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In this review, we intend to present a complete literature survey on the conception and variants of the recent successful op-
timization algorithm, Harris Hawk optimizer (HHO), along with an updated set of applications in well-established works. For this
purpose, we �rst present an overview of HHO, including its logic of equations and mathematical model. Next, we focus on
reviewing di�erent variants of HHO from the available well-established literature. To provide readers a deep vision and foster the
application of the HHO, we review the state-of-the-art improvements of HHO, focusing mainly on fuzzy HHO and a new
intuitionistic fuzzy HHO algorithm. We also review the applications of HHO in enhancing machine learning operations and in
tackling engineering optimization problems.�is survey can cover di�erent aspects of HHO and its future applications to provide
a basis for future research in the development of swarm intelligence paths and the use of HHO for real-world problems.

1. Introduction

�anks to recent advances in computing capabilities and big
data analytics, arti�cial intelligence (AI) has been considered
in various applications, ranging from natural language
processing and computer vision to wireless 6G systems and
medicine [1]. As a subset of AI and nature-inspired algo-
rithms, swarm intelligence (SI) has become a hot topic over
the last decade. Conceptually, SI studies the complex col-
lective behavior of the systems that are comprised of many
simple agents. More particular, these simple agents can
interact with others and also with their surrounding envi-
ronment. According to [2], SI has many advantages com-
pared with the conventional optimization approaches: (1)
black-box optimizer, (2) gradient-free operation, (3) ability
to obtain high-quality solutions by properly balancing

exploratory and exploitative features, and �nally (4) ease and
simplicity of implementation. �ese characteristics and
applicability are the main reasons behind the wide use of SI
approaches. Some well-known SI methods are not limited to
particle swarm optimization (PSO) [3], grey wolf optimizer
(GWO) [4], genetic programming (GP) [5], biogeography-
based optimizer (BBO) [6], and �re�y algorithm (FA) [7].
Also, SI methods have found their applications in various
applications and real-world problems, such as control en-
gineering, civil engineering, electrical engineering, image
processing, wireless communications, and vertical domains
(e.g., smart cities and smart grids).

Proposed by Ali Asghar Heidari in 2019, the Harris
Hawks optimization (HHO) has received much interest from
the research communities [8]. HHO mimics the hunting
behavior of the Harris Hawks in nature, namely surprise
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pounce. Considered as one of the most intelligent birds in
nature, Harris Hawks can simulate different chasing styles
based on different scenarios and escaping prey behaviors.
More specifically, four chasing strategies are developed in
HHO [8], including soft besiege, hard besiege, soft besiege
with progressive rapid dives, and soft besiege with progressive
rapid dives. �e results tested over benchmark functions and
several engineering optimization problems confirm that
HHO outperforms many well-known SI approaches such as
PSO, GWO, GP, BBO, and FA. Moreover, the results also
show that HHO achieves a good balance of exploration and
exploitation, thus improving the scalability of HHO and the
ability to obtain high-quality solutions.

HHO has been leveraged for many applications and
engineering problems due to its optimization features and
competitive performance. For example, HHO is used to
solve the problem of unmanned aerial vehicle (UAV)
placement and radio resource allocation in visible light
communications (VLC) [9]. �is work demonstrates that
HHO effectively tackles the nonlinearity caused by the VLC
channel modeling and solves multiple optimization variables
simultaneously. �e work in [10] proposes a hybrid SI
method based on HHO and WOA for feature selection. To
improve the production quality, a convolutional neural
network (CNN) jointly with HHO is leveraged in [11], in
which CNN is used to classify the control chart patterns and
HHO is used to tune the parameters of the CNNmodel such
as the number of kernels and learning rate. All the above
studies show that the HHO-based method has superiority
over the baseline and state-of-the-art SI methods.

According to the no-free-lunch theorem, no single al-
gorithm can solve all the real-world problems; that is, one
algorithm can perform well for a set of problems but perform
poorly for the other problems [12]. �erefore, HHO has been
improved by different techniques, for example, binary HHO
version, evolutionary-updating structures, chaotic operations,
multi-objective HHO, and hybrid HHO. As HHO is origi-
nally invented for solving continuous optimization problems,
a number of studies have been conducted for binary HHO
versions. For example, the work in [13] develops a hybrid SI
approach by integrating HHO with the Salp swarm algorithm
(SSA), which is then applied to the feature selection problem.
To exploit the effectiveness of chaotic-based updates in
avoiding immature convergence, the work in [14] proposed
adding the chaotic local search into the original HHO to
improve its performance. Another application of HHO can be
found in [15], where HHO is used as a trainer of feed-forward
neural networks, which is then used for load forecasting in the
Queensland electric market. �ere is also an effort on review
of a few papers onHHO in [16]. However, that paper coverage
is very different, and it provides another methodology of
research for conducting a review.

1.1. Contributions. To foster the development of the HHO
and its applications, this work sets to provide an overview,
recent improvements, and applications from the available
literature. Motivated by this observation, we set to provide a
survey on HHO, including its mathematical model, recent

variants, and applications. In a nutshell, the contributions
offered by our work can be summarized as follows:

(i) We first present the underlying inspiration and the
mathematical model of the HHO optimizer. �is
part is to help the readers to understand the un-
derlying principle of the HHO and how it can be
applied to solve engineering optimization problems.

(ii) We review the state-of-the-art improvements of
HHO, focusing mainly on fuzzy HHO and a new
intuitionistic fuzzy HHO algorithm.

(iii) We review the applications of HHO in various
disciplines such as machine learning (ML), elec-
trical/civil/image engineering, wireless communi-
cations, and control engineering.

We note that the references reviewed in this work are
obtained from high-reputed publishers such as IEEE,
Elsevier, Wiley, Springer Nature, and Taylor & Francis and
also well-known archival websites such as arXiv. Moreover,
the following queries are used to find the references, in-
cluding “Harris Hawk optimization,” “HHO,” “swarm in-
telligence,” “artificial intelligence,” and “metaheuristic.”

1.2. Paper Organization. �e remaining parts of this study
are organized as follows. In Section 2, we present the in-
spiration and mathematical models of HHO. In Section 3,
we review the state-of-the-art studies on variants of HHO.
Next, in Section 4, we discuss the applications of HHO inML
applications and engineering applications. Finally, we
conclude this study in Section 5. �e list of frequently used
acronyms is summarized in Table 1.

2. Harris Hawk Optimization

�is section presents an overview of HHO, including its
inspiration and mathematical model.

2.1. Inspiration ofHHO. HHOwas proposed by Heidari et al.
in 2019 to simulate the hunting behavior of the Harris Hawks
[8]. In 1997, Louis Lefebvre’s survey revealed that Harris
Hawks are the most intelligent birds found in southern
Arizona, USA [17]. �e foraging behavior of Harris Hawks
varies significantly from that of other birds, as Harris Hawks
continue to forage with other family members of the same
species. Harris Hawks use a technique called the “surprise
pounce,” known as the “seven kills” approach to ambush the
prey. During this attack, a few other hawks used to ambush in
a number of directions and converge on the target rabbit, and
the attack would be over in a matter of seconds. Harris Hawks
use different hunting styles based on the escape behavior of
the prey and the dynamic change in instances. For example,
Hawks use switching tactics when the leader hawk dives
quickly to attack the prey, and the prey is trying to escape
from the leader hawk, and then, another hawk in the party
team will immediately continue the chase. �ese switching
tactics confuse the targeted prey and seek to exhaust the
detected prey and increase its danger. Finally, tired prey
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cannot escape the hawk’s team, as one of the mighty hawks
slaughters the tired prey and shares it with the partymembers.

HHO’s main inspiration is the collaborative action and
hunting style of the Harris Hawk in the wildlife called the
surprise pounce. �e HHO mathematical model generates
dynamic patterns and behaviors for the development of an
optimization algorithm. �e performance of the HHO op-
timization algorithm is evaluated by comparing it with other
existing metaheuristic techniques, 29 benchmark challenges,
and many real-world engineering issues. Experimental
findings and comparative results have shown that the HHO
algorithm delivers better results than other existing meta-
heuristic techniques [8, 18].

2.2. Mathematical Models of HHO. �is section discusses
the mathematical model of the HHO algorithm, which com-
prises an exploration phase, an exploitation phase, and a
number of Harris Hawk attacking approaches. HHO is a
nature-inspired algorithm that can be applied to any optimi-
zation problem.�is section presents all phases of HHO, which
are further explained in the following subsections.

