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With the phased spatial planning of the rural revitalization strategy, the proportion of architecture energy consumption in the
overall social energy consumption is also increasing year by year. Considering the hot summer and cold winter areas, the
proportion of architecture energy consumption in the total energy consumption is very large. *e ecological environment and
natural resources have been greatly threatened, and the issue of energy conservation and environmental protection is imminent.
Energy consumption prediction and analysis is an important branch of building energy conservation in the field of building
technology and science. Aiming at the energy consumption characteristics of rural architectures in areas with hot summer and
cold winter, this paper proposes a method for constructing a neural network model. When building a neural network, the dataset
is called and the function is applied randomly to training samples. *e data are used for simulation tests to analyze the fit between
the predicted results and the calculated results. Flexible forecasting of specific target building energy consumption is achieved,
which can provide optimization strategies for updating and adjusting architecture energy efficiency design. *e experimental
analysis benchmark parameters and the output value in the dataset are compared with the target simulation value. *e relative
error is less than 4%, and the average relative error value (mean) and the root mean square error (RMSE) value are both controlled
within 2%. It is proved that the method in this paper can directly reflect the evaluation of energy consumption by the neural
network and realize the high-speed conversion of the generalized model to the concrete goal, which has a certain value and
research significance.

1. Introduction

With the development of our country’s economy and the
continuous improvement of people’s living standards,
people’s requirements for indoor comfort are also getting
higher and higher. In China, the region with hot summer
and cold winter generally refers to the middle and lower
reaches of the Yangtze River and its surrounding areas. Most
of the regions have extremely strong geographical and cli-
matic characteristics, that is, sultry summer, wet and cold
winter, small diurnal temperature range, large annual pre-
cipitation, and less sunshine. In some areas with hot summer
and cold winter, the central heating in the north is not used
in winter, the indoor thermal environment is relatively poor,

and the heating demand will continue to increase. In this
way, the cooling and heating loads of architectures in
summer and winter will increase accordingly, which is not
conducive to building energy conservation [1].

*e team of Japanese scholar Yoshiyuki Shimoda ana-
lyzed and explored the characteristics of architecture energy
consumption from the aspect of architecture equipment.
Relying on the theoretical system and application principles
of energy management, a lot of research work and simu-
lation analysis have been carried out. *e main influencing
factors and their weights of architecture energy consump-
tion are discussed from different perspectives, and some
scientific research results have been obtained [2]. Based on
the perspective of thermal engineering, Marty et al.
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conducted a comprehensive analysis of fuel dynamic factors
such as architecture area, envelope thermal performance,
and heating and cooling equipment systems that affect
energy consumption during architecture operation and
predicted the changing trend of architecture energy con-
sumption in the short term of the future [3]. *e research
results show that in addition to being limited by most cli-
matic conditions and the current status of existing building
renovations, the energy consumption load generated by the
HVAC system operating under normal operating conditions
will fluctuate accordingly due to the dynamic changes in the
population composition of users for the building space [4].
Balaban and Puppim de Oliveira used the eQUESTdynamic
energy simulation software to establish an architecture
energy consumption model and set up orthogonal experi-
ments, which include window-to-wall ratio, window-to-
ground ratio, and other constraints. Moreover, they studied
the influencing factors of high-rise architecture energy
consumption [5]. *e model can not only quantitatively
analyze the influencing factors of architecture energy con-
sumption changes but also determine the directionality
between the influencing factors of building energy con-
sumption and obtain the quantitative relationship between a
single factor variable and the total architecture energy
consumption under the control of factor interaction [6].

