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In recent years, analysis and optimization algorithm based on image data is a research hotspot. Aircraft detection based on aerial
images can provide data support for accurately attacking military targets. Although many e�orts have been devoted, it is still
challenging due to the poor environment, the vastness of the sky background, and so on.­is paper proposes an aircraft detection
method named TransE�Det in aerial images based on the E�cientDet method and Transformer module. We improved the
E�cientDet algorithm by combining it with the Transformer which models the long-range dependency for the feature maps.
Speci�cally, we �rst employ E�cientDet as the backbone network, which can e�ciently fuse the di�erent scale feature maps.­en,
deformable Transformer is used to analyze the long-range correlation for global feature extraction. Furthermore, we designed a
fusionmodule to fuse the long-range and short-range features extracted by E�cientDet and deformable Transformer, respectively.
Finally, object class is produced by feeding the feature map to the class prediction net and the bounding box predictions are
generated by feeding these fused features to the box prediction net. ­e mean Average Precision (mAP) is 86.6%, which
outperforms the E�cientDet by 5.8%. ­e experiment shows that TransE�Det is more robust than other methods. Additionally,
we have established a public aerial dataset for aircraft detection, which will be released along with this paper.

1. Introduction

Analysis and optimization algorithm based on image data is
a hot issue in recent years. Image processing is not only used
in the civil �eld, but also widely used in the military �eld. In
the military �eld, aerial images and remote sensing images
are used to detect aircraft objects in military bases and
airports in war. It is of great signi�cance to intelligence
deployment and strategic deployment.­rough the acquired
images, the commander can quickly and accurately un-
derstand the number of enemy aircraft on the battle�eld and
the take-o� and landing situation. Location distribution can
provide a strong information security guarantee for the
follow-up operational decision and play an essential role in

winning the war [1].­erefore, aircraft detection in images is
very popular in the �eld of military research. In addition, the
classi�cation of military and civil aircraft is also very im-
portant, which may reduce unarmed civilian casualties.
­ese tasks must be reliable to automate site analysis, es-
pecially to export alerts corresponding to abnormal events.
­erefore, how to accurately detect and classify aircraft in
aerial images has high research value.

Traditional object detection requires manual feature
extraction, and classi�ers are designed and trained for
speci�c detection objects. It is di�cult for this kind of
method to obtain robust solid features and it is very sensitive
to external environmental noise, so it has signi�cant limi-
tations in engineering applications.
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Object detection technology based on convolution
neural networks is developing rapidly with the development
of hardware. +e two-stage method which is represented by
R-CNN [2] and the single-stage method which is repre-
sented by SSD and YOLO [3] are two mainstream frame-
works of object detection techniques based on convolution
neural networks.

In recent years, many scholars have optimized and
improved the internal backbone network, anchor design,
region feature coding, and other submodules based on the
two frameworks, which effectively enhance the performance
of the object detection method. Some researchers have also
proposed an object detection framework based on object key
points [4] and have made remarkable achievements in each
big data set.

However, it still faces many challenges for aircraft de-
tection in aerial images, for example, the poor image quality
due to poor environment, similar shapes of different types of
aircraft, and the vastness of the sky background. +e factors
require more robust technologies and systems that can re-
liably detect and classify aircraft using characteristics. Ar-
tificial intelligence (AI) and Deep Learning (DL) can play an
important role. +e AI system, which is usually based on the
DL, can automatically detect the aircraft, thereby enhancing
military situational awareness [5].

In this paper, a robust aircraft detection method is pro-
posed to solve the aircraft detection problems. +is method is
a hybrid solution based on EfficientDet and Transformer. We
improved and optimized the EfficientDet algorithm by using
Transformer, which models long-range dependency for fea-
ture maps, and then a feature fusion module is proposed to
effectively capture both the long-range and short-range
context generated by the Transformer module and efficient
backbone. In addition, most aircraft detection methods are to
detect targets in remote sensing images. However, it is sig-
nificantly essential to detect aircraft in aerial images.
+erefore, we explore aircraft detection in aerial images in this
paper.

+e novelty can be summarized into the following four
points:

(1) Create a hybrid structure by combining the power of
CNNs with Transformers to extract multiscale and
multidimensional feature representations. In this
way, the long-range dependency of features is
modeled.

(2) Design a feature fusion module which can fuse fea-
tures extracted from different deformable Trans-
former layers, so that the backbone can fuse global
context information and abundant local information
effectively.

(3) Use the deformable attention modules to reduce the
computational complexity. +erefore, our method
can handle higher dimensional feature maps.