2.3. Exploration Phase. In this subsection, the exploration
phase of HHO is discussed. �e Harris Hawks have powerful
eyes that can monitor and identify prey, but sometimes the
prey is not visible. During this condition, the hawks have been
waiting for long hours and monitoring to identify the prey. In
HHO, hawks are considered as candidate solutions, and in each
iteration, the prey is considered the optimal solution. Hawks
perch in specific locations and constantly monitor the sur-
rounding environment to identify prey using two strategies,
which are represented in equation (1). If p< 0.5, the hawks
perch based on the position of the family members. If p≥ 0.5,
the hawks perch in a random space within the population area.

A(x + 1) �

Ar(x) − a1 Aa(x) − 2a2A(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, p≥ 0.5,

Arabbit(x) − Ap(x)􏼐 􏼑 − a3,

LB + a4 UB − LB( 􏼁( 􏼁, p< 0.5.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

In equation (1), where A(x+ 1) denotes the position of
Hacks at the next iteration. Arabbit(x) denotes the position of
rabbit. A(x) denotes the current position of hawks. a1, a2, a3,
a4, and p are random variables ranging from 0 to 1. LB and
UB are the lower bound and the upper bound of random
variables.Ap(x) indicates the average hawk position, which is
represented in the following equation, where Ai(x) denotes
the location of each hawk at ith iteration and H denotes the
number of Hacks in the search space.

Ap(x) �
1
H

􏽘

H

i�1
Ai(x). (2)

2.4. Transition from Exploration to Exploitation. �is sub-
section explains the transformation from the exploration
phase to the exploitation phase, based on the energy level of
the prey to escape, which is mathematically defined as follows:

P � 2P0 1 −
x

I
􏼒 􏼓, (3)

where P denotes the energy of prey to escape at iteration x, I
denotes the total number of iterations, and P0 denotes the
initial energy of prey. During each escape, the energy level of
the prey drops dramatically. For each iteration, P0 will
change the value from (−1, 1). When P0 drops down from 0
to −1, the prey is exhausted; similarly, when P0 value is
increasing from 0 to 1, the prey is reinforced. When |P|≥ 1,
exploration took place, and when |P|< 1, exploitation arises.
Figure 1 represents the escaping energy behavior [8].

2.5. Exploitation Phase. �is subsection explains the ex-
ploitation phase in which the hawks attack the targeted prey.
�en, however, the prey tries to escape the attack. Based on
hawk attacking behavior and escaping prey behavior, four
approaches are discussed in the following subsections.

2.6. Soft Besiege. In HHO, soft besiege occurs when a≥ 0.5
and |P|≥ 0.5, and the prey has sufficient energy to escape
from the attack, but cannot escape from the attack as the

Table 1: Acronyms.

HHO Harris Hawk optimization
AI Artificial intelligence
SI Swarm intelligence
PSO Particle swarm optimization
GWO Grey wolf optimizer
CE Civil engineering
SCC Soil compression coefficient
GOA Grasshopper optimization algorithm
WOA Whale optimization algorithm
ANN Artificial neural networks
RMSE Root-mean-square error
CoD Coefficient of determination
MAE Mean absolute error
SS Soil slopes
HHOSA HHO-simulated annealing
ASI Acceleration severity index
CC Correlation coefficient
PSO Particle swarm optimization
GP Genetic programming
FORM First-order reliability method
MCE Minimum cross-entropy
DEAHHO Differential evolutionary adaptive HHO
MVO Multi-verse optimization algorithm
DE Differential evolution
SSA Salp swarm algorithm
PSNR Peak signal-to-noise ratio
FSI Feature similarity index
SSI Structural similarity index
WHHO WAO-HHHO
CNN Convolutional neural network
PCNN Pulse coupled neural network
PV Photovoltaic
TDOV �ree-diode photovoltaic
PS Partial shading
MPPT Maximum power point tracking
WSN Wireless sensor networks
FiWi Fiber wireless
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hawks encircle the prey and the energy of the prey gets
drained. �e following equations explain the mathematical
behavioral model.

A(x + 1) � ΔA(x) − P UArabbit(x) − A(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (4)

ΔA(x) � Arabbit(x) − A(x). (5)

∆A(x) denotes the difference between the position vector
of the rabbit and present position at xth iteration. U rep-
resents the rabbit’s random jump strength during escape,
where U is updated as U� 2 (1− a5), and a5 is a random
number ranging from [0, 1].

2.7.HardBesiege. In HHO, hard besiege occurs when a≥ 0.5
and |P |< 0.5, and the prey is exhausted and does not have
enough energy.�e hawks encircle the prey and perform the
surprise pounce.�e updated position of the hawks is shown
in equation (6). Figure 2 depicts the vectors during hard
besiege.

A(x + 1) � Arabbit(x) − P|ΔA(x)|. (6)

2.8. SoftBesiegewithProgressiveRapidDives. �is subsection
deals with soft besiege with progressive rapid dives where the
prey has enough energy |P|≥ 0.5 to escape the attack, but the
hawk builds a soft besiege a< 0.5. In this step, the hawkmust
think intelligently and choose the best position to target the
prey. �e respective steps accomplish the process.

(1) Performing various moves
(2) Analyzing and thinking on a new move using

equation (7)
(3) Evaluating the movement with the previous dive to

the prey and realizing whether the movement is
favorable or not

T � Arabbit(x) − P UArabbit(x) − A(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (7)

(4) If the movement is not favorable to attack the prey, a
dive is selected based on a levy flight (LF) using the
following equation:

L � T + V × LF(z), (8)

where Z is represented as the dimension of the
problem, V is considered as a random vector of size
1∗Z, and LF function is calculated using the fol-
lowing equation:

LF(f) � 0.01 ×
m × ψ

|n|
,

ψ �
ξ(1 + χ) × sin(πχ/2)

ξ(1 + χ/2) × χ × 2(x−1/2)
􏼠 􏼡

1/χ

,

(9)

where m and n are random values that range be-
tween (0, 1) and χ is a constant that is set to 1.5.
Equation (10) is used to update the positions of the
hawks during the soft besiege phase.

A(x + 1) �
T if F(T)<F(A(x)),

L if F(L)<F(A(x)),
􏼨 (10)

where T and L are acquired using equations (7) and
(8), and F is considered to be a fitness function for
the problem. Figure 3 depicts the vectors during soft
besiege with progressive rapid dives.

2.9. Hard Besiege with Progressive Rapid Dives. �is sub-
section deals with hard besiege with progressive rapid dives
when |P|< 0.5 and a< 0.5 where the prey does not have
enough energy to escape the attack and hawk builds a hard
besiege to catch and kill the prey. In this phase, the prey’s
condition is similar to that of the soft besiege, but the hawks
intend to minimize the distance between their locations
towards escaping prey. �e equation explains the hard be-
siege condition.

A(x + 1) �
T if F(x)<F(A(x)),

L if F(x)<F(A(x)),
􏼨 (11)

where T and L are derived using the following equations.
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Figure 1: Escaping energy behavioral pattern.
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Figure 2: Vectors during hard besiege.
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T � Arabbit(x) − P UArabbit(x) − Ap(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (12)

L � T + V × LF(z). (13)

Figures 4 and 5 depict vectors during hard besiege with
progressive rapid dives in 2D and 3D space. Algorithm 1
explains pseudocode for HHO.

3. Recent Variants of HHO

�is section discusses various HHO variants that are used in
a variety of engineering and ML applications, as shown in
Tables 2–4. We discussed the fuzzy HHO in this section and
proposed a new intuitionistic fuzzy HHO algorithm that is
significantly different from other existing papers [16].

3.1. Fuzzy Harris Hawk Algorithm. Fuzzy sets [48] were
introduced as an extension of crisp sets to take care of graded
membership of objects in a class, which aremore general and
natural. �is has led to the extension of crisp concepts to
fuzzy concepts. Fuzzy logic (FL), in the generalized sense, is
synonymous with fuzzy sets. One of the crucial components
of FL is the fuzzy inference system (FIS).