When the energy consumption factors and prediction
models of the above research architectures are compre-
hensively analyzed, it is necessary to coordinate the tradi-
tional factors that affect the building energy consumption,
such as the thermal performance of the envelope structure,
and combine the external environmental factors that affect
the energy consumption changes outside the architecture
shape. However, due to the unfavorable effects of fuzzy
boundary conditions, local extreme values of functions,
weakly correlated interference terms, etc., the research
points have limitations, and the energy consumption model
is relatively targeted [7]. From the research status at home
and abroad, it can be seen that in recent decades, foreign
developed countries have increasingly stricter requirements
on the energy-saving rate of buildings and thermal engi-
neering of architecture envelopes. *ere have also been
fruitful achievements for the related research on the en-
closure structure of rural architectures in hot summer and
cold winter areas. However, most of these studies did not
analyze the energy-saving standards, nor did they discuss the
cost-input relationship of the architecture envelope from the
perspective of the owner [8]. In order to avoid the high
energy consumption of qualified buildings, it is necessary to
limit the annual energy consumption index of buildings in
the design process, supplemented by operational calculation
means, which is convenient for owners, designers, engineers,
construction parties, and other parties to implement. Only
by controlling the energy consumption in the design process
can the actual energy consumption in the building operation
stage be reduced.

*e Nash–Sutcliffe efficiency coefficient (the closer it is
to 1, the better the prediction effect is) predicted by the
ANN (artificial neural network) for building cold resis-
tance, heat resistance, and insulation energy consumption

is 0.994, 0.993, and 0.996, respectively. In order to solve
the trade-off between thermal comfort and energy con-
sumption of residential buildings, ANN and multi-
objective genetic algorithm (NSGA-II) were combined to
take the parameters related to envelope structure as input.
*e thermal comfort and energy consumption are taken as
output. *e results show that the final prediction errors of
thermal comfort and energy consumption are less than 4%
and 1%, respectively.

Taking three rural architectures in hot summer and
cold winter areas as examples, this paper uses the drawing
information of the original construction drawings that
have passed the energy-saving review and applies the
learning simulation performance of BP neural network to
construct energy consumption models for rural archi-
tectures in hot summer and cold winter areas. Combined
with the national energy-saving standards, the influence
of the thermal performance of rural architecture envelope
on the building’s annual energy consumption and the
relationship between the initial investment in thermal
insulation of the envelope and its service life are discussed.
It can provide a certain reference for the thermal design of
the envelope structure of the public architecture in the hot
summer and cold winter area and also provide economic
advice for the owner to choose the envelope structure,
which can improve the owner’s enthusiasm for archi-
tecture energy conservation.

*e main innovations of this paper are as follows:

(1) Considering the subjective and objective factors that
affect the energy consumption of rural architectures,
the three most representative influencing factors of
architecture energy consumption are selected for
modeling.

(2) Multiple linear regression analysis and artificial
neural networks are introduced to build a public
architecture energy consumption model suitable for
areas with hot summer and cold winter from a
mesoscopic perspective.

2. Related Work

2.1. Climatic Characteristics of Hot Summer and Cold
Winter Region. *e GB 50176-2016 code for *ermal
Engineering Design of Civil Buildings divides China’s
climate into five regions: very cold, cold, hot in summer
and cold in winter, hot in summer and warm in winter,
and mild in winter. *e hot in summer and cold in winter
region mainly refers to the middle and lower reaches of
the Yangtze River, which is in the east of the Sichuan
Basin, north of the Nanling, and south of Longhai Line.
*e climate is characterized by sultry summer (the
temperature in July is about 5°C higher than that of other
regions at the same latitude in the world). Winter is cold
and bleak (the temperature in January is 8–10°C lower
than that of other parts of the world at the same latitude).
*e annual relative humidity is as high as 80%. *erefore,
the summer load of buildings in this area is mainly re-
frigeration, and the winter load is mainly heating.
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2.2. Characteristics of Rural Architectures

