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Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. Te accurate
prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’
preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques,
which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel
two-stage statistical method that is interpretable and easy to compute.Methods. We used two datasets to evaluate the performance
of the proposed method, including the well-known public dataset CHB-MIT. In the frst stage, we estimated the dynamic brain
functional connectivity network for each epoch. Ten, in the second stage, we used the derived network predictor for seizure
prediction. Results. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU
dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the
CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of
11.1%, outperforming existing state-of-the-art methods. Signifcance.Tis study proposed an explainable statistical method, which
can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures.
Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.

1. Introduction

Epilepsy is a group of chronic neurological disorders
characterized by the abnormal and excessive fring of brain
neurons, called epileptic seizures [1]. According to the
newest WHO global report on epilepsy, around 50 million
people are sufering from epilepsy globally [2, 3]. During
epileptic seizures, electrical activities in the brain are dis-
rupted, resulting in dysfunction and communication dis-
orders among brain regions, which in turn lead to many
temporary symptoms, such as loss of consciousness, staring,
and disturbances of movement [4]. Unpredictable seizures

dramatically afect the life of patients and may even lead to
death [5]. Terefore, accurate and reliable seizure prediction
can be benefcial for treating epilepsy. Patients can use Anti-
Seizure Medications (ASMs) for treatment in advance,
which would substantially improve the quality of life of these
patients and prevent some traumatic events, including a
series of life-threatening accidents.

Electroencephalography (EEG), as an electrophysiologi-
cal monitoring approach to detecting brain electrical activity,
has been proven to be a critical technique for diagnosing
patients with epilepsy. Scalp EEG is typically noninvasive
with multiple electrodes placed along the scalp [6]. It records
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the spontaneous electrical activity generated by brain neu-
rons with high time resolution over a while. Scientists have
found that it can be categorized into four diferent waveforms
for scalp EEG records of patients with epilepsy. In the view of
brain functional connectivity, these four diferent waveforms
can be represented by four brain functional connectivity
structures [7], corresponding to four diferent states of ep-
ilepsy seizures: (1) preictal state, which is the state before a
seizure occurs; (2) ictal state, which is the onset state of
seizure; (3) postictal state, which refers to the immediate state
after a seizure; (4) interictal state, that is the state between
postictal state and preictal state [8]. Figure 1 shows the sketch
of the four states. Predicting seizures can be realized by
detecting the preictal state, which can be achieved through
discovering the changes in brain connectivity networks from
interictal state to preictal state [9–12]. However, it is clinically
difcult to identify the preictal state by visual inspection of
scalp EEG signals to observe changes in the structure of brain
connectivity networks. Terefore, powerful and explainable
statistical methods are needed to determine the preictal state
from scalp EEG recordings for seizure prediction.

Nowadays, brain functional connectivity modeling ap-
proaches have been proven to be a crucial tool in the neu-
roscience research feld [12]. Te brain can be seen as a
complex network in which each brain region communicates
and cooperates to carry out diferent functions [13]. However,
the dysfunction in certain areas would interfere with the
processing of upcoming information, consequently leading to
network disorders and changes in a person’s behavior [14].
Current research has shown that epilepsy is a specifc disease
related to the brain network abnormalities, and they also
suggest that the brain functional connectivity of a particular
patient would abnormal dynamic changes during seizures,
and the forms of brain functional connectivity are diferent
among four diferent states of epilepsy seizures [15]. Hence, it
is reasonable and adequate to employ brain functional con-
nectivity modeling approaches to predict seizures. Some
previous studies have applied brain functional connectivity
modeling methods to study epilepsy disease. For example,
Williamson et al. [16] constructed multiple spatiotemporal
correlation structure features from EEG data to classify the
patients’ preictal or interictal states. A potential limitation of
this study is that it only used a cortical network rather than a
whole-brain network and cannot extract all essential features,
making it difcult to achieve excellent predictive perfor-
mance. Varotto et al. [17] proposed a method that employed a
partially directed coherence method to depict the brain
functional connectivity network. However, this study did not
use the brain network features to predict seizures. Further-
more, a more recent work [18] has proposed an automatic
seizure prediction method based on a graph convolutional
network.Tismethod could achieve a good seizure prediction
performance by exploring the critical brain network features.
To the best of our knowledge, this method is an excellent
approach for seizure prediction. However, there are two fatal
issues with this method. First, since this method is based on
the deep learning technique, the interpretability is relatively
weak. Second, the algorithm of this method is too complicated
to be applied by clinicians.