(4) Obtain superior performance on the task of aircraft
detection in aerial images. In addition, it is a chal-
lenging and labor-intensive task to label all the
aircraft in an image. To promote the development of

aircraft detection in aerial images, we will release this
dataset along with this paper, which contains five
types of aircraft: armed helicopters, bombers, fighter
jets, early warning aircraft, and passenger aircraft,
with a total of 2558 images.

2. Related Work

2.1. Traditional Machine Learning Method. Traditional
machine learning methods mainly implement object de-
tection through the following steps: constructing a training
data set, region extraction, feature design and extraction,
feature processing, similarity measurement selection, clas-
sifier design, training, and detection.

+e main limitations of traditional machine learning
methods are region extraction, feature extraction, feature
processing, and classifier design.

In the search strategy of candidate region extraction, the
common methods are the sliding window method, such as
[6]. Feature extraction refers to feature fusion and dimen-
sion reduction. +e feature extraction of the object essen-
tially maps the high-dimensional information to low-
dimensional feature space, which becomes the basis of object
detection [7]. +ere are generally two methods for feature
processing: feature fusion [8] and feature dimensionality
reduction [9].

2.2. Artificial Neural Network. +e neural networks do not
need to manually design features and automatically extract
features from samples through a trained network. Using
only a single feature as a feature extractor is inefficient and
cannot meet the needs of rapid detection in aircraft object
detection tasks, and the deviation and asynchrony between
different feature extractors will reduce the effectiveness of
the training process [10]. +erefore, more research focuses
on establishing end-to-end networks. Deep learning re-
search has continued to develop in object detection field.
+ese methods with powerful feature representation capa-
bilities regards object detection as the classification problem
of regions of interest using deep features, uses deep network
architecture to obtain image features from input data au-
tomatically, and classifies images at the output layer. +ese
feature maps extract rich semantic features and have strong
feature representation capabilities.

According to the usage of the data set, the network
structure, and different application scenarios, deep learning
has derived a variety of methods, such as CNN-based image
object detection network, Deep Belief Network (DBN) [11],
etc.

2.3. Optimization of Object Detection Framework. +e
object detection framework generally includes backbone
network, neck connection layer, anchor, region feature
coding, classification and location head, loss function, and
other submodules. In addition, different models have their
unique submodules.+e performance of the object detection
method can be effectively improved using reasonable
optimization.
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Residual structure [12], which is used to increase net-
work depth, can effectively improve accuracy of convolution
networks, but the number of parameters increases expo-
nentially. For this reason, Xie et al. [13] integrated the re-
sidual structure with the Inception structure [14]. +e
Inception structure increases the depth and width of the
network by sharing the width direction parameters. +is
method improves the network accuracy while effectively
controlling the growth of the number of parameters.

Optimization of Anchor Design: Anchors are rectan-
gular boxes with different sizes and proportions generated in
each grid on the feature graph. +e single-stage detection
framework generates the object boundary box directly based
on the anchors, and the two-stage detection framework
obtains the candidate box by fine-tuning the positive
anchors.

Anchor frames with different scales are suitable for
detecting different objects. For this reason, Zhu et al. [15]
proposed an anchor frame design strategy based on step size
reduction. +e high-resolution feature image has a small
receptive field and is used to detect small-scale objects. To
prevent missed detection, the step size generated by the
anchor frame should be reduced to increase the density of
the anchor frame. Xie et al. [16] proposed a dimensionally
decomposable region recommendation network. +is
method decomposes the anchors in the dimension, thus
effectively solving the detection of proportional special
objects.

To optimize the limitations of anchor-based methods in
allocating positive and negative samples and dealing with
multiscale problems, many scholars have proposed a target
detection model without anchors.

Most of these models carry out pixel-level classification
and regression on the different scale feature images to re-
place the anchor box. Tian et al. [17] first calculate the
position of each point on the feature map that maps back to
original images, then distribute the different samples, and
define the center degree to reduce the fractional weight when
predicting the edge position of the instance frame. As a
result, the influence of the low-quality prediction box on the
detection results is suppressed and the detection perfor-
mance of the model is improved.

Optimization of nonmaximum suppression algorithm:
In object detection, nonmaximum suppression means that,
in the forward reasoning stage, the highest-confidence
candidate box is selected as the final result. Besides, the
surrounding candidate boxes whose intersection and union
ratio are greater than the threshold are eliminated. For the
same detected object, this method can eliminate other
nonoptimal candidate results and avoid relocation.