(1) *e roof is the architecture envelope with the longest
exposure to solar radiation. *e inverted roof is a
roof practice in which the order of the thermal
insulation layer and the waterproof layer in the
traditional roof is exchanged, and the thermal
insulation layer is placed on the waterproof layer.
*e inverted roofingmethod stipulated in “Technical
Regulations for Inverted Roof Engineering” (JGJ230-
2010) is shown in Figure 1 [9].
Placing the thermal insulation layer on top of the
waterproof layer can effectively protect the water-
proof layer, reduce the direct damage to the wa-
terproof layer in the harsh outdoor environment,
and prolong the life of the waterproof layer. *e
inverted roof method is similar to the traditional
roofing method. It does not add additional con-
struction difficulty, and the total cost does not in-
crease much. However, it can reduce the repair cost
of the waterproof layer, prolong the service life of the
roof, and bring long-term benefits [10].
However, several problems have also emerged in the
practical application of inverted roofs, such as the
infiltration of rainwater into the gaps between the
roof insulation boards, which can result in a decrease
in the overall insulation performance of the roof.*e
cracking of the structural layer directly damages the
waterproof layer, and once the waterproof layer is
damaged, the repair cost is greater. *e waterproof
layer is hidden below, and it is difficult to accurately
locate the water seepage point. Due to the protective
effect of waterproof materials on thermal insulation
materials, some unscrupulous enterprises use low-
cost and inferior waterproof materials, which will
leave hidden dangers to safety.
Inverted roofs offer several advantages over tradi-
tional roofs. However, in practical application, it is
necessary to consider the specific situation of the
project and choose the roof construction method
reasonably.

(2) *e thermal insulation technology of the external
wall of the architecture mainly includes external
thermal insulation of the external wall, internal
thermal insulation of the external wall, composite
thermal insulation of the external wall inside and
outside, and self-thermal insulation of the external
wall. *e determination of the thermal insulation
form should comprehensively consider the influence
of factors such as the climate where the architecture
is located, the specific type and structural form of the
building, and the economic benefits in the entire life
cycle. Next, these four common exterior wall insu-
lation techniques will be discussed [12].

2.3. Technical Process of 'ermal Insulation Engineering.
JGJ144-2005 Technical Specification for External Wall
*ermal Insulation Engineering stipulates that the external

wall thermal insulation system is composed of thermal
insulation layer, plastering layer, fixing material (adhesive,
anchoring agent, etc.), and coating layer, and fixed on the
external surface of the external wall, which is called “external
thermal insulation system” [13]. *e outer insulation layer
adopts themethod of “rigid foam polyurethane,” as shown in
Figure 2.

*e advantages of an external thermal insulation system
for external walls are that the thermal insulation layer is
between the outside and the wall, which can reduce the stress
effect of temperature changes on the wall and avoid the
damage and corrosion of the base wall caused by external
carbon dioxide, water, harmful gases, ultraviolet rays, and
other factors. *e overall thermal insulation effect of the
external thermal insulation system is good, which is beneficial
to improve the indoor environmental quality and the oper-
ation of the HVAC system. Under the same thermal insu-
lation effect, the thickness of the thermal insulation material
of the external thermal insulation system is thinner, and the
change of direction reduces the total consumption of thermal
insulation materials and increases the useable area in the
room. It effectively eliminates the thermal bridge phenom-
enon, reduces the indoor heat load of the architecture, and is
beneficial to building energy conservation [14].

After simulating and analyzing the relationship between the
annual energy consumption of three public architectures with
different shapes and the thermal work of the envelope structure,
it is found that the strengthening of the envelope structure can
reduce the cooling demand in summer and the heating demand
in winter, which is beneficial to the energy saving of the ar-
chitecture throughout the year. For super-high-rise hotel ar-
chitectures with a high window-to-wall ratio (Architecture A),
thermal enhancement of external window thermal work can
reduce the building’s heating and cooling load by up to about
40%. *e energy-saving effect is far better than strengthening
external wall and roof thermal work [15]. Comparing two low-
rise rural architectures with similar shapes, it is found that the
energy-saving potential of the architecture (Architecture C)
with the 2005-year energy-saving standard is significantly
greater than that of the architecture (Architecture B) with the
2015-year energy-saving standard [16].

3. BP Neural Network

3.1. Design of Neural Network. *e BP neural network can
have one or more hidden layers. However, some studies have
shown that the BP neural network with a single hidden layer
can continuously approximate any continuous function, and

Protective layer Insulation Waterproof layer

Screed Looking down Structural layer 

Figure 1: Inverted roof.
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the three-layer BP neural network can map an n-dimen-
sional space. *ere is a functional relationship between
building benchmark parameters and architecture cooling
and heating energy consumption. *erefore, in this paper,
the number of layers of the BP neural network is determined
to be three layers, and the hidden layer is set to one layer. In
the single-hidden layer, the number of neurons is often
determined according to the number of input and output
neurons [15]. Because of the large number of neurons in the
input layer, according to empirical formula (1), the number
of neurons in the hidden layer can be tentatively set to 15. To
check the operation of the network model in the future, 15
neurons may not necessarily make the network model
achieve the best effect. To avoid the phenomenon of over-
fitting or the inaccuracy of the network model, it is necessary
to adjust the number of neurons in the hidden layer, perform
repeated training of the neural network, and then select the
optimal number of neurons according to the training results
to determine the number of neurons in the hidden layer [17].