To address the issues mentioned above, we referred to
the existing novel statistical analysis framework called si-
multaneous diferential network analysis and classifcation
for matrix-variate data (SDNCMV) [19] and based on the
characteristics of scalp EEG data and epilepsy disease, we
proposed an explainable statistical model for patient-specifc
seizure prediction. Before introducing the proposedmethod,
we frst briefy described the SDNCMV approach. Tis
method was a two-stage data-driven approach that deals
with fMRI data. Te frst stage estimated each subject’s brain
functional connectivity network and converted this network
data into vector data for prediction in the next step. In the
second stage, an ensemble prediction procedure was used to
conduct the prediction results. In our study, we focused on
using scalp EEG data to address patient-specifc prediction
problems. Since EEG data and fMRI data are in the same
data format as matrix data [20, 21], we can refer to
SDNCMV. However, there are still some diferences be-
tween the scenarios of this study and those of Chen et al. [19]
that used fMRI data to classify Alzheimer’s disease. Te
fMRI data is a matrix data for each subject, while the EEG
data is a matrix data for each epoch [22], which is artifcially
generated. More specifcally, since the scalp EEG data used
in this study have higher temporal resolution than fMRI data
and the data epochs are small, we cannot use the SDNCMV
method directly. We should assume that the brain functional
connectivity for each subject is time-varying and then
modify the frst stage of SDNCMV to estimate the dynamic
brain functional connectivity to obtain better performance.
More details of our method will be introduced in the fol-
lowing section.

Te signifcance of this study is that we proposed an
explainable statistical method, which could be used to
predict seizures based on the brain functional network. In
addition, the proposed method is also computationally ef-
fcient, and the results can be easily interpreted. Terefore,
this method can be better applied to the clinical and is more
conducive to helping more patients with epilepsy.

2. Materials and Methods

2.1. Scalp EEG Data. Te scalp EEG data used in this study
are obtained from Children’s Hospital Boston, the Massa-
chusetts Institute of Technology (CHB-MIT) database [23]
and Peking University First Hospital (FH-PKU) database.

Te CHB-MIT database is available with open access at
https://physionet.org/physiobank/database/chbmit/. Te
EEG recordings were collected from 23 children with in-
tractable seizures, of which fve males with age from 3 to 22,
17 females with age from 1.5 to 19, and one child with
missing gender and age data.Tese recordings were grouped
into 24 cases since the EEG data of patient ID chb21 was
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Figure 1: Te sketch plot of four diferent states of epilepsy
seizures.
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obtained one-half year after chb01 from the same child. Te
sampling frequency for this database was 256Hz, and the
international 10–20 EEG electrode positions and nomen-
clature system was used for these recordings. Te diference
between two adjacent electrodes obtained the signal mea-
surement for each electrode in this scalp EEG data. In most
of the 24 cases, there are 21 unique signals, while a few cases
contain less or more. Hence, only the recordings that include
these 21 unique signals were selected in this study to keep the
results consistent.

Te FH-PKU database is a private database containing
17 patients or cases. Tis scalp EEG data were recorded at a
sampling rate of 500Hz and used 19 signals in the inter-
national 10–20 system. In this database, a diferent method
was used from the CHB-MITdatabase to measure the signal
of each electrode. Tis method used the signal diference
between the electrode and the fxed reference electrode.
Furthermore, to ensure the accuracy of the results, the
physiological state of the patients in diferent epochs was
roughly the same.

In this study, we focus on patient-specifc seizure pre-
diction performance. For each patient in these two data-
bases, the ictal state, the period when the patient experienced
seizure onset, is easily detected from raw signals by doctors.
Although the preictal state is challenging to identify and
there is no gold standard, based on the ictal state, the preictal
state can be defned by ourselves, which is the 30-minute
window before a seizure occurs and is seen as the case state
in this study. However, the interictal state, which is seen as
the control state, is more difcult to defne; it is hard to
recognize the period of the postictal state. Hence, to elim-
inate the noise efect of the postictal state, recordings within
2 hours after the end of the seizure are removed. Te period
from this time to the next preictal state is defned as the
interictal state. Moreover, if the time between two seizure
periods is less than 2 hours, only the frst one is selected for
this study. We consider all epochs as samples in this study
and divide the continuous EEG data within a preictal state
and interictal state into nonoverlapping 60-second epochs.
To reduce computational complexity, we average the data
obtained every second for each signal. Ten, the data of each
epoch is in matrix form with 21 or 19 columns and 60 rows
for the patients from CHB-MIT or FH-PKU database.