To solve the issues, Bodla et al. [18] proposed an al-
gorithm for soft suppression of SoftNMS. It reduces the
confidence of the first n nonoptimal candidate boxes in-
stead of eliminating them directly. +e confidence of the
candidate box is not strongly related to the intersection and
union ratio, only considering that the classification con-
fidence is one-sided. He et al. [19] improved the soft
suppression algorithm and incorporated the location
confidence into it to indicate the credibility of the

coincidence of the current candidate box and the instance
box. It models the candidate box and the instance box,
respectively, and uses KL divergence to measure the dis-
tance. In addition, Liu et al. [20] designed a subnetwork
containing only the fully connected and convolution layer,
which is used to determine whether the nonoptimal can-
didate box whose intersection and merge ratio is greater
than the threshold predicts the same target as the optimal
candidate box and retains the nonoptimal candidate box
with different detection targets, so as to effectively avoid the
disadvantages of the traditional methods.

Optimization of positive and negative sample sampling
algorithm: +ere are a large number of anchor frames on
large-scale feature maps, and most of the negative sample
anchor boxes provide similar gradient information, so all of
them are used in classification and regression training to
waste computational resources. +erefore, sampling all
anchor boxes is required. Only some of them are selected to
participate in the training.

Since the number of positive anchor boxes is much
smaller than that of negative anchor boxes, it is easy to cause
the imbalance between positive and negative training
samples by sampling randomly in the whole world. +e SSD
model sorts the negative samples according to the confi-
dence error and updates the model for the difficult negative
samples with low confidence.

Different from the SSD model, Shrivastava et al. [21]
select complex negative samples online according to the loss
of input samples. +ey extended the two-stage detection
framework, designed another RoI network to calculate the
loss of input samples, and reduced the order of input loss,
and selected the first n negative samples with the largest loss
for model training. +e advantage of using input loss as a
standard to measure the difficulty of sample learning is that
it can consider both the difficulty of classification and re-
gression. Inspired by the above research, Yu et al. [22]
adopted a similar method to optimize the positive and
negative sample sampling of the single-stage detection
framework. It directly filters simple samples and only
backpropagates the k samples with the largest loss to update
the network parameters. +e difficult negative sample can
also be represented by the intersection and union ratio with
the instance box.

3. Material and Method

+is paper proposes an improved object detection and
classification architecture named TransEffiDet, which is
based on EfficientDet [23] and Transformer [24]. +e deep
neural network is helpful to extract high-level information.
However, gradient vanishing is prone to occur simply by
deepening the number of layers in the network. In other
words, the EfficientDet cannot model the long-range de-
pendence, because of the network architecture. However, the
proposed TransEffiDet has the improved Deformable
Transformer module. With the proposed feature fusion
strategy, the Transformer can better model the long-term
dependence for the generated features, and the performance
of TransEffiDet is improved.
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3.1. Experimental DATA. To promote the development of
aircraft detection in aerial images, we have established a data
set, named Military Aircraft Detection in Aerial Images
(MADAI), containing four types of military aircraft: fighter
jets, armed helicopters, bombers, and early warning aircraft,
as shown in Figure 1. In addition to military aircraft, we have
added passenger aircraft to the dataset, which helps to
distinguish military and civilian aircraft, thereby reducing
civilian casualties.+erefore, there are five types of aircraft in
the MADAI dataset: fighter jets, armed helicopters,
bombers, early warning aircraft, and passenger aircraft.
+ere are a total of 2558 images in this dataset. +e typical
resolutions are 1600×1024, 3500× 2280 pixels. Table 1
shows the number of training and testing images. +e
MADAI contains the images and the ground truth. +e
ground truth, annotated by three experienced experts, in-
dicates the type and location of the aircraft. +e MADAI
dataset can not only be utilized to measure the accuracy of
the aircraft detection algorithm, but also provide ideas for
subsequent object strikes in the military field. +is dataset
and annotations can be obtained from https://github.com/
wangyanfeng231/TransEffiDet.

Moreover, each image in our dataset may contain
multiple types of aircraft rather than just one type, and each
image contains a different number of aircraft objects. +is is
consistent with the actual military use because military
aircraft usually operates jointly, such as early warning air-
craft and fighters, bombers and fighters, as shown in
Figure 2.

3.2. TransEffiDet Architecture. +e architecture of Trans-
EffiDet is shown in Figure 3. +is architecture follows the
paradigm of single-stage objection detection methods.