*e empirical formula for the number of hidden layer
nodes of the neural network model in this paper is

h �
�����
m + n

√
+ a, (1)

where h is the number of hidden layer nodes;m and n are the
number of the input layer and output layer nodes, respec-
tively; and a is an adjustment constant between 1 and 10.

In view of the large number of neuron nodes in the input
layer, according to empirical formula (1), the number of
neurons in the hidden layer can be temporarily set as 15,
which is to be tested later in the network model operation,
that is, 15 neurons cannot necessarily make the network
model achieve the best effect [18]. In order to avoid the
overfitting phenomenon or the misalignment of the network
model, it is necessary to adjust the number of neurons in the
hidden layer and conduct repeated training of the neural

network. *en, select the optimal number of neurons
according to the training results so as to determine the
number of neurons in the hidden layer.

3.2. Implementation of Neural Network Model

3.2.1. Data Calling and Processing. To establish an accurate
energy consumption model, when building a neural net-
work, 800 sets of datasets in Excel are called, and the rand()
function is used to randomly select 770 sets of training
samples. *e remaining 30 sets of data are used for simu-
lation testing to analyze the agreement between the results
and the calculated results. *e load command is used to call
the influencing factors and energy consumption values in
the basic data of architecture energy consumption, and they
are named as variables “p” and “t,” respectively.

3.2.2. Normalization of Data. In neural network learning,
it is necessary to normalize the sample data, that is, the
input data of the network and the corresponding ex-
pected output value. *ey are temporarily normalized to a
predetermined interval, and after the network learns and
trains, the previously normalized values must be con-
verted into actual values[19]. In MATLAB software, the
map-min-max function is used to normalize the data to
[0, 1]. *e normalized linear transformation algorithm is
expressed as

y �
x − xmin

xmax − xmin
, (2)

where x is the input variable; xmin is the minimum value of
the input variable x; xmax is the maximum value of the input
variable x; and y is the output variable after normalization.
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Figure 2: External thermal insulation system for external walls.
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3.2.3. Parameter Attribute Setting of Neural Network.
*e network is created, and the network properties are set.
According to the initial values of the data designed in the
previous section, combined with empirical formula (1), the
number of neurons in the hidden layer is 15, and the newff
function is used to create the network. In this paper, the
Levenberg–Marquardt algorithm (namely, “trainlm”) is
selected as the training function of the network because it
has the characteristics of the largest memory requirement,
the fastest convergence speed, and no local extremum. *e
neural network structure is shown in Figure 3.

After creating the network, the network properties are
set. It mainly includes that the number of iterations epochs
for network training is set to 2000 times, the training re-
quired accuracy goal is set to 1e− 3, and the learning rate lr is
set to 0.01.

*e setting of network parameters is flexible and
controllable according to the different research objects
and the size of the sample dataset, and the network at-
tribute module is set twice. *e results of the model are
recorded and analyzed after several rounds of operations.
*e network structure with the smallest error of the
weight function is selected after multiple corrections, and
it is reset to the parameter properties of the algorithm
model.

3.2.4. Training of Neural Network. After setting the pa-
rameters, the neural network is trained.*e useful method is
[net, tr] � train(net, pl, tl), the network reaches the best state
through 4 repeated learning and training processes, the it-
erative algorithm converges very fast, the accuracy value is
0.000998, and the training is completed. *e error reduction
process is shown in Figure 4.

From the display of the distribution of the test results, the
data have a high degree of agreement, the network model
structure is stable, and there is no gradient explosion and
local extremum problems.