2.2. Dynamic Brain Functional Connectivity Estimation.
Tis section introduces the procedure to estimate the in-
dividual-specifc dynamic brain functional connectivity
measures. For each individual, we denote Xc ∈ Rp×q and
Yϕ ∈ Rp×q as the raw scalp EEG data matrix of c-th epoch for
preictal state and ϕ-th epoch for the interictal state, re-
spectively, where p represents the number of electrodes and
q represents the number of time points. Based on the as-
sumption that not every region of interest in our brain is
connected, we estimate the dynamic brain functional con-
nectivity within c-th epoch for the preictal state and ϕ-th
epoch for the interictal state via sparse precision matrices for
Xc and Yϕ, which estimate the strength measures of brain
connectivity via partial correlations. Here we mainly focus

on the procedure of how to address the raw scalp EEG data
matrix in the preictal state Xc, while Yϕ can be dealt with
similarly.

Before introducing the detailed procedure, we follow the
classical matrix normal distribution framework to defne the
distribution of Xc. Assume Xc follows a matrix normal dis-
tribution for each c, denoted as Xc ∼ MN(Mc

X,ΣcXT
⊗ΣcXS

),
where ΣcXT

� (ΣcXT,ij) ∈ R
q×q and ΣcXS

� (ΣcXS,ij) ∈ R
p×p rep-

resent the covariance matrices of p electrodes locations and q

time points for c-th epoch, respectively. Ten, for each time
point t (1≤ t≤ q) within the c-th epoch, we have
Xc

·t ∼ N(Mc
X,·t,Σ

c
XS

). If the brain functional network is stable
within each epoch, there are lots of existing approaches to
estimate the sparse precision matrix Ωc

XS
� (ΣcXS

)− 1 in the
high-dimensional setting, such as Graphical Lasso [24] and
CLIME [25]. However, in the current study of epilepsy, it is
more reasonable to assume that the brain functional network
is changing over time. Hence, we need to estimate the dynamic
sparse precision matrix Ωc

XS
(t) for each time point based on

time-varying covariance matrices, which can be achieved by

􏽢Ωc

XS
(t) � argmin

Ω
Tr 􏽢Σc

XS
(t)Ω􏼐 􏼑 − log |Ω| + λ‖Ω‖1􏽮 􏽯, (1)

where 􏽢ΣcXS
(t) � 􏽐

i

witX
c
·i(X

c
·i)

T/􏽐
i

wit is a weighted covari-
ance matrix, and we adopt a symmetric non-negative kernel
function K(·) to generate the over time weights as wit �

K(|i − t|/hn). It is easy to fnd that this objective function is
based on the Graphical Lasso and given the estimated 􏽢ΣcXS

(t),
we can use the same algorithm to solve this optimization
problem. Please refer to Graphical Lasso [24] for details. In
practice, to obtain a better prediction performance, we
substitute 􏽢ΣcXS

(t) by 􏽐
q
t�1

􏽢ΣcXS
(t)/q, which is the average of

􏽢ΣcXS
(t) over q time points and then a unifed sparse precision

matrix estimation within each epoch, instead of multiple
diferent sparse precision matrices 􏽢Ωc

XS
, which can be used to

estimate the brain functional connectivity measures. Al-
though, here the sparse precision matrix is same for each
time points within a specifc epoch, it is generated via a time
varying covariance matrix, so the brain functional network
can be considered dynamic. In addition, we use Gaussian
kernel function and set hn � n1/3 to calculate the weights wit

in the real application, where n is the sample size.
To sum, in this study, we adopt two symmetric matrices

􏽢Wc

XS
� ( 􏽢W

c

XS,ij) ∈ R
p×p and 􏽢Wϕ

YS
� ( 􏽢W

ϕ
YS,ij) ∈ R

p×p to
measure the dynamic brain functional connectivity strengths
for c-th epoch in preictal state and ϕ-th epoch in interictal
state, respectively. Here, we vectorize them via extracting the
upper triangular elements by row for each matrix and con-
necting them together, and defne these vectors as Vc

