Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 2267237, 13 pages
https://doi.org/10.1155/2022/2267237

Research Article

@ Hindawi

Effect of Industrial Robots on Employment in China: An Industry

Level Analysis

,12 Rusmawati Said ©,! Normaz Wana Ismail ©,!
1

Yantong Zhao
and Hanny Zurina Hamzah

ISchool of Business and Economics, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2College of Confucian Business, Jining University, Qufu 273155, Shandong, China

Correspondence should be addressed to Yantong Zhao; gs60065@student.upm.edu.my and Rusmawati Said;
rusmawati@upm.edu.my

Received 6 April 2022; Revised 20 June 2022; Accepted 24 June 2022; Published 18 July 2022
Academic Editor: Huihua Chen

Copyright © 2022 Yantong Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

China has been the world’s largest market for industrial robots since 2013. Industrial robots improve accuracy, safety, and
efficiency in industrial production but have a substantial impact on the labor market. This investigation uses the task-based model
to explore the relationship between industrial robots and employment across industries. This study uses industrial robot data from
the International Federation of Robotics and employment data from the China Statistical Yearbook from 2010 to 2019 to examine
robot applications’ influencing mechanisms on labor demand in different industries in China. The results show a significant
positive correlation between robots’ exposure and labor demand for IT, health and social services, science research and technical
services, and management of water conservancy and environmental industries. Based on the results, the use of robots promotes
high-skilled talent employment and some third-sector employment, like education, food and beverages, utilities, household
appliances, and transport. However, multiple regression analysis reveals that the use of robots has reduced employment in

traditional industries such as agriculture and mining.

1. Introduction

The issue of the potential impact of robots on the labor market
has received considerable attention. The popularity of arti-
ficial intelligence and new robot designs has significantly
influenced both the economy and society. At the beginning of
the 20th century, the famous economist, John Maynard
Keynes, predicted that humankind would have a new em-
ployment challenge, that is, “technological unemployment”
[1]. Rapid progress in the fields of artificial intelligence and
robotics has begun to solve major problems in terms of
productivity and the acceleration of the replacement of labor
by robots. This introduces tremendous challenges having to
do with the human workforce [2]. According to application,
robots can be classified as repetitive-tasks robots, medical
robots, guarding robots, domestic-purpose robots, astro-
nomical robots, entertainment robots, mining robots, defense
and military robots, agriculture robots, and remote-areas
robots [3]. A recent study by the McKinsey Global Institute

(MGI) pointed out that robots will replace 400 to 800 million
people in the world by 2030. In the rapid development of
automation, up to 31% of working hours in China will be
automated [4]. To what extent will robots replace human
workers in the future? Is the rapid development of artificial
intelligence and robotics responsible for introducing positive
opportunities or challenges? This set of questions has become
a global issue that cannot be ignored.

Since 2015, artificial intelligence has seen explosive
growth in China, attracting significant attention from all
social sectors. In September 2017, the government released a
document entitled, “New Generation Artificial Intelligence
Development Plan.” This plan urges China to seize the global
command of artificial intelligence by the year 2030 and in-
cubate 10 trillion Yuan in industrial output. As an essential
component of artificial intelligence, robot applications have
become a critical fulcrum for transforming China from
manufacturing to higher-quality economic development.
More robots are utilized from the IFR (IFR, 2019) data than
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ever before. The operational stock of robots measures the
number of robots currently deployed. The working stock of
robots in the world rose from 1.02 million in 2009 to 2.73
million units in 2019 with a steady upward trend. China,
Japan, the United States, South Korea, and Germany con-
stitute the five major industrial robot markets. They account
for about 70% of the global import and export in trade in
robots and their installation. The data from the past ten years
show that robot operations in China are in a state of con-
tinuous growth. At the same time, the United States, Ger-
many, Japan, and South Korea have experienced zero or even
negative growth in the rate of robot ownership in the past ten
years. China has been the world’s largest market for industrial
robots since 2013. The number of robot installation was about
550 units in 1990. After ten years of slow augmentation, robot
installations increased from 5525 units in 2009 to 156,000
units in 2017. In 2017 and 2018, China’s total industrial robot
installations accounted for 38% of the global total. In 2019, a
total of 140,000 units were installed which is 9% less than that
in 2018 but still higher than the total robots installed in
Europe and the United States. With the acceleration of ar-
tificial intelligence development, robots have had a greater
impact on labor force employment. Against this backdrop, it
is necessary to systematically study the technical progress of
robots and their effect on the labor market from the per-
spective of economic method and theory.