3.2.5. Denormalization of Data. After the neural network
reading is completed, the map-min-max function is used to
denormalize the results. *e parameters of the output layer
with a threshold of [0, 1] are restored to the corresponding
annual energy consumption values for cooling and heating,
and the real value of energy consumption is recorded. So far,
the training, simulation testing, and denormalization of the
network model are completed. *e detailed algorithm is as
follows:

net� train (net, p_train, t_train);
t_sim� sim (net, p_test);
T_sim�mapminmax (“:reverse,” t_sim, ps_output).

4. Experimental Analysis

4.1. Energy-Saving Information of Simulated Architectures.
Take three rural architectures with different shapes in the
hot summer and cold winter area as an example. Com-
bined with the drawing information of the construction

drawings that have passed the energy-saving review, an
energy-saving model is built in the simulation software
BECS to analyze the impact of thermal performance on
the building’s annual energy consumption. Architecture A
and Architecture B are used to discuss the influence of the
window-to-wall ratio on architecture energy consumption
under the same energy-saving standard. *e impact of the
2005 and 2015 standards on architecture energy con-
sumption is specifically discussed using Architecture B
and Architecture C. *e extracts from the energy-saving
report are shown in Table 1.

GB50189-2005 proposed a 50% energy-saving target,
that is, compared with the public architectures (“benchmark
architectures”) built in the 1980s of the early days of Reform
and Opening Up, the energy-saving rate should reach 50%.
*e energy-saving rate of the “reference architecture” in the
software corresponds to 50%, and GB50189-2015 increases
its value to 65%.

*e completion time of the construction drawings of
Architectures A and B is after the implementation of the
GB50189-2015 standard, and the energy-saving rate is 67.7%
and 67.4%, which can meet the requirements of the 15-year
standard. *e construction drawing of Architecture C is
completed before the implementation of the GB50189-2015
standard, and the energy-saving rate is 62.4%, which can
meet the 05-year standard, but cannot meet the 15-year
standard.

According to the working principle of the simulation
software, the reference architectures are designed according
to the 65% benchmark, that is, the energy-saving rate of the
software output reference architectures is 65%. In the
simulation results, Architecture C (energy-saving rate of
62.4%) does not meet the energy-saving requirements be-
cause it is calculated according to the 65% energy-saving rate
of GB50189-2015. However, the completion time of archi-
tecture construction drawings is before the implementation
of GB50189-2015, and the energy-saving rate requirement is
designed according to 50% of GB50189-2005, that is, Ar-
chitecture C meets the energy-saving requirements at that
time. *e energy-saving rate mentioned in the 05-year
standard is only to illustrate that Architecture C is in line
with the energy-saving requirements at that time. To reflect
the comparability of different architectures under the same
conditions, the 65% energy-saving rate of GB50189-2015 will
be adopted as the reference architecture in the follow-up.

For external wall insulation materials, the materials
selected for Architectures A and B have better thermal
insulation performance (rock wool tape and rock wool
board), and the thickness is thicker.*ematerial selected for
Architecture C has relatively poor thermal insulation per-
formance (micro-bead inorganic thermal insulation mor-
tar), and the thickness is thinner. *e roof insulation
materials for the three architectures are the same, but the
thickness of Architecture C is the lowest. Architectures A
and B also have better thermal insulation than Architecture
C. Overall, the overall thermal performance of the envelope
structure of Architectures A and B is better than that of
Architecture C. *e architecture structure and model are
shown in Figure 5.
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4.2. Influence of Roof Insulation on Energy Consumption.
*e actual orientation, room function, and envelope
structure of Architectures A, B, and C are selected to discuss
the influence of roof insulation thickness on architecture
energy consumption. When the thermal insulation material
of the roof changes, the relationship between the annual
energy consumption of the roof of Architectures A, B, and C
is shown in Figure 6.

*e simulation results show that the thickness change of
the roof insulation material has little effect on the annual
energy consumption of Architectures A and B but has a
greater impact on the heating energy consumption of Ar-
chitecture C. *e roof of Architecture C adopts the same
insulation material as A and B, and the overall heat transfer
parameters with the same roof insulation thickness are

between A and B. Observing the specific structure of Ar-
chitecture C, it can be found that the roof of Architecture C
accounts for a higher proportion of the total envelope
structure, so its roof insulation has a more significant impact
on the annual energy consumption.