XS
�

Vec( 􏽢Wc

XS
) ∈ Rd and Vϕ

YS
� Vec( 􏽢Wϕ

YS
) ∈ Rd for each epoch

in diferent states, in which each element represent an edge in
brain functional network and the dimension d is equal to
p(p − 1)/2. Assume there are n1 epochs in preictal state, n2
epochs in interictal state and totally n � n1 + n2 epochs.
Hence, we can defne the predictor matrix used in predictive
model as V ∈ Rn×p(p− 1)/2, where V can be expressed as the
stack of matrix VXS

∈ Rn1×p(p− 1)/2 and matrix
VYS
∈ Rn2×p(p− 1)/2. In the following of this study, we are using

V to serve as “Network Predictor Matrix.”
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2.3. Dynamic Brain Functional Connectivity Estimation.
Given the network predictor matrix, due to the complexity
and high dimensionality of the data, we adopt a penalized
and ensembled logistic regression method to predict sei-
zures. For details, we use Lasso penalty to deal with high-
dimension problem and bootstrap procedure to ensemble
this penalized logistic regression. Let Z as the binary re-
sponse variable and its observations are Z1, . . . , Zn, in which
Zk � 1(k � 1, . . . , n1) means corresponding observations
are from preictal state and Zk � 0(k � n1 + 1, . . . , n) means
corresponding observations are from the interictal state. We
denote P as the probability of Z � 1 and B(b � 1, . . . , B) is
the bootstrap times.

Now, we introduce this predictive method briefy, and
for more details, please refer to Chen et al. [19]. We ran-
domly sample n1 epochs in the preictal state and sample n2
epochs in the interictal state, respectively, with replacement.
Ten, we repeat the resampling B times, and for each time,
we employ the high-dimensional logistic regression model.
We defne the β(b) as the corresponding regression coef-
cients vector estimated by b-th model. If there is the coef-
fcient in β(b) which is not equal to 0, it indicates that the
corresponding edge in the brain network is meaningful for
distinguishing between the preictal state and the interictal
state. Finally, after whole resampling procedure, we defne
the estimated coefcients vector as 􏽢β

(b)
(b � 1, . . . , B) and

outcome for test sample as 􏽢P
(b). Hence, we use 􏽢PB � 􏽢P

(b)/B
to denote the proportion of a new epoch is assigned to
preictal state and ψi � 1/B 􏽐

B
b�1 I(􏽢β

(b)

i ≠ 0) to denote the
weight for corresponding edge in the brain network. Te
greater the weight, the more important this edge is. Tis
demonstrates the interpretability of our method.

2.4. Performance Evaluation Measures. Te evaluation
measures that we adopt for the performance of seizure
prediction are Sensitivity Rate (SENS), False Discovery Rate
(FDR), and Area Under Curve (AUC). Te SENS measures
the proportion of epochs from the preictal state with a
positive result, and FDR is defned as the proportion of all
epochs predicted from the preictal state, which is not. Since
the values of these two criteria change with the cutof value,
we select the cutof with the highest prediction accuracy. To
avoid diferent cutofs afecting performance, we also present
the AUC values, which is a cutof-independent measure and
would be the most comprehensive measure.

3. Results

Tis section illustrates the results of the proposed method in
seizure prediction by applying it to the CHB-MIT and FH-
PKU databases.

Table 1 presents the seizure prediction results for 24
patients in the CHB- MIT database. To prove that features
derived via a dynamic brain functional network contain
more information and improve prediction accuracy, we
convert the raw scalp EEG data matrix for each epoch to a
vector and stack these n vectors into a data matrix of

dimension n × pq. Ten, we feed this data matrix into our
ensemble prediction model for comparison. Furthermore,
considering that the raw data may contain a small amount of
information, we also combine the predictor matrix derived
from brain network data (BNData) and the predictor matrix
derived from raw scalp EEG data (Raw Data) as a predictor
to observe its prediction performance. Te results in Table 1
show that satisfactory prediction results can be obtained by
using network features, while the prediction results obtained
via using raw data as input are no diferent from random
guessing. In addition, using the combination of brain net-
work data and raw EEG data can also achieve satisfactory
prediction. However, it is still worse than using brain net-
work data only. Tis is because the raw data cannot provide
any valuable information for prediction, so increasing these
redundant variables from raw data makes prediction per-
formance worse.