We employ EfficientDet as the backbone network, which
can efficiently fuse the different layer multiscale feature
maps. BiFPN, which is detailed in Section 3.3, is unitized as
the feature network. We take the 3–7 level features of the
network and repeatedly apply feature fusionmodel BiFPN to
extract the context features. Moreover, to model the long-
term dependence of different layer features, we add a 12x
deformable Transformer between the P5 and P6. +e dia-
gram of Transformer and feature fusion module are shown
in Figure 4. Finally, object class is produced via a class
prediction net, and bounding box predictions are generated
by feeding these fused features to box prediction net. Similar
to [25], in all levels of features, the class prediction net and
the box prediction net shared the same weights.

3.3. BiFPN. BiFPN has made a number of optimizations for
multiscale connections to improve the efficiency. First,
compared with the PANet [26] (Figure 5(a)), the node with
only one input is deleted, because these nodes have little
benefit to the fusion of different level features. Second, in
each layer, an additional edge is added liked ResNet, which
connects the input and output. +is setting can integrate
more features.+ird, the BiFPN is repeated to produce more
high-level features. See reference [23] for details.

We used the fast normalized fusion. Since the network
does not have the Softmax in fast normalized fusion, it is
more efficient.

3.4. Transformer Module. Since the intrinsic locality of
convolutional networks, convolutional neural networks
cannot effectively model the long-range dependency between
pixels.+erefore, deformable Transformer encoder (DeTrans-
encoder) layer is constructed to map long-term dependency
between pixels to effectively extract local as well as global
semantic information. +e deformable Transformer intro-
duces a deformable self-attention mechanism (DMSA) which
can reduce the hardware requirement. DeTrans-encoder layer
consists of an Input-to-Sequence Transformation (IST) layer
and a deformable Transformer layer.

IST layer is necessary to first convert the feature map
generated by the CNN-encoder {P5} into a one-dimensional
sequence, because the Transformer only processes the input
by a sequence form. However, directly converting a 3D
feature map into a 1D sequence will result in the loss of spatial
features. Hence, the sine and cosine functions are used to
obtain a 3D position-encoded sequence, shown as follows:

PE(local,2i) � sin
local

100002i/dmodel
􏼠 􏼡,

PE(local,2i+1) � con
local

100002i/dmodel
􏼠 􏼡,

(1)

where local is the location, and dmodel is the dimension of the
CNN feature map. We obtain the input sequence of
DeTrans-encoder by summing the extracted features with
the position-encoded sequence.

3.4.1. DMSA Layer. +e self-attention mechanism of the
Vanilla Transformer focuses on all possible positions of the
feature map, which causes the network to converge more
difficult. In addition, the computational and spatial com-
plexities of the self-attentive mechanism grow squarely with
the image size, making it difficult to handle high-resolution
features. To address these issues, we use a deformable self-
attentive mechanism that can significantly reduce the
complexity by focusing on only a small number of sampled
locations instead of all locations of the feature map based on
automatically determined reference points [27].

We have an input feature map fi ∈ RC×H×W, let q be a
query element with a feature value zq ∈ RC, and pq is a 2-d
reference coordinate point.+e deformable attention feature
can be calculated as

DeformAttn zp, pq, x􏼐 􏼑 � 􏽘
M

m�1
Wm 􏽘

K

k�1
Amqk · Wm

′ x pq + Δpmqk􏼐 􏼑⎡⎣ ⎤⎦, (2)

where m is the attention heads, k is the sampled keys, and K
represents the total sampled key number, where K≪D ×

H × W thereby not only speeding up the convergence but
also significantly reducing the computational and spatial
complexities. +e Δpmqk ∈ [0, 1] and Amqk (􏽐K

k�1 Amqk � 1)
are the sampling offset and attention weight of the k-th
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sampling point in the m-th attention head, respectively. For
a point pq + Δpmqk that does not fall in integer coordinate
positions, we use bilinear interpolation to obtain the final
result x(pq + Δpmqk). Δpmqk and Amqk are obtained by
performing a linear transformation of zq.

3.4.2. Deformable Transformer Layer. Based on the above
image-sequence transformation and the deformable atten-
tion mechanism, the attentional feature map can be ob-
tained, and the deformable Transformer layer can be

obtained by a feedforward network. Layer normalization
operations are performed after both the attention layer and
the feedforward layer, and skip connections are used in each
layer to prevent the gradient from vanishing.+e deformable
Transformer layer is obtained by cascading multiple de-
formable Transformers.