Both the government and private enterprise in China
have expended a tremendous amount of money to promote
and support technological innovation in terms of artificial
intelligence and robots’ development. The rise of human-
machine collaborations has affected all areas of the modern
world, from work to everyday life and beyond. However, it is
difficult to answer the question of whether robots are re-
sponsible for creating or eliminating employment oppor-
tunities. More than 100,000 new industrial robots were
installed in the United States industry (IFR, 2019), mainly in
the automotive industry where the employment increased by
230,000 jobs from 2010 to 2015 [5]. Although, certain oc-
cupations may disappear in local communities, the total
number of jobs may increase globally. In addition to
changing the jobs quantity, the nature and characteristics of
employment and labour are likely to change fundamentally.
As one of the largest developing countries with a transitional
economy, the rapid popularization of robotic technology
will undoubtedly have a profound dual effect on human
resource management in the market. Previous studies about
the impact of robots on the labor market, however, are
inconsistent. Most studies of these studies have only been
conducted in developed countries [6-9]. Although a few
studies have investigated the development of robotics and
artificial intelligence and the corresponding economic im-
pact on China [10-12], most studies have focused on the
theoretical dimension or country, provincial, and firm levels
[13-15]. A wide gap also exists between China’s robotic
development and its impact. Systematic empirical studies are
lacking on the relationship between industrial robots and
China’s employment in different industries and skills. This
investigation aims to explore the relationship between in-
dustrial robots and employment across industries. This study
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uses the International Federation of Robotics (IFR)’s in-
dustrial robot data and employment data from the China
Statistical Yearbook to construct a penetration index for
industrial robots in China. Thus, we examine the influence of
robot deployment on labor demand in China. We also
analyze the potential impact of robots on economic out-
comes, which may provide the Chinese government with
guidance for economic growth and employment in the
future.

The paper organization is as follows: the next section
reviews the existing theoretical and empirical literature on
industrial robots’ impact on economic and labor markets.
Section 3 describes research methods, with a particular focus
on the theoretical framework, data description, and the
empirical model. The last section represents a summary of
the research.

2. Literature Review

With the rapid development of artificial intelligence tech-
nology, a new era of technological revolution and industrial
transformation is gradually taking shape. It is an era in
which robots are changing manufacturing processes and life
patterns [16]. The rapid development of the international
robot market has become an important phenomenon that
cannot be ignored in terms of its consequences for economic
life. This section reviews the existing theoretical and em-
pirical literature on the impact of industrial robots on the
economy and labor market.

Some scholars believe that technological innovation
leads to social progress and reduces the importance of
human resources in the production sector, which increases
the unemployment rate [2, 17, 18]. In examining this
proposition, Susskind developed a task-based model. He
argues that using intelligent machines can reduce relative
wages and the income share of the labor force, while leading
to a high unemployment rate [17]. Frey and Osborne de-
veloped a model based on the Gaussian process to classify
more than 700 detailed occupations in the United States
according to their susceptibility to automation based on data
from the United States Department of Labor’s Occupational
Classification Database. The results of this line of investi-
gation show that about half of jobs in the United States will
be challenged by automation in the next decades [2].
Acemoglu and Restrepo [18] examine the competition be-
tween human labor and robots in terms of different pro-
duction tasks. They conclude that the use of robots will
reduce employment and lower the laborers’ salaries. Their
analysis is based on the usage of industrial machines, em-
ployment, and wage changes to return in the United States
(IFR). According to the results of each additional robot in
every thousand workers, the employed population ratio
decreases by 0.18%~0.34%, and the wage decreases by
0.25%~0.5%. This negative effect Indicates that the appli-
cation of robots has a significant negative impact on the
employment and wage in the commuting field [18].

