5 2 5
600 96.10
250 96.8
100 94.7

5 7 2 3
600 96.722
250 96.867
100 97.83

6 8 2 2
600 97.417
250 96.5
100 96.5

Table 2: N-way k-shot accuracies for the prototypical network.

N-way k-shot Average accuracy (%)
2-way 1-shot 91.343
2-way 2-shot 94.95
2-way 3-shot 95.429.
2-way 5-shot 96.8
2-way 7-shot 97.83
2-way 8-shot 97.417
3-way 1-shot 90.543
3-way 2-shot 93.361
3-way 3-shot 93.643
3-way 5-shot 94.378
3-way 7-shot 95.333
3-way 8-shot 95.889
4-way 1-shot 88.17
4-way 2-shot 93.005
4-way 3-shot 93.374
4-way 5-shot 93.892
4-way 7-shot 93.708
4-way 8-shot 94.958
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net.compile (loss� triplet_loss, optimizer“�’adam”)
_� net.fit(

data_generator(btch_size),
steps_per_epoch� steps_per_epch,
epochs� epchs, verbose� False,
callbacks� [
PCAEmdPlotter(

plt, embedding_model,
x_test[:40], y_test[:40])]).

We give both the contrastive and triplet loss plots in
Section 4.4. Figure 6 shows the results of the test imbedding
in the triplet loss model.

From Figure 6, there is a tendency for clustering of the
embedding in any class. )ese results here show that there is
a need to increase the train dataset or redesign the model for
deeper DL. )ese results are in synchronization with the
results shown in Figure 5 where the model tries with effort to
obtain the classification of different appliance signals that are
almost the same.

4.3. Prototypical Network. )e prototypical model achieves
high accuracy early in the training and converges well. )e
train loss and accuracy plots are given in Section 4.4. To test
the model, we specify different values of number of samples
or shots in the support set (Ns), the different number of
classes in the support set or ways (Nc), and the number of

Table 3: Comparison with published results.

Method TRDS TRCL TRQS TRACC % TEDS TECL TEACC %
Avg:

Ours: Protonet
4 5 6 100.00 7 2 97.83
4 5 6 100.00 8 2 97.41
4 5 6 100.00 1 2 91.343

Reference [39] 22 5 — 75.00 8 2 93.75
Reference [40] 30 2 — 83.33 6 2 86.11
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samples in the query set (Nq) whose class value is unknown.
Table 1 shows the relation between test support and query set
sample entries per given appliance class number.

Table 1 gives all the few-shot learning test results col-
lected for the prototypical network. In Tables 2, we show the
summary of 2-way k-shot accuracy results for the proto-
typical network. In Table 2, the 2-way 7 shot gives the highest
performance at 97.83% average test accuracy. Our data have
four (4) test classes and ten (10) training classes. Hence, in
the test and support class, the number of samples is either 4-
way k-shot, 3-way k-shot, 2-way k-shot, or 1-way k-shot.
Likewise, the training test set can vary from 10-way k-shot to
1-k-shot. )e 1-way k-shot is a theoretical postulation, since
in reality, we cannot have a model that trains to detect one
class in our case. However, a multiple sample within one
class is feasible. )e limited classes in our experiment will
result in slight model overfit of 100% train accuracy to
97.83%. )e 2-way 1-shot system gives a reasonable average
test accuracy of 91.343%. )e results in Tables 1 and 2 are
based on a 5-way k-shot training set. A 10-way k-shot
training set did not produce satisfactory results. Comparing
the performance of the prototypical network with the metric
similarity search at the beginning, we see an agreement
between the two systems. Table 2 also shows the average
accuracies of the 3-way k-shot and 4-way k-shot FSL test
models.

In Tables 2, we see that the test accuracy goes up as the
k-shot value goes up in the support set. )e number of
classes is the same in the test support and query sets. )e
four test cases belong to the refrigerator, kettle, LED2-
1(5W), and CFL2-1(14W) mains lamps.

We now make a comparison of the results of this article
to published results that use the same datasets. In Table 3, we
show training dataset (TRDS), training classes (TRCL),
training query set (TRQS), training accuracy (TRACC), test
dataset (TEDS), testing classes (TECL), and the testing
accuracy (TEACC).

From Table 3, we can clearly see that with a very limited
training dataset, our model achieves a higher training ac-
curacy and higher test accuracy than from publications that
use the same data in different model architectures. Reference
[39] is IM classification based on the capsule network, while
Reference [40] is classification based on the ConvNet VGG
image classifier. From the similarity metric test results at the
beginning, we see that we have a number of classes whose
embedding is very close to each other. We need to inves-
tigate howwe can improve further the accuracy of ourmodel
by considering such issues as hybrid MEL systems [41, 42].
)ere is need to consider the visualization of the embedding
including the actual class objects and labels from the query
set.

4.4.ModelLossPlots. Figure 7 gives the training loss plots for
the models developed in this article. )e plots show the
attempt by the models to reach convergence trough stable
training. Due to the limited training data points, the models
tend to overfit; however, they do produce acceptable
performance.

5. Conclusion

In this article, we investigate the application of few-shot
learning in the form of a Siamese and prototypical network
for the classification of disaggregated appliance signal im-
ages. By first carrying out a similarity test on the entire image
dataset, we see that there are some appliances whose em-
bedding is extremely close to each other. We observe a clear
separation of embedding in other instances. We infer this
information from the given confusion matrix. Nonetheless,
the results show that we can achieve acceptable recognition
of appliance signals using the Siamese and prototypical few-
shot learning network. Two major challenges have been
encountered in this study.)e first is the inadequate number
of available training classes so that the models could provide
improved generalization. )e second challenge is the
closeness of some of the appliance signals to each other
resulting in impaired discrimination between appliances.
Program execution on normal CPU was extremely slow, or
the system would just crash. Fortunately, we were able to
make use of the GPU facility on Google Colab platform.

In future, we investigate the application of the MAML
algorithm and the possible application of hybrid metric and
gradient-descent few-shot learning methods for improved
recognition performance. We will also consider increasing
the training data classes and examples. Of particular interest
is the improvement of the N-way 1-shot recognition setup.
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