4.3. Influence of External Wall Insulation on Energy
Consumption. Except for external wall insulation, other
parameters are kept consistent with the actual situation.
When the insulation material of the external wall
changes, the relationship between the heat transfer co-
efficient and the annual energy consumption of the ex-
ternal walls for the three architectures is shown in
Figures 7 and 8.
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Figure 6: Relationship between the thickness of the thermal insulation material and the annual energy consumption of the roof.

Table 1: Energy-saving information of simulated architectures.

Classification Architecture A Architecture B Architecture C
Features Township house Township house Township house
Layers 3 2 1
Height 15.10m 10.30m 5.00m
Above ground area 258m2 196m2 98m2

Compass direction 225.7° 74.8° 0°
Factor 0.12 0.15 0.26

Roof
Insulation materials Extruded polystyrene board Extruded polystyrene board Extruded polystyrene board
Insulation thickness 70mm 60mm 55mm

Heat transfer coefficient 0.45W/(m2
•K) 0.34W/(m2

•K) 0.48W/(m2•K)

External wall Insulation materials Rock wool tape Rock wool board Micro-bead inorganic thermal
insulation mortar

*ermal conductivity 0.048W/(m•K) 0.040W/(m•K) 0.070W/(m•K)
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As can be seen from Figure 7, Architecture C refers to the
05-year energy-saving standard and selects the thermal insu-
lation material (micro-bead inorganic thermal insulation
mortar) with poor thermal performance. ArchitecturesA and B
refer to the 15-year standard and select insulation materials
(rock wool) with better thermal performance.*erefore, under
the same thickness of thermal insulation materials, the thermal
performance of the external walls of Architectures A and B is
better than that of Architecture C.

From the simulation results in Figure 8, it can be seen
that the increase of the thermal insulation thickness of
the external wall can significantly reduce the annual
heating energy consumption (dotted line) of the archi-
tecture and has a relatively small impact on the annual
cooling energy consumption (stipple line) of the

architecture, and the combined effect is conducive to
reducing the annual energy consumption (solid line) of
the architecture.

5. Conclusion

*is paper mainly studies the energy-saving optimization
design of rural buildings in hot summer and cold winter
areas. *e main work is as follows:

(1) *e approximate function of each variable with the
energy consumption value drawn by the function
graph is used to fit the regression curve.

(2) By analyzing the influence of various factors on the
energy consumption of rural buildings, combined
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Figure 8: Relationship between thermal insulation material thickness and annual energy consumption of external walls.
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with the actual situation of the project, the energy-
saving design values of the benchmark parameters of
rural architectures are obtained with high efficiency
and high precision, which can provide a reference for
energy-saving optimization strategies.

(3) *e experimental results show that the neural net-
work does have the advantage of high-precision
computing for building energy consumption It is
verified that the energy consumption model of rural
buildings in hot summer and cold winter zone based
on artificial neural network is scientific.

*rough experiments, the energy-saving design char-
acteristics of various buildings are verified. It is also proved
that the research content of this paper will seriously affect the
reduction of annual energy consumption value (11.79∼
39.12%) on the characteristics of exterior windows of
buildings. It is higher than the traditional building reduction
(9.03∼12.95%). *e overall increase is 8.50%.

Compared with professional energy consumption sim-
ulation software, the energy consumption prediction of
neural network is modeled from the input and output law of
data, without considering the heat conduction process be-
tween the building itself and the environment and the
calculation principle of cold and heat load of the building.
*e simulation accuracy also has room for improvement. If
the research problem has a large amount of computation and
the accuracy requirement is relatively low, the neural net-
work model shows excellent computational performance.
However, for problems requiring high accuracy, it is rec-
ommended to use professional energy consumption simu-
lation software. *e results will be more accurate.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is research was supported by the Hubei Provincial Ed-
ucation Department Scientific Research Project (Research
on the Protection of Ancient City Site and Rural Devel-
opment Strategy of Chu Jinan in the Context of Rural
Revitalization) (no. 21G220).