A FIS has five functional blocks, a rule base that contains
several fuzzy If. . . then rules. In addition, this database
defines the membership functions of fuzzy sets used in fuzzy
rules. �is decision-making unit operates on the rules, a
fuzzification interface unit that converts crisp quantities into
fuzzy quantities and a defuzzification interface unit that
converts the fuzzy quantities into crisp quantities. FIS is the
most critical tool in fuzzy set theory, and in literature, we
find two crucial FIS: the Mamdani FIS proposed in 1975 [49]
and the Sugeno FIS proposed in 1985 [50]. Of these,
Mamdani FIS is the popular one and finds a greater ac-
ceptance. However, both approaches have certain advan-
tages and disadvantages. �e significant differences are in
the output membership functions and the consequents of the
fuzzy rules used. As far as the functionality of a FIS is
concerned, if the input is crisp, it is fuzzified in the

fuzzification unit using one of the various fuzzification
techniques. Fuzzification is the process of decomposing a
system input and/or output into one or more fuzzy sets.
Many types of curves and tables can be used, but triangular-
or trapezoidal-shaped membership functions are the most
common, since they are easier to represent in embedded
controllers. A set of fuzzy if-then rules are determined. �e
rule strengths are obtained by combining the fuzzified in-
puts. �e output membership function is combined with
rule strength to obtain the consequent. An output distri-
bution is obtained by combining all the consequents. �e
defuzzification unit is used to get a defuzzified output
distribution.

�e two parameters involved in the HHO algorithm are
the energy of the prey E and the uniform random number
parameter q, which determines the hawk’s position the next
time. �e general tendency to fuzzify any algorithm is to
fuzzify its parameters. Following the same approach in

L
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ApV*LF (Z)
ΔA

Arabbit – P|UArabbit – Ap|

Figure 3: Vectors during soft besiege with progressive rapid dives.
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Figure 4: Vectors during hard besiege with progressive rapid dives
in 2D.
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Figure 5: Vectors during hard besiege with progressive rapid dives
in 3D.
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(1) Inputs: initial the population size H, number of iterations I.
(2) Outputs: the Prey’s position and fitness value.
(3) Generate an arbitrary population
(i) Ai(i� 1, 2, . . ., H)
(4) while stopping requirement is not reached do
(5) Compute the hawk’s fitness values
(6) Set Arabbit as the best position of rabbit
(7) for each hawk (Ai) do
(8) Update energy P0 and jump capacity U
(9) P0 � 2r()− 1, U� 2(1− r())
(10) Update the P with equation (3)
(11) end
(12) if |P|≥ 1 then
(13) Update the position vector with equation (1)
(14) end
(15) if |P|< 1 then
(16) if a≥ 0.5 and |P|≥ 0.5 then
(17) Update the position vector with equation (4)
(18) else if a≥ 0.5 and |P|< 0.5 then
(19) Update the position vector with equation (6)
(20) else if a< 0.5 and |P|≥ 0.5 then
(21) Update the position vector with equation (10)
(22) else if a< 0.5 and |P|< 0.5 then
(23) Update the position vector with equation (11)
(24) end
(25) end
(26) end
(27) return Arabbit

ALGORITHM 1: HHO algorithm [8].

Table 2: A summary of HHO variants.

Ref Variant Methodology Objective

[19] Multi-objective HHO HHO is integrated with roulette wheel selection method
with probability

To improve the extreme learning machine
parameter selection

[20] Gaussian barebone
HHO HHO is integrated with Gaussian barebone To optimize kernel extreme learning machines for

the prediction of entrepreneurial intention

[21] Chaotic sequence-
guided HHO HHO is integrated with chaotic sequences For data clustering

[22] Dynamic HHO with
mutation

HHO used mutation and dynamic control strategy to
balance the exploitation and exploration phases in the

HHO method

To perform segmentation on satellite and oil
pollution images

[23] Hybrid HHO
differential evolution

Making two equal subpopulations from a complete one
and training both the subpopulation parallelly using

HHO and differential evolution
Multilevel image segmentation

[24] Adaptive HHO Mutation is used by HHO to clip the escape energy Multilevel image segmentation

[25] Hybrid OBL-HHO OBL generates a solution for HHO through adversarial
learning approach

To select the informative features from the feature
space in conjunction with support vector

regression

[26] Elite OBL (EOBL)-
HHO

�e EOBL stacks upon OBL by selecting the fittest
individual that would direct the population towards

global minimum

To select informative features from the feature
space

[27] HHOBSA
�e bitwise operations help HHO to improve the feature
selection process, whereas the simulated annealing helps

HHO to find the global minimum
Optimal feature selection

[28] Chaotic HHO
Simulated annealing to improve HHO and the chaotic
maps are used instead of random variables to achieve

global optimum

To select most informative features to train using
K-nearest neighbor for classification task

6 Computational Intelligence and Neuroscience



Table 2: Continued.

Ref Variant Methodology Objective

[13] Salp swarm HHO
HHO is improved by adding Salp swarm optimization,
which adjusts the populations and uses greedy selection

to update the agent
To select the informative features

[29] Hybrid differential
evolution HHO

Nonlinear control formula balances the exploitation and
the exploration of HHO throughout the convergence

process

To optimize phase space reconstructions and
kernel extreme learning machine parameters for

wind speed forecasting

[30] Vibrational HHO Periodic mutations are added for enhancing swarm
diversity in basic HHO method

To optimize SVM parameters for roll bearing fault
diagnosis

[31] Boosted HHO
HHO algorithm is boosted by integrating it with the
exploratory phase of flower pollination algorithm and

mutation step of differential evolution

To estimate the parameters efficiently for a single
diode PV model

[32]
Horizontal and

vertical crossover of
HHO

Crisscross optimizer and the Nelder–Mead simplex
algorithm are used to improve the searching capabilities
of individuals for achieving faster convergence rate

Simulating an efficient PV system and extracting
the unknown parameters

Table 3: A summary of HHO variants (continued).

Ref Variant Methodology Objective

[33] Hybrid GWO-HHO
Mutation-based GWO is used to update the bottom
layer in the population, and HHO is used to find

global optimal solution in the upper layer

To optimize the parameters of phase space
reconstruction and kernel-based extreme ML

algorithms to predict the wind speeds accurately

[34] Modified HHO

To improve the exploration phase’s global search,
the Levy flight is used to generate the ambiguous

zigzag position of the prey once the hawk is
deducted

To relieve the PV systems from the issue of
mismatch power loss problems resulting due to the

phenomenon of partial shading

[35] Chaotic HHO HHO is enhanced with ten chaotic functions to
avoid local optima trapping of conventional HHO

To accurately estimate the proton exchange
membrane fuel cell’s operating parameters that
mimic and simulate its electrical performance

[36] Improved HHO Instead of random location, the rabbit location is
used to find the optimal position

To find the location of distribution generation
optimally in a radial distribution system to

minimize the voltage deviation and total active
power loss and also to increase the voltage stability

index under several operational constraints

[14] Diversification enhanced
HHO (EHHO)

OBL is used in HHO to do a comprehensive search.
�e OBL is used to select each agent’s opposite
position to select the optimal agent from the

available pool, and its opposite agent will be treated
as the next-generation agent in HHO

To identify the optimal agents and unknown
parameters of modules of PV model

[37] Hybrid of HHO and GOA
�e ensemble of GOA-ANN and HHO-ANN is
performed, and then, optimal of these two is found

by a process known as sensitivity analysis

To optimize the artificial neural network for
predicting SCC dataset

[38] HHOSA SA is used to optimize HHO and improve its global
convergence

To optimize the design parameters of highway
guardrail systems

[39] HHO-FORM

�e reliability index is formulated in the HHO-
FORM model for a constrained optimization

problem. Later, the exterior penalty methodology is
used to handle the constraints. HHO determines

the optimal reliability index to improve the
convergence through the strategy of Levy Flight

and population-based mechanism

To reduce the high dimensionality in designing and
analyzing risks of structuring in civil engineering

[40]
HHO-minimum cross-
entropy (MCE)-MCET-

HHO

MCET is used as a fitness function in HHO for
determining optimal thresholds to segment an

image

To find the optimal configuration of thresholds for
image processing

[41] Hybrid WHHO
WOA is integrated with HHO to improve the
convergence rate of HHO in obtaining global

optimum
To classify brain tumor using MRI images

Computational Intelligence and Neuroscience 7



developing the fuzzy HHO (FHHO), the parameters q and E
have been fuzzified by the researchers and were introduced
in [51]. To achieve this, the Mamdani FIS model is used in
this study. Inmany cases, we find the inputs in the crisp form
only. However, the beauty of fuzzy logic is the way it turns
common sense, and linguistic descriptions, into a computer-
controlled system. Hence, the crisp inputs are transformed
into fuzzy forms and then transformed into fuzzy form at the
first stage of FIS.