Many scholars also support the view that innovation
positively affects employment [19-21]. Bloom et al. estimate
that, due to the extensive integration of artificial intelligence
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technology into daily life, between 2010 and 2030, the world
will develop 734 million new jobs [19]. Acemoglu and
Restrepo [20] argue that, from the standpoint of the de-
velopment history of science and technology, in the long
run, technological progress will lead to the development of
new employment opportunities. In this respect, the com-
pensation effect produced by new jobs can offset the sub-
stitution effect caused by automation [20]. Similarly,
Gregory et al. [21] examined data from 27 European
countries from 1999 to 2010. They found that conventional
forms of technological change led capital to replace labor in
the production process, reducing employment by about 9.6
million jobs. In comparison, the spillover effect on product
demand brought about by technological progress led to an
increase of nearly 21 million jobs. On the whole, techno-
logical progress has had a net positive impact on employ-
ment in the European labor force [21].

A series of empirical studies have shown that unskilled
labor and capital are substitutes, while skilled labor and
capital are complementary [22-25]. For example, when
machine prices fall, firms reduce the use of unskilled labor.
In contrast, when the prices of machinery fall, manufac-
turers increase the use of equipment, and the demand for
skilled labor increases because equipment operation requires
skilled labor. According to the study, a 10% decrease in
equipment prices leads to a 5% decrease in the use of un-
skilled labor and a 5% increase in the use of skilled labor [26].
This finding is widely known as the capital-skill comple-
mentary hypothesis, which has several important policy
implications. For example, the hypothesis suggests that
technological advances, such as the rapid drop in the cost of
computing in recent decades, may significantly influence
income inequality. This effect exists because technological
progress causes an increase in demand for skilled labor and a
decrease in demand for unskilled labor.

The impact of technological progress on the employment
of laborers with different skills shows that highly skilled
laborers can quickly master and adapt to new technologies;
and, in this sense, skilled labor has a complementary rela-
tionship with new technologies. However, unskilled labor is
limited by its level of human capital since unskilled laborer
are unable to master new technologies quickly. For this
reason, its risks are replaced by new technologies. As with
the progress of traditional technology, artificial intelligence
will increase the demand for and employment opportunities
for skilled labor. This will create a substitution effect for
unskilled labor [27-29]. In this respect, Acemoglu and
Restrepo [20] point out that artificial intelligence and robot
learning have enabled robots to make breakthroughs in
analysis, problem-solving, and the performance of complex
and unconventional tasks. It is also possible that robots can
do the work of highly skilled workers instantly. By con-
structing a theoretical model, they found that the skilled
labor force replaced by a high-skilled labor force might
compete with low-skilled workers and be competent for
other jobs. The employment creation effect of artificial in-
telligence on the labor force is thus concentrated in high-
and low-skill positions, and the substitution effect is cen-
tered on medium-skill positions. This labor force has

comparative advantages in terms of communication, service,
innovation, and research and development (R&D) [20].
Artificial intelligence is complementary to the labor force in
these sectors and can, in fact, create jobs.

The substitution and creation effects on labor caused by
intelligent robots produce changes in labor supply and
demand, and they can ultimately lead to changes in wage
equilibrium. Previous studies have also explored the impact
of robots on labor compensation from various perspectives.
Some researchers conclude that intelligent robots can
quickly replace workers in certain jobs and thereby reduce
wages. The two-phase overlapping generations model pro-
posed by Benzell et al. illustrates the idea that the operation
of intelligent robots will cause labor’s share of national
income to decrease in the long run [30]. Similarly, DeCanio
[31] uses the Houthakker model [32] to briefly evaluate the
influence of intelligent robots on labor compensation in the
United States [31]. Cabrales et al. demonstrated that the
threat of robot replacement does not affect the efforts of
workers [33]. According to DeCanio’s results, if the job
substitution elasticity of humans and robots exceeds 1.9,
then the expansion of robots will induce salary reductions.