Te seizure prediction results for 17 patients from the
FH-PKU database are presented in Table 2. As done in
Table 1, we compare the prediction performance of our
method using three kinds of input features. In Table 2, we
show that network features can also achieve accurate pre-
dictions. Although the prediction result obtained using the
raw data is higher than random guessing, it is still unsat-
isfactory. Furthermore, unlike the CHB-MIT data, in this
dataset, since the raw data can provide some valuable in-
formation for prediction, it is found that the best prediction
performance can be obtained using the combined data.

4. Discussion

In this study, we have proposed an explainable statistical
method to predict epileptic seizures, which is helpful in
raising the alarm before seizures. More concretely, our
method uses scalp EEG data to construct a dynamic brain
functional connectivity network via a time-varying precision
matrix estimation approach. Ten, we treat these brain
functional connectivity measures as predictor variables for
the ensembled prediction model. Finally, through the pro-
posed method in this study, we can obtain accurate pre-
diction results by using these electrodes with overactive
electrical discharges as predictors. In the following, we
would like to discuss the fndings of this study, and at the
end, we will present some future research directions.

4.1.Relationship toOther Studies. Our study is not the frst to
use scalp EEG data to extract brain connectivity signatures
for seizure prediction. Tere have been lots of state-of- the-
art approaches, such as Gemein et al. [26], Tsiouris et al. [27],
and Truong et al. [28]. So far as we know, the method called
STS-HGCN-AL proposed by Yang et al. [18] can achieve a
better seizure prediction performance among these ap-
proaches. We speculate that if our method outperforms STS-
HGCN-AL, our method will outperform all existing
methods. Hence, in this study, we only compare the pre-
diction performance of our method with the method STS-
HGCN-AL in the public database CHB-MIT database. It
should be noted that it is difcult to draw a direct
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comparison due to diferent data preprocessing, such as how
to choose the length of the epoch, when the preictal state
starts, etc. In addition, the method STS-HGCN-AL has more
strict requirements for the raw data, so this method can
address part of patients’ data within the CHB-MITdatabase,
while our method can deal with all patients’ data in terms of
seizure prediction.We choose the AUC value as a measure of
prediction performance to compare these two methods for
the part of patients’ data. From the results in Table 1, it is not

difcult to see that our method can predict more patients
and has a higher AUC value of 94% in these patient data,
which can suggest that our method performs better than the
existing method STS-HGCN-AL in terms of predicting
epileptic seizures.

Furthermore, since our method uses brain functional
connectivity features to predict seizures, in this study, in
addition to the prediction performance, we also briefy
discuss the performance of critical feature selection. We

Table 1: Seizures prediction results for the patients in CHB-MIT database via our method and STS-HGCN-AL method.