Figure 6(a) shows a system of fuzzy sets for an input with
trapezoidal and triangular membership functions. Each
fuzzy set spans a region of input (or output) values graphed
against membership. Any particular input is interpreted
from this fuzzy set, and a degree of membership is obtained.
�e membership functions should overlap, to allow smooth
mapping of the system. �e process of fuzzification allows
the system inputs and outputs to be expressed in linguistic
terms to allow rules to be applied in a simple manner to

Table 4: A summary of HHO variants (continued).

Ref Variant Methodology Objective

[42] Differential evolutionary
adaptive HHO

�e HHO is updated by making the Harris Hawk
adaptive to decide when it has to move to a random
tall tree or when it has to do perching. Also, to

improve the exploration ability of HHO, the authors
have used the differential evolutionary concept

To improve the exploration ability of HHO for
multilevel image thresholding

[43] Hybrid HHO-SSA

To overcome the HHO’s property of stagnating in
local optima and prevent immature convergence
during exploitation and exploration. �e initial

solutions generated are divided into two halves in
which HHO’s exploratory and exploitation are

applied to the first half, and SSA’s searching stages
are utilized to update solutions in the other half.
Hence, HHO-SSA chooses the best solution among

the two

To address the global optimization problem and
find the optimal threshold values

[44]
Hybrid multi-population
differential evolution-

HHO

�e exploitation phase of the HHO is enhanced by
chaos. �e multi-population strategy is used to
improve the ability of global search. Later,

differential evolution is used to improve the quality
of the solution from the previous stage

To optimize de-noising in satellite images in
wavelet domain

[23] HHO and differential
evolution (DE)

Kapur’s entropy and Otsu’s method are used as
fitness functions to find the threshold values of
segmentation. �e proposed model divides the

entire population into two equal parts assigned to
DE and HHO algorithms. During the iterative
process, both HHO and DE will update each

subpopulation position simultaneously

To extract optimal features from images for
segmentation of color images, the optimal
threshold values of segmentation are found

[22] Dynamic HHO with
mutation

HHO is integrated with a novel dynamic control
parameter strategy to avoid the HHO being trapped
in the local optimum. A disturbance term is added
to update the formulation of the escaping energy
formulation. Cosine and sine are integrated to
control when the disturbance peak appears. To

increase the randomness of the HHO, a Gaussian
distribution is adopted

To segment the satellite images

[45] Hybrid cuckoo search-
HHO

To strengthen the HHOs being trapped in local
solutions, inaccuracy, inadequate search coverage,
and slow convergence, cuckoo search’s property of

dimension decision strategy, and Gaussian
mutation are integrated with the HHO during

exploration and exploitation phases

To optimize the parameters in cantilever beam
design problem, welded beam design problem, and

tension/compression spring design problem

[46] Hybrid HHO-SSA SSA is employed to enhance the performance of
HHO by acting as a local search for HHO

To enhance the performance of HHO by acting as a
local search for HHO

[47] Hybrid HHO-WOA

HHO is applied to the first half of the population,
and WOA is applied to the second half. Hence by
integrating WOA with HHO, the exploitation and
exploration phases of HHO are enhanced to select

the optimal parameters

To predict the values of several parameters such as
hydrocarbon, brake thermal efficiency, carbon

monoxide, and carbon dioxide based on the data
gathered from the experimental setup of the dual-
fuel engine by varying injection timings, blends of
rice bran biodiesel, engine operating load, and air-

fuel ratio
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express a complex system. In Figure 6(a), the fuzzy variable
DF can take four linguistic values, e.g., small, medium, big,
and very big. �e linguistic values small and very big are
represented by trapezoidal-shaped membership functions,
whereas the linguistic values medium and big are repre-
sented by triangular-shaped membership functions. �e
inputs provided to Mamdani FIS to generate these two
parameters q and E are the input variables df and NU, where
df represents the quality of the best solution at the end of a
searching iteration and NU represents the number of iter-
ations with the unchanged best solution.

df � CP(t) − CP. (14)

�e coverage percentage of the observed area determines
the quality of the solution. So, we have the coverage per-
centage at the iteration number t, which is denoted by CP(t),
and the arithmetic mean of the obtained covered percentages
is represented by CP. NU is also normalized to NU and is
given by the following expression:

NU �
NU − NUmin

NUmax
− NUmin, (15)

where NUmax and NUmin are the maximum and minimum
values of NU, respectively. �e inputs df and NU are fuz-
zified using the fuzzification process. df and NU are fuzzy
variables, with each one taking the values from the domain
of fuzzy granules medium, big, very big, and small (Figure 6).

Together, these two variables can take 16 values, and ac-
cordingly, 16 rules are framed.�e antecedents contain these
16 values, and the consequent provides 16 pairs of values for
the fuzzy variables energy and q. Energy takes 8 values (here
P denotes positive and N denotes negative) leading to NVB,
NB, NM, NS, PS, PM, PB, and PVB and q takes values small,
medium, big, and very big. �ere were 16 fuzzy rules in the
rule base; e.g., DF is medium and NU is small and then
energy is PM and q is medium.

3D sensors were reallocated in FHHO to supervise
cardiomyopathy. �e candidate solutions of the n-hawks in
the vector form of candidates are xn, yn, zn􏼈 􏼉 in the observed
area. So, the dimension of the hawks will be three times the
number of sensors required.

Two validation experiments were conducted to evaluate
the performance of the FHHO algorithm with different
scenarios.�ree different scenarios were formulated, and the
performance was compared with several other AI algorithms
with an iteration of 150 and the number of search agents
being 10. It has been observed that FHHO reaches the best
coverage value. �is is concerning 30 runs. In another ex-
periment, another constraint is added so that the search
space reduces in size leading to difficulty in obtaining the
best solution. In this case, the number of iterations is fixed at
200. Keeping with the additional constraint, the coverage
rate of FHHOwas found to be higher. Here also several cases
are considered. Wilcoxon signed-rank statistical analysis
[52] shows that in comparison with other algorithms, FHHO
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Figure 6: Input of the FHHO fuzzy inference system. (a) DF and (b) NU.
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has a higher coverage percentage. Also, violations of con-
straint for FHHO are significantly small as the tie’s values are
minimal.

3.2. Proposed Variants of HHO

3.2.1. Intuitionistic Fuzzy HHO Algorithm. Exact mem-
bership functions are used in FIS. In the systems where
insufficient information about imprecise concepts is pro-
vided, FIS may not be useful. Intuitionistic fuzzy sets (IFSs)
provide additional information about imprecise concepts. In
the case of fuzzy sets, the membership functions and
nonmembership functions are one’s complement of each
other. Nevertheless, by relaxing this constraint, such as their
sum lies in [0, 1], we get the IFS, which has an additional
parameter called the hesitation. IFIS has been proposed in
many ways. However, they have the problem of overfitting
and being unable to deal with complex systems, So, an IFIS
that comes over these difficulties has been proposed in [53]
by generating the if-then rules through the fuzzy association
mining algorithm.�ey have used the Takagi-Sugeno type of
FIS. In fact, the two types of FISs differ in their ways of
generating the outputs. �e different formulation of outputs
leads to different if . . . then rule formulation. �e if . . . then
rules are automatically extracted from the input data, and
logical connectives AND, OR, and NOT are used in these
rules in framing implications and aggregations of these rules.
�e number of if . . . then rules can also be optimized. In the
Takagi-Sugeno, FIS has higher computational effectiveness
as defuzzification is not required.

Let U be a non-empty set. �en, an IFS A over U is
defined as the set of tuples (x, μA(x), vA(x))|x ∈ U􏼈 􏼉.