References

[1] I. Y. Wuni, G. Q. P. Shen, and R. Osei-Kyei, “Scientometric
review of global research trends on green buildings in con-
struction journals from 1992 to 2018,” Energy and Buildings,
vol. 190, pp. 69–85, 2019.

[2] C. De Wolf, K. Simonen, and J. Ochsendorf, “Initiatives to
report and reduce embodied carbon in north American
buildings,” in Embodied Carbon in Buildings, pp. 463–482,
Springer, Cham, 2018.

[3] J. Randolph and G. M. Masters, “U.S. State and Community
energy policy and planning,” in Energyfor Sustainability,
pp. 563–608, Island Press, Washington, DC, 2018.

[4] J. Randolph and G. M. Masters, “Whole building to Zero net
energy,” in Energy for Sustainability, pp. 249–283, Island
Press, Washington, DC, 2018.

[5] O. Balaban and J. A. Puppim de Oliveira, “Sustainable
buildings for healthier cities: assessing the co-benefits of green
buildings in Japan,” Journal of Cleaner Production, vol. 163,
pp. S68–S78, 2017.

[6] I. Martek, M. R. Hosseini, A. Shrestha, D. J. Edwards, and
S. Durdyev, “Barriers inhibiting the transition to sustainability
within the Australian construction industry: an investigation
of technical and social interactions,” Journal of Cleaner
Production, vol. 211, pp. 281–292, 2019.

[7] N. Harvey and B. Clarke, “21st Century reform in Australian
coastal policy and legislation,” Marine Policy, vol. 103,
pp. 27–32, 2019.

[8] Y. Chang, “Green finance in Singapore,” in Handbook of
Green Finance, pp. 1–17, 2019.

[9] R. Sini, “Singapore’s green Infrastructure and Biophilic Ur-
banism,” in Advances in 21st Century Human Settlements
Singapore’s ParkSystem Master Planning, pp. 211–251,
Springer, Singapore, 2020.

[10] I. M. C. S. Illankoon and W. Lu, “Optimising choices of
’building services’ for green building: Interdependence and
life cycle costing,” Building and Environment, vol. 161, Article
ID 106247, 2019.

[11] F. Ascione, N. Bianco, G. Maria Mauro, and D. F. Napolitano,
“Building envelope design: Multi-objective optimization to
minimize energy consumption, global cost and thermal dis-
comfort. Application to different Italian climatic zones,”
Energy, vol. 174, pp. 359–374, 2019.

[12] A. Tatiya, D. Zhao,M. Syal, G. H. Berghorn, and R. LaMore, “Cost
prediction model for building deconstruction in urban areas,”
Journal of Cleaner Production, vol. 195, pp. 1572–1580, 2018.

[13] H. H. Elmousalami, “Intelligent methodology for project con-
ceptual cost prediction,” Heliyon, vol. 5, no. 5, p. e01625, 2019.

[14] W. Feng, K. Huang, M. Levine, N. Zhou, and Z. Shicong,
“Evaluation of energy savings of the New ChineseCommercial
building energy standard,” 'e American Council for An
Energy-EfficientEconomy (ACEEE) 2014 Summer Study on
Energy Efficiency in Buildings, vol. 4, pp. 121–132, 2014.

[15] A. S. Ahmad,M. Y. Hassan,M. P. Abdullah et al., “A review on
applications of ANN and SVM for building electrical energy
consumption forecasting,” Renewable and Sustainable Energy
Reviews, vol. 33, pp. 102–109, 2014.

[16] S. Naji, A. Keivani, S. Shamshirband et al., “Estimating
building energy consumption using extreme learningmachine
method,” Energy, vol. 97, pp. 506–516, 2016.

[17] J. Zhao, B. Lasternas, K. P. Lam, R. Yun, and V. Loftness,
“Occupant behavior and schedule modeling for building
energy simulation through office appliance power con-
sumption data mining,” Energy and Buildings, vol. 82,
pp. 341–355, 2014.

[18] X. Ren, D. Yan, and T. Hong, “Data mining of space heating
system performance in affordable housing,” Building and
Environment, vol. 89, pp. 1–13, 2015.

[19] A. Behrang, J. Juha, K. Simo, M. Ali, and K. Siréna, “Cost-
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