Patient ID
BN data Raw data BN+ raw data STS-HGCN-AL

AUC SENS FDR AUC SENS FDR AUC SENS FDR AUC SENS FDR
chb01 0.968 95.0 0.060 0.496 47.5 0.374 0.970 95.0 0.088 0.996 100 0.000
chb02 0.984 100 0.102 0.634 75.0 0.473 0.973 90.0 0.059 0.897 100 0.145
chb03 0.992 95.5 0.022 0.691 50.0 0.193 0.989 95.5 0.029 0.928 83.3 0.173
chb04 0.867 86.7 0.290 0.595 50.0 0.247 0.825 93.3 0.362 NA NA NA
chb05 0.835 91.5 0.173 0.458 100 0.946 0.778 60.0 0.135 0.875 100 0.000
chb06 0.804 84.3 0.344 0.505 22.9 0.154 0.779 65.7 0.205 0.906 100 0.162
chb07 0.978 93.3 0.067 0.583 43.3 0.221 0.975 93.3 0.057 NA NA NA
chb08 0.953 85.0 0.078 0.548 40.0 0.200 0.933 85.0 0.100 0.999 100 0.000
chb09 0.963 90.0 0.043 0.553 96.7 0.815 0.950 90.0 0.069 0.843 100 0.092
chb10 0.947 86.7 0.073 0.544 25.0 0.110 0.922 85.0 0.127 0.977 83.3 0.171
chb11 0.990 95.0 0.039 0.696 80.0 0.459 0.989 95.0 0.036 0.940 100 0.123
chb12 0.911 76.8 0.095 0.479 96.4 0.919 0.904 87.5 0.162 NA NA NA
chb13 0.998 96.3 0.000 0.506 22.2 0.100 0.996 96.3 0.025 0.915 85.7 0.109
chb14 0.872 95.0 0.015 0.490 42.5 0.335 0.826 92.5 0.369 0.976 100 0.104
chb15 0.836 99.8 0.231 0.433 84.6 0.838 0.793 73.6 0.306 NA NA NA
chb16 0.950 93.3 0.189 0.486 40.0 0.322 0.904 96.7 0.211 0.954 87.5 0.187
chb17 0.960 95.0 0.080 0.542 75.0 0.587 0.954 90.0 0.073 0.826 100 0.237
chb18 0.912 100 0.300 0.553 30.0 0.143 0.901 87.5 0.259 0.992 75.0 0.138
chb19 0.976 91.0 0.046 0.610 63.6 0.390 0.974 100 0.167 0.991 100 0.038
chb20 0.987 100 0.077 0.386 33.3 0.319 0.980 100 0.117 0.982 100 0.184
chb21 0.957 90.0 0.085 0.451 5.0 0.002 0.923 85.0 0.115 0.833 100 0.156
chb22 0.924 96.3 0.245 0.485 40.7 0.283 0.860 85.2 0.219 0.997 100 0.000
chb23 0.994 100 0.011 0.409 10.0 0.043 0.990 100 0.031 0.990 100 0.047
chb24 1.000 100 0.000 0.599 87.0 0.637 1.000 100 0.000 NA NA NA
Average 0.940 93.0 0.111 0.530 52.5 0.380 0.920 89.3 0.138 0.938 95.5 0.109

Table 2: Seizures prediction results for the patients in FH-PKU database via our method.

Patient ID
BN data Raw data BN+ raw data

AUC SENS FDR AUC SENS FDR AUC SENS FDR
200002 0.950 100 0.125 0.637 40.0 0.025 0.945 80.0 0.000
210416 0.991 95.0 0.026 0.945 100 0.184 0.983 95.0 0.053
210443 0.957 90.0 0.000 0.726 70.0 0.359 0.967 90.0 0.000
210447 0.900 89.5 0.237 0.749 78.9 0.342 0.865 94.7 0.316
210454 0.891 85.0 0.105 0.834 100 0.447 0.930 90.0 0.132
210460 0.996 100 0.071 0.847 90.0 0.284 0.995 96.7 0.035
210465 0.992 95.0 0.035 0.790 80.0 0.319 0.985 100 0.113
210467 0.939 90.0 0.029 0.795 70.0 0.143 0.967 90.0 0.029
210470 0.975 90.0 0.000 0.820 100 0.447 0.978 90.0 0.000
210471 0.929 80.0 0.025 0.579 50.0 0.256 0.910 85.0 0.154
210477 0.971 87.5 0.026 0.651 95.8 0.692 0.927 87.5 0.103
210486 0.995 100 0.025 0.869 65.0 0.026 0.989 95.0 0.051
210489 0.978 90.0 0.026 0.749 85.0 0.368 0.988 90.0 0.026
210494 1.000 100 0.000 0.949 92.9 0.154 1.000 100 0.000
210498 0.992 100 0.028 0.611 70.0 0.451 0.987 100 0.056
210499 0.948 80.0 0.013 0.730 60.0 0.197 0.970 100 0.158
210503 0.877 80.0 0.040 0.981 100 0.067 0.986 100 0.080
Average 0.958 91.3 0.048 0.780 79.3 0.280 0.963 93.1 0.077
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randomly select two patients from the FH-PKU database, the
patient 210486 and patient 210494. Based on the order of the
derived weights ψ for each edge in the brain network, we
show the top 10 critical brain functional connectivity fea-
tures identifed by our model in Table 3 and Figures 2 and 3.
Ten, based on the weights for each edge in Table 3, we may
consider the features with larger weights as identifying
potential connectome biomarkers. For the identifcation of
potential connectome biomarkers, there are many existing
methods, such as Song et al. [29], Lu et al. [30], and Ding
et al. [31]. However, there is no gold standard for the public
datasets identifying potential connectome biomarkers. We
cannot prove the efectiveness of our method for this issue
and thereby cannot compare our method with existing
methods. We just put the identifcation results here without
evaluating the performance, and for this issue, we will leave
it as a direction for future research.