Where μA, vA: U⟶ [0, 1] such that 0≤ μA(x)+

vA(x)≤ 1, ∀x ∈ U. Here, πA(x) � 1 − μA(x) − vA(x) is
called the hesitation margin. An IFS A is a fuzzy set if and
only if πA(x) � 0, ∀x ∈ U.�e πA(x) is called the IF indices.
Larger πA(x) values lead to a higher hesitationmargin by the
decision-maker. Best (or worst) final results are determined
by these indices, which are finally in an optimal decision.
With the above notations, if yη is the output of an IF system
then with yμ and yv being the outputs of the two FISs Fμ and
Fv of the membership and nonmembership functions, we
have the relation as follows:

y
n

� 1 − πA(x)( 􏼁y
μt

+ πA(x)y
]
. (16)

�is is the fundamental equation in designing the
Takagi-Sugeno type IFIS.

3.2.2. First Version of IFIS. Two FISs FISμ and FISv are
formed using the membership function μA and the non-
membership function vA. �is is called IFIS with compo-
sition defuzzification [53, 54]. Here, x1, x2, . . . xm are input
variables and one output variable yη.

3.3. IFHHO Algorithm (Proposed). We may note that the
efficiency of the IFIS over the FIS is established in [55] by
taking the real-life application of genetic tuning for

predicting financial performance, plant monitoring in [56],
and air quality modeling in [57].

4. Applications of HHO

�is section discusses various ways in which HHO can be
used in ML and engineering applications. Also, the recent
state of the art on applications of HHO and its variants in
several applications is discussed. �e summary of these
applications is pictorially summarized in Figure 7.

4.1. Machine Learning Applications. Lefebvre et al. [17]
observed the feeding behaviors of different species based on
the avian “IQ.” In [17, 58, 59], he listed hawks as one of the
most intelligent birds. �e Parabuteo unicinctus (Harris
Hawk) belongs to the same hawk species listed in the in-
telligent bird category. �e Harris Hawk is mainly found in
Arizona, USA [60]. �e Harris Hawk follows the “surprise
pounce” strategy to capture its prey, suggesting that several
hawks from different directions attack cooperatively and
converge simultaneously to the detected prey (rabbit). �e
chasing styles of Harris Hawk may adapt to the dynamic
nature and prey’s escape pattern. �e Harris Hawk can also
perform a switching strategy, suggesting that if the leader
(best hawk) loses its way to the prey while performing a
quick dive, a member of the same hawk fleet will continue
the chase. �is tactic is helpful as it confuses the prey and
might exhaust the prey. Inspired by its attack tactics, the
Harris Hawk optimization (HHO) method was proposed
[8]. �e HHO follows mainly two stages to hunt its prey, i.e.,
exploration and exploitation. �e exploration phase is re-
lated to discovering its prey, and the exploitation is to decide
whether hard or soft besiege should be applied. �e hard
besiege is applied when the prey is fatigued, and the hawk
can perform surprise pounce, while the soft besiege is used
when the prey possesses adequate energy to escape. �e
transition stage models the energy of its prey. We consol-
idate a brief review of existing works using the HHO
method.

4.2.HarrisHawkOptimization forArtificialNeuralNetworks.
HHO method is categorized as one of the metaheuristic
approaches, which are extensively used to optimize the
hyperparameters of ML algorithms such as artificial neural
networks (ANNs), support vector machines (SVMs), and so
forth [61, 62]. Some of the works summarizing the use of
HHO for ANN parameter optimization are elaborated.
Sammen et al. [63] proposed the use of HHO for optimizing
the weights in ANN. �e method was applied to predict the
scour depth for ski jumping. �ey mainly computed the
energy parameter and jumped strength for HHO and weight
optimization for ANN. �eir analysis showed that the
weights optimized through HHO yield the lowest mean
absolute percentage error, mean absolute error, and root-
mean-square error compared with ANN without meta-
heuristic, genetic algorithms, and particle swarm optimi-
zation. Furthermore, they also showed that HHO achieves
the best correlation coefficient andWillmott index values for
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scour depth prediction compared with the techniques
mentioned above. Similarly, Essa et al. [64] used HHO to
optimize ANN weights for the prediction of active and solar
stills. �eir experimental results revealed that HHO-opti-
mized ANN can provide 53.21% increased productivity
concerning active still in comparison with traditional ANN
and SVM classifiers. �e same conclusion was drawn by
Moayedi et al. [37] when using HHO-optimized ANN for
soil conditions. �ey concluded that the HHO-optimized
ANN can decrease the mean absolute error by 11.32% and
4.12% for seen and unseen soil conditions compared with
traditional ANNs. Moayedi et al. in [29, 65, 66] explored the
use of HHOwith ANN for predicting landslide vulnerability,
bearing ability over soil footing, and slope stability, re-
spectively. �e results revealed that the HHO improves the
predictive performance in both studies compared with the
conventional ANN method. Wei et al. [20] improved the
HHO’s performance using the Gaussian barebone strategy
to optimize kernel extreme learning machines for the pre-
diction of entrepreneurial intention. �e Gaussian barebone
allows the population to opt for the directions, which leads
to faster convergence. �eir results showed better and
promising results in terms of specificity, sensitivity, accu-
racy, and Matthews correlation coefficient.

4.3. Clustering and Segmentation. �ere are a few studies
that specifically use the HHO method for the clustering and
segmentation process.

Pham et al. [67] proposed the use of HHO for joint
power allocation and UAV placement problems.�eir study
used HHO in conjunction with an efficient user clustering
strategy to allocate the power resources for UAV-assisted
systems. �e comparison was carried out with orthogonal
multiple access, non-orthogonal multiple access with visible

light communication, non-orthogonal multiple access
without pairing, and random user clustering. Experimental
results show that the HHO-based clustering outperforms the
techniques mentioned earlier for power allocation and UAV
placement problems.

Singh [21] used the HHO with chaotic sequences for the
application of data clustering. �e clustering performance
was compared with variousML algorithms on 12 benchmark
datasets. It was revealed that the HHO performs better on
the majority of the benchmark datasets in terms of statistical
tests and performance analysis. Jia et al. [22] employed
mutation operator and dynamic control strategy to balance
the exploitation and exploration phases in the HHOmethod.
�e modified HHO was used to perform segmentation on
satellite and oil pollution images. �e results were compared
with several thresholding methods in terms of Otsu be-
tween-class variance, Tsallis entropy, and Kapur’s entropy.
�e results revealed that the HHO-based approach out-
performs the thresholding techniques for the specified
segmentation task.

Rodrıguez-Esparza et al. [68] used the minimum cross-
entropy function to optimize HHO for multilevel image
segmentation task. �e performance of HHO-based method
was compared with fuzzy IterAg and K-means clustering. It
was shown that the HHO performed better on the said
segmentation task in terms of peak signal-to-noise ratio,
feature similarity, and structure similarity. Bao et al. [23]
proposed the hybridization of the HHO method by making
two equal subpopulations from a complete one and train
both the subpopulation using HHO and differential evo-
lution, accordingly. �e hybridized HHO was then used to
perform multilevel image segmentation on 10 benchmark
datasets. Compared with super-pixel segmentation ap-
proaches, the results revealed that hybridized HHO per-
forms better in terms of feature similarity and structure
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Figure 7: Applications of HHO.
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similarity, respectively. Wunnava et al. [24] proposed an
adaptive HHO method by clipping the range and con-
straining the escape energy. Furthermore, they allowed the
method to decide whether to opt for average fitness value
and approach a tall tree or roost and other hawks in the
family. �e adaptive HHO was used for multilevel image
segmentation on the Berkeley segmentation dataset and was
compared with well-known segmentation methods. Ex-
perimental results showed that the adaptive HHO achieved
state-of-the-art segmentation performance.

4.4. Feature Selection. HHO has been used extensively for
the feature selection process to optimize the parameters for
classification methods [69, 70]. Ismael et al. [25] proposed to
improve the HHO method by employing an opposition-
based learning approach (OBL). �e OBL generates a so-
lution for meta-heuristic algorithms through an adversarial
learning approach. �e OBL-HHO was applied to select the
informative features from the feature space in conjunction
with support vector regression. �eir experimental results
proved that OBL-HHO achieved better results in compar-
ison with cross-validation and grid search methods.

Sihwail et al. [26] proposed an improved HHO using
elite opposition-based learning (EOBL). �e EOBL stacks
uponOBL by selecting the fittest individual that would direct
the population towards global minimum. �e improved
HHO was used to select informative features from the
feature space and was compared to well-known optimizers
such as slime mould, butterfly optimization, whale opti-
mization, ant lion optimization, and grasshopper optimi-
zation. Experimental results revealed that the improved
HHO performed better in terms of fitness value, accuracy,
and feature selection compared with the techniques men-
tioned earlier.