3.4.3. Feature Fusion Module. Figure 6 shows the detailed
dimension changes for the Transformer, which is designed to
solve the dimensional inconsistency between feature maps of
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Figure 1: +e MADAI dataset we released. MADAI contains four types of military aircraft (fighter jets, armed helicopters, bombers, and
early warning aircraft) and one type of civil aircraft (passenger aircraft).

Table 1: +e detailed numbers of each type of aircraft.

Bomber Passenger aircraft Early warning aircraft Fighter Armed helicopter Total
Training 348 378 318 481 494 2019
Testing 100 97 97 135 110 539
Total 448 475 415 616 604 2558
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the Transformer and CNN backbone. Firstly, the feature map
fi of level 5 (P5) of CNN-encoder is flatten into a 1D sequence.
+en the flattened sequence is sent to the Deformable
Transformer introduced above. +e output of the Transformer
is also the 1D sequence, whereas the CNN backbone receives a
2D feature map as the input. +erefore, we reshape the 1D
sequence to the original dimension of P5. To effectively fuse the
global context generated by different Transformer layers and
local information extracted by EfficientDet backbone, we
designed a feature fusionmodule to capture both the global and
local context. Specifically, assuming that the Transformer
module is composed of Le (Le � 12) layers, we take out N
features uniformly Zn{ }(n ∈ Le/N, 2Le/N, . . . , NLe/N􏼈 􏼉)

with a step length Le/N as the input of the feature fusion
module, andN sets to 2 in this paper. For each feature sequence
outputted by deformable Transformer layer, we first reshape it

into a 2-dimensional featuremapwith the same size of P5. And
then, the convolutional operation is employed to each 2-di-
mensional feature map, and the output channel of this con-
volution is halved. In order to combine the global context
information modeled by Transformer and the rich semantic
information extracted by EfficientDet backbone, we concate-
nate all the feature maps with halved channels and the input
feature map P5 to obtain a feature map fo. Finally, the feature
map fo is fed to a convolutional layer and the same channel to
perform adaptive feature calibration to obtain the final fusion
feature ff.

In this paper, the output of the sixth and twelfth
Transformer layers and fi are used to produce the input of
the layer {P6}, which can better obtain the characteristics of
different layers and keep the balance between the calculation
and the efficiency. Specifically, these two resized feature

(a) (b)

Figure 2: Joint operations of different types of military aircraft. (a) Joint military operations of early warning aircraft and fighter jets. (b)
Joint military operations of bombers and fighter jets.
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maps are concatenated to produce fo. Finally, the feature ff

is obtained by a convolution function.

3.5. Implementation Details

3.5.1. Data Augmentation. We used data augmentation
method to realize different feature learning by adding dif-
ferent feature variables to the image. To expand the training
set while preserving the basic features, data augmentation is
carefully applied to get some new images. Various random
changes were included, including movement, rotation,
zooming, and horizontal/vertical flip.

3.5.2. Pretrained Weights. In EfficientDet, the networks are
pretrained using the ImageNet. Following this tradition, all
models of TransEffiDet are pretrained on ImageNet. +en it
is fine-tuned on our datasets. Since the high-order features
are learned on the ImageNet, which is different from the

MADAI dataset, we retrained some convolution blocks to
fine-tune the weight of the classification task.

3.5.3. Other Details. +e images are resized to 768× 768 pixels
to reduce memory requirements during training. +e Trans-
EffiDet architecture is implemented using PyTorch. We used
SGD optimizer with 0.9 momentum. +e validation set is 25%
of the training data. To facilitate a fair comparison, the metrics
provided in this paper correspond to the best performance in
the validation and training dataset, so the performance of the
proposed method is not, in any way, optimized for the test
datasets. +e source code is publicly available at https://github.
com/wangyanfeng231/TransEffiDet.

4. Results and Discussion

4.1. ExperimentalResults. In this section, the performance of
TransEffiDet is evaluated on our dataset. Both EfficientDet
and the proposed TransEffiDet have been retrained using the
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Figure 5: PANet and BiFPN architectures. (a) +e PANet. (b) +e BiFPN used in TransEffiDet.
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MADAI dataset. Detection performance measures are
shown in Table 2. Compared with EfficientDet, the Average
Precisions (AP) of Bomber, Fighter, and Armed Helicopter
are improved by 17.7%, 8.4%, and 2.5%, respectively. In
total, the mean Average Precision (mAP) is improved by
about 5.8%. From the quantitative results, we can see that the
performance of TransEffiDet is better than EfficientDet.