4.2. Limitations and Future Directions. Although our
method achieves satisfactory results in terms of seizure
prediction, it still leaves much space for improvement to
obtain even more realistic models. Te limitations of our
method proposed in this study mainly concentrated on three
aspects. At frst, for the sake of simplicity of our model, we
have assumed that the raw scalp EEG data of each patient
comes from a normal distribution. However, in the real
world, we cannot know the actual distribution of the raw
data. Hence, we are currently applying some statistical
methods to relax the normal assumption for this problem.
Secondly, in our model, we have used the same time window
to defne the preictal state of each patient, while in the real
world, each patient has its heterogeneity and the time
window of the preictal state is diverse. Hence, we plan to
focus on how to estimate an optimal time window of the
preictal state in the future. In the end, the study only briefy
discussed how to identify potential connectome biomarkers
using our method but did not test whether these biomarkers
actually afected epilepsy. Terefore, in the future, we will
conduct hypothesis tests in this feld to demonstrate the
efciency and accuracy of our method in identifying po-
tential connectome biomarkers.

4.3. Potential Applications of the Method in Treatment of
Epilepsy. Epileptic seizures are sudden and have no ap-
parent signs. Te prediction of epileptic seizures can sig-
nifcantly enhance the efect of epilepsy treatment, improve
the quality of life of patients with epilepsy, and reduce the
mortality due to epileptic seizures, so the accurate prediction
of epileptic seizures in the clinical application has a vital
signifcance. Our experimental results and the comparison
with previous work demonstrate that the proposed method
is efcient. Tis gives the patient enough time to take action
to cope with the seizure and reduce anxiety and trauma.

Patients with epilepsy after regular ASMs treatment,
there is still one-third of patients with epilepsy that cannot
be controlled. Uncontrolled seizures have severe impacts
on patients’ cognition, memory, quality of life, social
psychology, and the growth and development of children.

In recent years, imaging, electroencephalography, ge-
netics, and other diagnostic techniques have been con-
tinuously improved, and the efcacy and safety of surgical
resection have been recognized. For patients with drug-
resistant epilepsy with a clear epileptogenic focus and a
low surgical risk, surgical resection should be considered
as soon as possible. Te accuracy of the connectome
biomarker identifcation may help to determine the epi-
leptic region before epilepsy surgery, which is the key to
ensuring the success of epilepsy surgery. Hence, fnding
the right target remains the essential prerequisite for our
new drug development, and accurate connectome bio-
marker identifcation can provide potential therapeutic
targets. In this study, we have briefy discussed that our

Table 3: Epileptogenic focus localization results for the two
patients in FH-PKU database.

210486 ψ 210494 ψ
1 Occipital L↔ temporal L 1.00 Parietal L↔ occipital L 1.00
2 Frontal L↔ frontal R 0.91 Occipital L↔ frontal M 0.99
3 Frontal R↔ parietal L 0.91 Parietal R↔ parietal M 0.89
4 Parietal R↔ temporal R 0.75 Frontal M↔ frontal M 0.66
5 Parietal L↔ occipital L 0.69 Frontal L↔ parietal R 0.65
6 Temporal L↔ frontal M 0.66 Temporal L↔ parietal M 0.56
7 Parietal L↔ frontal L 0.65 Occipital R↔ parietal M 0.56
8 Parietal L↔ frontal M 0.65 Frontal R↔ frontal R 0.54
9 Parietal R↔ frontal R 0.56 Occipital L↔ occipital R 0.51
10 Frontal L↔ frontal M 0.55 Frontal L↔ frontal R 0.50

L R

Figure 2: Top 10 brain functional connections that afect seizures
for patient 210486.

L R

Figure 3: Top 10 brain functional connections that afect seizures
for patient 210494.
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method may enable potential connectome biomarker
identifcation, which is essential for physicians to conduct
the preoperative evaluation and develop new drugs or
treatments for epilepsy, but this needs to be further
validated in the future.

5. Consent

Te parents of the patients signed written informed consent
and agreed with their children’s participation in this study
and allowing the use of the relevant data and information for
scientifc research.
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