Abdel-Basset et al. [27] modified the HHOmethod using
simulated annealing and bitwise operations and termed it as
HHOBSA. �e bitwise operations help HHO improve the
feature selection process, whereas the simulated annealing
helps HHO find the global minimum. It was revealed in their
experimental results that HHOBSA performed better on 19
artificial and 24 standard datasets in comparison with the
classical HHO.

Elgamal et al. [28] also used simulated annealing to
improve HHO. In addition, they also introduced chaotic
maps instead of random variables to achieve global opti-
mum. �e chaotic HHO was used for selecting the most
informative features to train using K-nearest neighbor for
the classification task. �e results reveal that the chaotic
HHO achieved the best accuracy against several optimiza-
tion algorithms.

Zhang et al. [13] improved the HHO algorithm by
adding the Salp swarm optimization, which adjusts the
populations and uses greedy selection to update the agent.
�e Salp swarm optimization is also used to maintain a
balance between the exploitation and exploration phases.
�e improved HHO is applied in a binary tree strategy to
select the informative features. �eir proposed method was
used in conjunction with K-nearest neighbor and is

compared with classical swarm-based approaches. Experi-
mental results show that their improved HHO performs
better on the optimization functions and classification tasks.
�aher and Arman [71] also used binary tree-like structure
with HHO to select the informative features. �ey trained
the selected features with three classification algorithms:
linear discriminant analysis, decision trees, and K-nearest
neighbor on SFP classification datasets. �eir results show
that the selected features from HHO, when trained with
linear discriminant analysis, achieved the best accuracy.
Houssein et al. [72] proposed the use of HHO to find the
chemical compound activities and descriptor selection fol-
lowed by the training using SVM and K-nearest neighbor,
accordingly. �e experiments were carried out to compare
the HHO-SVM and HHO-K-nearest neighbor-based
methods with the classical optimization algorithms on
QSAR biodegradation andmonoamine oxidase datasets.�e
HHO-SVM provides superior results on both datasets in
comparison with all other algorithms.

4.5. Support Vector Machines and Support Vector Regression.
Like the studies with ANN, the HHO method has been used
to perform parameter optimization of SVM and support
vector regression techniques. For example, Tikhamarine
et al. [65] presented a rainfall-runoff prediction technique
using least-squares SVM, ANN, and multiple linear re-
gression optimized through the HHO method. �eir study
performed a detailed comparative analysis and concluded
that the least-squares SVM optimized through HHO ach-
ieves the best precision values compared with the other
classification algorithms. Fu et al. [29] suggested that the
control formula in HHO is linear, suggesting that the op-
timization at the start of the process focuses more on ex-
ploration, whereas the focus diverts to the exploitation at a
later stage. �ey proposed an improved hybrid differential
evolution HHO by proposing nonlinear control formula that
balances the exploitation and the exploration throughout the
convergence process. �ey used the improved version of
HHO to optimize phase space reconstruction and kernel
extreme learning machine parameters for wind speed
forecasting and showed that the improved version achieves
better results than the HHO optimized classifiers.

Malik et al. [66] performed a comparative analysis for
water stream flow prediction by employing support vector
regression optimized through multiple metaheuristic ap-
proaches that include Bayesian optimization, particle swarm
optimization, HHO, spotted hyena optimizer, multi-verse
optimizer, and ant lion optimization. �e methods were
evaluated in terms of the Willmott index, correlation co-
efficient, scatter index, and root-mean-square error. �ey
concluded that the support vector regression optimized
through HHO yields the best results among all optimization
techniques. Shao et al. [30] added periodic mutations for
enhancing swarm diversity in the basic HHO method and
termed it as vibrational HHO. �ey used the vibrational
HHO to optimize SVM parameters for roll-bearing fault
diagnosis. �e vibrational HHO outperformed 23 bench-
mark functions with a faster convergence rate.
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Furthermore, the HHO method has been used for
various other tasks such as structural design optimization of
vehicle components [73], manufacturing optimization
problems [74], polluted distribution [75], heat sink design
for micro-channel [76], photovoltaic cell optimization [14],
and many more.

4.6. Engineering Applications, Electrical Engineering and
Renewable Energy. Due to the numerous installations of
photovoltaic (PV) power plants, the accurate modeling of
PV modules is the need of the hour. Qais [77] proposed a
three-diode photovoltaic (TDPV) model for the accurate
modeling of photovoltaic losses. �e authors have employed
the HHO algorithm to extract the unknown parameters of
the TTDVmodel. �e authors have utilized datasheet values
of PV modules that the industrialists provide to identify 4 of
9 unknown parameters of the TDPV model, and the HHO
algorithm is employed to extract the remaining five pa-
rameters. �e experimental results proved that the proposed
HHO-based TDPV model performed better than the
existing models. In a similar work, Hussein [31] presented a
boosted HHO algorithm to estimate the parameters effi-
ciently for a single-diode PV model. �e proposed boosted
HHO algorithm enhances the HHO algorithm by inte-
grating it with the exploratory phase of the flower pollination
algorithm and mutation step of differential evolution. Chen
[14] proposed the HHO-based model for the estimation of
solar cell models for single diode, double diode, and PV
modules. �e proposed HHO-based model is based on
opposition-based exploratory strategy and chaotic drifts to
identify the optimal agents and unknown PV model
parameters.

Mansoor et al. [78] proposed an MMPTcontroller based
on HHO to track the power effectively in solar-powered PV
systems in all the weather conditions. �e HHO algorithm is
proven to achieve faster convergence and track maximum
power point. Proton exchange membrane fuel cell (PEMFC)
is one of the most importantly environmentally friendly
energy sources. Mossa et al. [79] have used a hybrid of atom
search optimization and HHO to extract the PEMFC’s
unknown parameters. �e proposed hybrid algorithm is
tested on 3 different PEMFC stacks, 250W stack, 500W SR-
12 PEM stack, and BCS 500-W PEM stack, respectively, in
several operating conditions. In a similar work, Menesy et al.
[35] applied a chaotic HHO algorithm to accurately estimate
the proton exchange membrane fuel cell’s operating pa-
rameters that can mimic and simulate its electrical perfor-
mance. �e authors have used an enhanced HHO with 10
chaotic functions to avoid local optima trapping of con-
ventional HHO.

Liu et al. [32] proposed an improved HHO for simu-
lating an efficient PV system and to extract the unknown
parameters. To prevent the HHO from falling into local
optima, the authors have used a crisscross optimizer and
Nelder–Mead simplex algorithm to improve individuals’
searching capabilities for achieving a faster convergence rate.
In a similar work, Yousri et al. [34] have proposed amodified

HHO to relieve the PV systems from the issue of mismatch
power loss problems resulting due to the phenomenon of
partial shading. �e modified HHO provides the optimal
reconfiguration pattern for the switching matrix for maxi-
mizing the power generated from the array.

�e safe operation and rational dispatching of a power
system depend on the accurate prediction of wind speed. Fu
et al. [33] have employed a hybrid of HHO and GWO for
optimizing the parameters of phase space reconstruction
and kernel-based extreme learning machine algorithms to
predict the wind speeds accurately. �e end users can
communicate with the operators of the grid through a de-
mand-side management program. �is program can help
the customers to take the assistance of grid operators to
reduce the power consumption of the utilities during peak
hours by smartly managing the load. Mouassa et al. [80]
employed HHO to schedule energy in smart homes. Abdel
Aleem et al. [75] have employed HHO to reduce the har-
monic overloading levels of components based on the fre-
quency with optimal planning of C-type harmonic filter,
which is resonance free in a non-sinusoidal distribution
system. Selim et al. [36] have employed HHO and multi-
objective HHO to find the location of distribution genera-
tion optimally in a radial distribution system tominimize the
voltage deviation and total active power loss and also to
increase the voltage stability index under several operational
constraints.

4.7.Civil Engineering. Many researchers have used the HHO
algorithm to solve some of the critical research problems in
the civil engineering (CE) domain, such as predicting the
stability of the soil slopes accurately, optimizing structural
design problems, air pollutant forecasting, and predicting
the blast-induced ground vibration. �e rest of this sub-
section presents recent research works that solved several CE
problems.