Several studies have examined the impact of robot
adoption on the labor market in China [12-15]. Fan et al.
examined the impact of rising labor costs on the adoption of
industrial robots by Chinese companies. A 10% increase in
the minimum wage between 2008 and 2012 increased the
probability of a company adopting a robot by 0.11% points.
Higher minimum wages have a significant impact on the
adoption of robots for firms that are more productive, lo-
cated in coastal areas, private, and skilled labor-intensive
[13]. Tang et al. found that the adoption of robots and highly
skilled workers are complementary. After adopting robots,
companies hire more highly skilled and educated workers.
Therefore, the adoption of robots has resulted in an em-
ployment skill bias among Chinese enterprises [12]. Du and
Lin systematically investigated the impact of adopting in-
dustrial robots on total factor productivity in different re-
gions according to the panel data of Chinese provinces from
2006 to 2019. The results showed a U-shaped relationship
between the adoption of industrial robots and total factor
productivity [14]. Fu et al. studied the labor markets of 74
economies using international panel datasets from 2004 to
2016. The study found that the adoption of industrial robots
is associated with a significant increase in labor productivity
and total employment in developed economies, whereas the
impact is not significant in developing countries, where
increased robot adoption is associated with a significant
decline in the labor share of GDP. In both developed and
developing countries, increased robot adoption is associated
with a substantial increase in income inequality [15].

3. Research Methods

3.1. Theoretical Framework. For investigating the effect of
industrial robots on employment, our research uses the task-
based model with automation technology [7]. Firstly, we
introduce the basic model, and then, in the second part, we
replace the automated capital with robots to analyze the



impact of robots on the labor market. In this way, we obtain
the labor quantity under equilibrium conditions.

(I). Basic model: task-based model with automation
technology

Assume that the economy produces only one good Y,
accomplished by a series of tasks y (i), and the pro-
duction function is as follows:

vo J_N o 1o . o/o-1
= y ()" di , (1)
N-1

where o is elasticity of substitution. An increase in N
implies that a new complex task appears. An increase in
N —1 also means that the old task disappears.

Labor can produce any task. Capital is unable to
produce complex new tasks. Assume that
I € [N -1, N], when tasks i < I, it is feasible to produce
with capital. If i > I, tasks I must be produced by labor.
When i <I, the production function of task i is as
follows:

y (i) = k(@) +y (@) - 1(D), (2)

where y (i) is labor productivity, I (i) is labor, and k (i) is
capital.

When i>1, the production function of task i is as
follows:

y (@) =y () - 1(D). (3)

The cost of each task is as follows:

. w .
min{r,——¢, i <1,
{ V(l)}

p(@) = (4)

w
7_,1>I.

y (i)

Where r is capital rent and W is wage. From equations
(2)-(4), we can get the following equation:

y@) =Y -p@) 7,

[ ! W]_U ‘
Y . | minr,— , i<,
y() (5)
y(i) =
Y Wl i>1
m 5 1>1.

We use robots only when the cost of using the robot is
less than that of labor. There exists a unique T such that
r = W/y (). For task T, the production cost is equal for
labor and capital. Let I* = min{I,T}. All tasks are
produced with capital if i<I*, while all tasks are
produced with labor if i > I'*.

So, the demand for capital and labor is as follows:

Computational Intelligence and Neuroscience

Yr % i<I’,
k(i) = and

0, i>I",

0, i<I®, (6)

1(i) = w\°
Y(m) 5 i>1.

When the capital and labor market clear, the following
equations hold:

(I"-N+1)Y.-r =K,

N/ W s s
Y.J‘I* (m) dI—L, (7)

* 1-0 N W e .
(I —N+1)p +J’I*(m) di =1

(II). Task-based model for robots and employment

Suppose that there are C regions in the economy, and
each region has I industries. The output of each region is Y,
and the output of each industry in the region is Y, ¢ € C.
Consumption of the region is X, and the consumption of
the region for each industry is X ;. Suppose that there is no
trade, then we get the following equation:

YC = Xc,
Yci = Xci’
olo—-1 (8)
YC — <Z Vil/U'Ygi_l/J> ,
iel

where v; is the share of industry i, o is substitution elasticity,
and Y,;v; =1, the price is pX for industry i’s output.
Output is produced by combining capital K with continuous
tasks s € [0, 1]. A task can be produced by robots or labor.
x.; (s) shows the quantity of task s.