+e aircraft detection results of TransEffiDet and
EfficientDet are illustrated, as shown in Figure 7. Each type
of aircraft is marked with different color boxes, and the
numbers next to the boxes represent confidence. We can
see that most of the aircraft are accurately detected, es-
pecially the early warning aircraft. +is shows the advan-
tage of this method; that is, it can detect aircraft accurately.

Compared with EfficientDet, TransEffiDet can achieve
more accurate detection and the detected box can achieve
better precision (red arrows in Figure 7). +e detection box
produced by EfficientDet is larger or smaller than the real
object, which leads to lower accuracy. Moreover, the
method EfficientDet will produce some false positives of
aircraft. +is is mainly because some types of aircraft are
similar such as bomber and fighter, early warning aircraft,
and passenger aircraft, and so on. +erefore, it is hard for
the network to detect these similar objects. However, the
proposed TransEffiDet can handle this problem well, be-
cause the Transformer can provide the long-term rela-
tionship and further make the network focus on the
aircraft’s features.

Table 2: +e performance measures for the EfficientDet and TransEffiDet.

AP
mAP

Bomber Early warning aircraft Fighter Armed helicopter Passenger aircraft
TransEffiDet 55.4 98.9 84.9 98.2 95.3 86.6
EfficientDet 37.7 98.8 76.5 95.7 95.2 80.8

TransEffiDet EfficientDet TransEffiDet EfficientDet

Fighter 0.78

Fighter 0.58
Fighter 0.65

Fighter 0.49

Fighter 0.62

Fighter 0.69

Fighter 0.65 Fighter 0.51

mili_helicopter 0.94
mili_helicopter 0.92

mili_helicopter 0.97 mili_helicopter 0.95

bomber 0.46 bomber 0.39

bomber 0.74 bomber 0.69

early_warning_aircra� 0.89
early_warning_aircra� 0.80 early_warning_aircra� 0.94

early_warning_aircra� 0.95 early_warning_aircra� 0.85

early_warning_aircra� 0.92

early_warning_aircra� 0.33
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Figure 7: Examples of aircraft detection results in the MADAI dataset.
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4.2. Ablation Study. +e ablation study is conducted on all
test datasets to illustrate the effectiveness of the feature
fusion module, as shown in Table 3. We explore the fusion
i.e., concatenation (Cat), add (Add), of the input and
Transformer outputs of different layers (Z4, Z6, Z8, Z12) to
obtain the optimal fusion feature representation. All outputs
Zl of the Transformer are fed into a convolution layer
(kernel size 3 × 3) with (∗ /half) and without the feature
channels halved operation. ∗ represents the input and the
outputs of different Transformer layers.

We investigated the contribution of the outputs of
different Transformer layers and the input. From the results
of Models 1, 2, and 8 in Table 3, we can see a clear trend that
the more the feature maps are added, the better the per-
formance is. Compared with Model 1, Model 2 significantly
improves the performance by adding a feature map of the
Transformer middle layer. +e further improved perfor-
mance was obtained by Model 4 by introducing the input
into the final fusion feature.

Furthermore, to explore the influence of the feature fusion
way, Models 3, 4, and 5 were built. We can see that the
concatenation fusion way can obtain relatively good detection
results. +is is because simple addition cannot integrate dif-
ferent feature maps well. Finally, we built Models 6 and 7 to
further demonstrate the effectiveness of the proposed feature
fusion module. Combining the long-term modeling capabil-
ities of the Transformer and the abundant local information of
the feature maps results in the good performance of Model 8.

5. Conclusion

+is paper proposes an aircraft object detection method
named TransEffiDet in aerial images based on EfficientDet
and Transformer methods. We improved the EfficientDet
object detection algorithm by combining it with the
Transformer which models the long-term correlation of the
features. +e mAP of the proposed TransEffiDet in aerial
images can reach 86.6%, which outperforms the EfficientDet
by 5.8%.+e experimental results show that TransEffiDet has
good robustness and is more suitable for aircraft detection
and classification tasks in military field than the compared
methods. Additionally, we have established a public aerial
dataset for aircraft detection and classification, which will be
released along with this paper. In the future, we will explore
the application of this method to target detection in military
field, which may require faster detection speed.

In this study, our proposedmethod is employed to detect
aircrafts, but so far it is not easy for this method to accurately
detect fighter jets, bombers, and passenger aircraft. A pos-
sible explanation is that the shape features of these aircrafts
are not very obvious, so the feature extraction network
cannot effectively extract these features for classification. In
our future work, we try to use swim-transformer to extract
rich global and local features to improve detection accuracy.
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