One of the essential parameters to estimate the settle-
ment of soil layers in CE applications is soil compression
coefficient (SCC). Moayedi et al. [37] have proposed a hybrid
of HHO and grasshopper optimization algorithm (GOA) to
optimize the artificial neural network (ANN) for predicting
SCC.�e authors have used the ensemble of GOA and HHO
to tune and find the optimal parameters of the ANN. �e
dataset is then trained and tested by the proposed model to
predict SSC. To further improve the ANN-GOA prediction
model, the authors have proposed a hybrid GOA-HHO
algorithm for the prediction of SSC. Another challenging
issue in CE is predicting the stability of the soil slopes (SSs).
Moayedi et al. [81] proposed the HHO-based convolutional
multilayer perceptron model to predict safety factor in
constructions with rigid foundations based on SS condi-
tioning factors. �e HHO algorithm is used in this work to
adjust the computational weights of the SS abovementioned
factors.

Guardrail systems are designed to absorb the energy
generated by vehicles driven on the roads to increase the
safety of motorways. Enes Kurtulus et al. [38] proposed a
hybrid HHO-simulated annealing (HHOSA) for optimizing
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real-world structural design problems. �e HHOSA algo-
rithm is used in this work to optimize the design parameters
of highway guardrail systems.

Due to the increase in industrialization and motor ve-
hicles, air pollution is increasing daily in several parts of the
globe rapidly. Air pollution is affecting the environment
badly and endangering all kinds of species. Global warming
is also the result of an increase in air pollution. Even though
several researchers have conducted several studies, they had
significant deficiencies such as insufficient initial parameters
and neglecting the significance of predictive stability, which
affected the performance of air pollution forecast models.
Du et al. [19] proposed the HHO-based extreme learningML
model to overcome the deficiencies of existing models.

Blasting and drilling are the conventional methods for
fragmentation of the rock mass in mines as they are efficient
and cheap. However, the vibration generated by the blasts
can damage the surrounding structures and rock. To control
the damage induced by blasting, an efficient prediction
model must be designed for controlled blasting in mines. Yu
et al. [82] have proposed the HHO-based random forest
algorithm to predict the vibration induced by the blast. HHO
is used for tuning the parameters of the random forest al-
gorithm. To increase the samples by randomly changing the
values of the attributes, the authors have used the Monte
Carlo simulation method.

A spillway, which is a structure that regulates discharge
flowing frommassive hydraulic structures such as dams, plays a
pivotal role in the safety of the dams. A spillway also dissipates
the extra energy of water with the help of still basins. However,
the high flow velocity on the spillway may lead to a serious
problem known as bed scouring, resulting in spillway failure and
soil erosion. Sammen et al. [63] have proposed a hybrid ANN-
HHO model to predict the ski jump spillway’s scour depth
downstream. �e HHO algorithm is used in this work to tune
the parameters of theANN. In a similar work, Khalifeh et al. [83]
have proposed a model based on HHO to optimize the water
distribution network in Homashahr, Iran, from September 30,
2018, to October 30, 2019. In this article, the researchers have
integratedHHOwith EPANETE 2, a water distribution network
analyzing software. �e EPANET 2 software analyzes the ve-
locity of flow for every pipe and the pressure of every node. �e
diameter of the pipes is themain optimization parameter used in
this work. �e main objective is to design optimal water dis-
tribution systems. �e HHO algorithm is used in this work to
choose the optimal parameters.

�e effects of several uncertainties, such as load, di-
mension, and material properties, are to be considered in the
design and analyzing the risk of structures in CE. Prediction
of failure probability in reliability problems with high di-
mensions is a significant research problem. �e first-order
reliability method (FORM) is a popular method used in CE
for reliability analysis. However, FORM suffers from di-
vergence or convergence issues when dealing with high
dimensions with nonlinear limit state function. To address
the issue of high dimensionality, Zhong et al. [39] presented
an improved FORM based on the HHO algorithm. �e
HHO algorithm is used to choose optimal algorithmic pa-
rameters for FORM.

4.8. Image Processing. Several nature-inspired computing
algorithms including HHO have been efficiently used by
researchers in solving many problems in image processing,
such as digital mammogram segmentation, image thresh-
olding, and removing the noise from the images [84–86].
�e recent state-of-the-art works by researchers on appli-
cations of HHO in image processing are discussed in the
remainder of this subsection. One of the crucial phases in
image processing is segmentation, as it simplifies image
representation through which it facilitates the analysis.
Rodrıguez-Esparza et al. [40] have proposed a HHO-based
methodology for multilevel segmentation of images. Mini-
mum cross-entropy thresholding (MCET) is used as a fitness
function for HHO in this work. To find the optimal con-
figuration of thresholds for image processing, the HHO
algorithm is used in this work.

One of the drawbacks of the traditional HHO algorithm
is its limited exploration ability, as it gets completely
exhausted when the escape energy is zero. Wunnava et al.
[42] have proposed a novel differential evolutionary adaptive
HHO (DEAHHO) to address the issue mentioned above.
�e authors have modified the exploration phase of HHO
within the range of [2,0] to limit the escape energy. �e
authors have also updated the HHO by making the Harris
Hawk adaptive to decide when it has to move to a random
tall tree or when it has to do perching. Also, to improve the
exploration ability of HHO, the authors have used the
differential evolutionary concept. Multilevel image thresh-
olding methods based on 1-D histograms have been using
Masi entropic function recently. However, the problem with
the current approaches is the missing of contextual infor-
mation in the 1D formulation. To address this issue, a novel
2D practical Masi entropy function is proposed by the
authors. DEAHHO has been applied in the proposed 2D
practical Masi entropy-based multilevel image thresholding
while segmenting the images. To validate the DEAHHO
method, the authors have considered 23 popularly used
benchmark test functions. For experimentation purposes,
500 images are obtained from the renowned Berkeley seg-
mentation dataset. PSNR, FSI, and SSI metrics are used to
evaluate the performance of the proposed method. �e
proposed method yielded better results when compared to
other state-of-the-art algorithms. In a similar work, Wun-
nava et al. [24] have used the abovementioned updated HHO
along with an improved 2D grey gradient method to pre-
serve the edge information of images with high magnitude.
�e same dataset used by [42] is used in this work to evaluate
the proposedmethod. Designing an efficient automatic brain
tumor classification model is the need of the hour as the
precision of existing classification models is not satisfactory.
Rammurthy and Mahesh [41] proposed a hybrid WOA-
HHO (WHHO)-based deep CNN model [87] for classifying
brain tumor using MRI images. In this work, rough set
theory and cellular automata are used to perform the seg-
mentation of MRI images. �e features extracted from the
MRI images are variance, mean, local optical-oriented
pattern, kurtosis, and tumor size. To tune the parameters of
the deep CNNmodel, the WHHO optimization algorithm is
used. �e datasets used to train the proposed model are
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simulated BRATS dataset (dataset 3) and BRATS dataset
(dataset 4). �e metrics used to evaluate the proposed model
are accuracy, specificity, and sensitivity.

HHO algorithm may be struck due to local optima
problem and may suffer immature convergence during the
exploitation and exploration phases. To address these issues
inHHO, Abd Elaziz et al. have proposed [43] a hybrid HHO-
SSA optimization algorithm for multilevel image segmen-
tation problems. �e proposed model addresses the global
optimization problem and also helps in finding optimal
threshold values. In the proposed work, the first initial set of
solutions is generated. Later, these solutions are divided into
two halves. �e exploitative and exploratory phases of HHO
will be applied to the first half of the solutions, whereas in the
second half, the searching stages of SSA will be applied.
Later, the optimum solutions from these halves are chosen to
continue the rest of the iterative process. 11 natural gray-
scale images and IEEE CEC 2005 benchmark functions are
used to perform experiments. �e measures used to evaluate
the proposed method are average fitness value, worst fitness
value, best fitness value, and the standard deviation. �e
experimentation results proved that the hybrid HHO-SSA
performs better than the individual algorithms and several
other popular algorithms. Removal of noise from images is
essential during image processing as the further procedure is
not possible with noisy images. Researchers have recently
attempted to improve the quantitative and qualitative results
by removing the noise from the images. However, the at-
tempts from researchers could not preserve the image
quality after the application of de-noising methods. Golilarz
et al. [88] used the HHO algorithm for optimal image de-
noising to tune the parameters of the thresholding functions.
In this work, HHO is used to obtain the best-thresholded
values for wavelet coefficients before applying the inverse
wavelet transforms in the first stage. In the next stage, the
authors have presented an improved adaptive generalized
Gaussian distribution threshold algorithm that is a data-
driven function that has an adaptive threshold value. �e
proposed function can fit all kinds of images without the
usage of a shape tuning parameter.�e authors have used six
satellite images for experimentation. �e results proved that
the proposed model achieved better accuracy and less time
to process the data when compared to traditional models. In
a similar work, Golilarz et al. [44] proposed a hybrid multi-
population differential evolution-HHO (CMDHHO) algo-
rithm for optimizing de-noising in satellite images in the
wavelet domain. �e experimental results have proved that
the proposed CMDHHO algorithm yielded better quanti-
tative and qualitative results when compared to several other
optimization algorithms and thresholding neural network
approaches. CMDHHO also improved the processing time
and also proved to be computationally efficient. PSNR and
mean SSI are the attributes used to evaluate the performance
of the de-noising algorithms considered in this work.