Xei = Aa[sfel%grll]{xa (S)}] Kg“ 9)

According to the basic model in I, there is a boundary 6,
when tasks s<6,. Tasks can be performed using labor or
robots while they must be performed using labor if tasks
s> 0,
s<0,

Ci —

{ Y - Mci(s) +y, L (5), (10)

i+ Lei (), s>0,

where y,,;and y; are productivity of robot and labor, re-
spectively. M, (s) and Ly;(s) are numbers of robots and
labors in task s, respectively.

Robots are ]i)roduced using investment I- with
Mc=D-(1+ 11)IC/1+’7. So Yo=Cq+1.. Cg is the con-
sumption of household. Let L, is the labor supply and W, is
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wage. The rental price of robot is R¥ and nonrobot capital is
fixed at K with price RE.

We use robot only when its cost is less than that of using
labor (i.e, RM/V, <Wcly,). Let mo =1 - R¥ /[y /Wcly;.
We use robot when 7 > 0. Now, we look at the impact of
robots on employment. We get the following equations:

Me=D- (1+75)- 12",
Ic=D "1 (L+ng) 7. ME, (11)
Co=Ye-Ic=Ye-D "1 (14n) 71 MS™,

In region c, the following equations define the first-order
condition for the representative household:

W¢ = BCY - Lg,
=B-[Yo-D " (L) M) L. (12
For robots, we obtain the following equation:
m_ Al
¢ dMm;
M (13)

RY=D """ . (1+n) " (147 MET,

RY =D """ (1+n) " ML

Price of industry i is marginal cost, so we get the fol-
lowing equation:

1 RM wel" I-a
ph=7—[6-S+(1-6)—<| -(R)) . (19
Aci Ym YL
The share of labor in tasks is as follows:
SL WCLCt
Ci X
opciXci

(15)
_ (1-6)(Wely)
Hi(Ré/I/YM) +(1-6,)(Wlyp)
aSE, is the share of labor in the value added of industry i.
1 — « of total cost are paid to capital.

Z"i(Pé(i)lig =1 (16)

iel

From (15), we get the wage in the region c: W, - L; =
aS¢; - P& - Xei
L X/1-
Wele = Z aScvibei Yo (17)

iel

Similarly, the demand for robot and capital can be
represented as follows:

M L X 1-
Re M = Z“(l - SCi)Vi pei Yo

iel (18)

Because the added-value of industry i is v; - p&,'™7 - Y

and labor share is Séioc, using (14) and (15) we get the
following equation:

5
. 1-
Yvip) =1 (19)
i€l
Then,
1-a)(1- :
L =(1- 61‘)<“( a) ( - “/“)Vz>pé(ilfu%1/a)ylc/al<éfl/a.
VLAG
(20)
Taking the log form as follows:
a(l—a) ™y, 1 x
lnLCi = ln(l - 91) + IHT}ML—(U‘F;— 1>lani
1 a—1
—InY.+—InK_..
+- InYe+——InKc
(21)

Differentiating both sides, we obtain the following
equation:

dinLg = —%ﬁd@i +édlnYC —(o+i— 1)d1n pf

(22)

There are three different forces of robots that affect labor
demand, as shown in (22). The first part is the displacement
effect. When 6, increases, it means that more robots are
involved in replacing labor and this effect always reduces the
labor force. The second part is a positive productivity effect.
Automation reduces costs and increases productivity and
labor demand among industries. Finally, workers can be
transferred from the automated tasks to the nonautomated
tasks, and thus they can specialize in the performance of new
tasks.