Implementation of multilevel thresholding for color
images is time-consuming and complex as the information
that has to be processed is high, and also, the number of
thresholds is more for color images. Bao et al. [23] have
proposed a hybrid algorithm based on HHO for image

segmentation of color images. �e proposed hybrid model is
a combination of HHO and differential evolution (DE). �is
hybrid algorithm, HHO-DE, extracts optimal features from
images for the segmentation of color images. Kapur’s en-
tropy and Otsu’s method are used as fitness functions to find
the threshold values of segmentation. �e proposed model
divides the entire population into two equal parts assigned to
DE and HHO algorithms. During the iterative process, both
HHO and DE will update each subpopulation’s position
simultaneously. �e proposed model is implemented on 10
benchmark images. �e proposed model is then compared
with 7 state-of-the-art methods. For evaluating the perfor-
mance of the algorithms, 5 measures, FSI, SSI, PSNR,
standard deviation, and average fitness values, are used in
this work.�e comparative analysis proves the superiority of
the proposedHHO-DE algorithm. In a similar work, Jia et al.
[89] proposed the application of the HHO algorithm for
tuning of parameters by pulse coupled neural network
(PCNN) method for the segmentation of medical images.
�e proposed HHO-PCCN method reduced the number of
parameters of PCNN without affecting the effect of seg-
mentation. In a similar work, Jia et al. [22] proposed a novel
dynamic HHO algorithm with a mutation mechanism for
segmentation of satellite images. Compared with the tra-
ditional HHO algorithm, the proposed dynamic HHOwith a
mutation mechanism can overcome the problem of falling
into local optimum, increasing the searching capacity.
Landslides are one of the most devastating environmental
threats that can cause substantial financial and physical
damage worldwide. Predicting the landslides reliably can
save lives and also reduce damages to property. Bui et al. [90]
have used the HHO-based ANN to analyze landslide sus-
ceptibility inWestern Iran. In addition, HHO is used to tune
the parameters of ANN.

4.9. Mechanical Engineering. Essa et al. [64] have proposed
an HHO-ANN model to predict the productivity of active
solar still, which is used to extract fresh drinkable water from
water with a high concentration of salt (briny water). �e
HHO algorithm is used in this work to select optimal pa-
rameters of ANN. �e experiments were conducted at the
Faculty of Engineering, Kafrelsheikh University, Kafrel-
sheikh. Song et al. [45] have proposed a hybrid cuckoo
search-HHO algorithm to solve three classical mechanical
engineering problems: five-stage cantilever beam design
problem, welded beam design problem, and tension/com-
pression spring design problem. �e cuckoo search-based
HHO algorithm is used to optimize the parameters in the
engineering abovementioned problems. �e proposed al-
gorithms achieved better results when compared with other
metaheuristic algorithms.

Friction stir welding has proved to be efficient in welding
materials when compared to traditional fusion welding
methods. Shehabeldeen et al. [91] have proposed an adaptive
neuro-fuzzy inference system integrated model integrated
with HHO to predict the mechanical properties of friction
stir welding. �e HHO algorithm is used to find the optimal
parameters of the adaptive neuro-fuzzy inference system and
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find optimal conditions of the friction stir welding process.
Micro-channel heat sinks are one of the popular methods to
remove heat and cool the integrated circuits in electronic
devices. Entropy generation is a negative factor for micro-
channel heat sink systems. Abbasi et al. [76] applied HHO
optimization to minimize the entropy generation in micro-
channel heat sinks.

�e grinding process is a basic shaping method that is
used to sharpen weapons and piercing cutting. It is used in
the manufacturing of various tools. Providing optimal
surface quality is the aim of the grinding process. �e op-
timization of production rate and production cost is crucial
in the grinding process to ensure surface quality. Yıldız et al.
[74] have used HHO, GOA, and multi-verse optimization
algorithm (MVO) to optimize the processing parameters in
grinding operations. Jouhari et al. [46] proposed a hybrid
HHO-SSA algorithm to address scheduling problems in
unrelated parallel machines. In this study, SSA is employed
to enhance the performance of HHO by acting as a local
search for HHO. As a result, the proposed hybrid algorithm
resulted in improved performance and reduced computa-
tional time.

To solve shape optimization problems in manufacturing
industry, Yıldız et al. [74] employed HHO, SSA, GAO, and
dragonfly algorithm. In this work, HHO, SSA, GAO, and
dragonfly algorithms are applied for optimizing the shape of
the vehicle brake pedal. Singh [47] proposed a hybrid HHO-
WOA-based ANN to predict emission properties of a single-
cylinder direct injection diesel engine. �e proposed hybrid
HHO-WOA algorithm optimized ANN to predict the values
of several parameters such as hydrocarbon, brake thermal
efficiency, carbon monoxide, and carbon dioxide.

4.10. Wireless Communications and Internet of Eings.
Fiber wireless (FiWi) integrates wireless and optical net-
works. It can reduce complexity and cost by combining
wireless and fiber networks, such as mobility of wireless
networks and large bandwidth availability through optical
networks [92, 93]. To place multiple optical units at optimal
locations in FiWi, Singh and Prakash [94] used the HHO
algorithm.

For many applications of wireless sensor networks
(WSNs) such as intrusion detection, road traffic tracking,
and oil and gas explorations, location information of the
sensors is vital so that communication is not disrupted. Bhat
and Venkata [95] proposed an HHO area minimization
algorithm to improve the location accuracy of sensors in
irregular WSN topologies. Area minimization is used in this
work to minimize the search area. In a similar work,
Houssein et al. [96] have used HHO to identify the ideal
location for placing sink nodes in a large-scale WSN. �e
authors have used HHO to identify the optimal location for a
sink node in WSN and used Prim’s shortest path algorithm
for reconstructing the WSN by choosing minimum trans-
mission paths. In a similar work, the authors in [97] used
HHO for selecting an optimal cluster head in an IoT-based
network to choose the optimal routing schemes and reduce
energy consumption in the IoT network. �e simulation

results proved the superiority of the proposed approach
when compared with other recent models.

�e intelligent reflecting surface is one of the techniques
that can be used to provide cost-effective and green solutions
to enhance the performance of WSN through the smart
configuration of propagation of the signals. For example, Xu
et al. [98] have employed HHO tomaximize the power of the
received signal by optimizing the transmit beam forming at
the access point and intelligent reflecting surface’s reflection
coefficient.

5. Conclusions

In this work, we have provided a comprehensive survey on
the fundamentals, variants, and applications of the HHO
optimizer. Based on the existing reviews, we discovered that
HHO is used in various engineering and ML applications
such as clustering, classification, and feature selection. Some
researchers demonstrated that HHO could efficiently solve
critical optimization problems such as pattern recognition,
image classification, and unconstrained optimization. At the
same time, some of them provided sufficient modifications
towards more harmonized exploration and exploitation
trends based on the problem’s nature. Furthermore, some
recent works show that the hybrid variant of HHO has a
faster convergence rate, optimal computational accuracy,
and greater efficiency than existing metaheuristic algo-
rithms. In our research, we discovered that HHO is efficient
in all of the test problems. In the future, the work can be
utilized as a guide over the recent developments on the HHO
to have a better view of the current state of research on this
well-known method. Also, it can be used to categorize
different variants of HHO and categorize which variant is
suitable for which operation, along with their advantages
and disadvantages. �is matter can help researchers in
addressing appropriate potential problems.
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