3.2. Data Description

3.2.1. Exposure to Robots. Robotics data for industries
comes from the IFR (IFR, 2019). The IFR compiled annual
robot use data for 50 countries from 1993 to 2019. The use
of the IFR data for studying changes in employment
and robot adoption has been widely reported in the lit-
erature. Using the robot data, Acemoglu and Restrepo [7],
Graetz and Michaels [6], Dauth et al. [9], Carbonero et al.
[34], and Chiacchio et al. [8] have explored the impact of
robot adoption on employment in the United States,
Germany, and different EU countries [7-9, 34]. We use
data from the period between 2010 and 2019 since robots
in China have been growing rapidly since the early 2000s.
Table 1 lists 13 industries for which we collected robot
data. Similar to Du and Lin [14], we compare these in-
dustries with those in the Chinese national standard (GB/
T 4754-2017). In this industry classification standard,
there are 13 industries, as shown in column 3 of Table 1.
The first column of Table 1 represents the industries with
robot data. The second column is the industry label, such
as information technology (IT) and scientific research and
technical (R&T) services. More robots are utilizing the
IFR (IFR, 2019) data than ever. The number of robots
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TaBLE 1: List of all industries based on the China National Standard (GB/T 4754-2017).

Included in robotics data Label Code description

v Agriculture Agriculture, forestry, animal husbandry and fishery
v/ Mining Mining

v Manufacturing Manufacturing

+/ Utilities Production and supply of electricity, heat, gas and water
v Construction Construction

i Transport Transport, storage and post

v IT Information transmission, software and information technology
v Food and beverages Hotels and catering services

v Science R&T Scientific research and technical services

v Chemical Management of water conservancy, environment

v Household appliances Services to households, repair and other services

v Education Education

v Pharmaceuticals Health and social service

Notes. Table 1 lists 13 industries for which we collected robot data from IFR. We compared these with the industries in the Chinese national standard (GB/T
4754-2017) as shown in column 3 of Table 1. The first column of Table 1 represents the industries with robot data. The second column is the industry label,
such as information technology (IT) and scientific research and technical (R&T) services.

currently utilized was measured by the operational stock
of robots.

China’s use of industrial robots began in the early 1970s
but developed slowly thanks to abundant labor resources
and backward technology. The popularity of robots began to
increase in the mid-1980s during the period of reform and
opening up. Robots were listed as the key national scientific
research program in the seventh five-year plan. When the
National High Technology Research and Development
Program (“863” Program) of China was launched, the theme
of intelligent robots was created, and robotics was listed as a
crucial field in the “Made in China 2025” document.

From the robot operation data for the most recent ten
years, it is evident that the robot operations in China have
been in a state of continuous growth. At the same time, the
United States, Germany, Japan, and South Korea have ex-
perienced zero growth or even negative change in the rate of
robot ownership in the past ten years. Since 2013, China has
been the world’s largest industrial robot market. Figure 1
shows robot installations in China between 1999 and 2019
measured as the number of units. The number of robot
installations was about 550 units in 1990. After ten years of
slow growth, robot installations increased from 5525 units in
2009 to 156,000 in 2017. In 2017 and 2018, China’s industrial
robot installations accounted for 38% of the world’s total. In
2019, a total of 140,000 units were installed, which is 9% less
than that in 2018 but still greater than the total number of
robots installed in Europe and the United States.

3.2.2. Labor Market Data. The China Statistical Yearbook
compiled by the National Bureau of Statistics of China
covers the employment numbers for each industry from
2010 to 2019. Figure 2 displays the industrial data to identify
the trend of the change in the number of people employed
from 2010 to 2019.

We divide industries into four categories based on
sectors and employment trends. The first group (A) is the
industries where employment has tended to rise, including
IT, pharmaceuticals, science R&T, and chemicals. The

second group (B) includes agriculture and mining. Their
employment has followed a downward trend for the last ten
years. The third group (C) is the rest of the tertiary sector,
including education, food and beverages, utilities, household
appliances, and transportation. In these industries, em-
ployment has remained unchanged over the decade of the
study period. The fourth group (D) is the industries in the
secondary sector, including construction and manufactur-
ing, with a growing trend of employment until 2013 but
decline since 2014. The first is the industries where em-
ployment is rising, including IT, pharmaceuticals, science
R&T, and chemicals. Based on Table 2, these four industries
require a relatively high level of education and about 70% of
employees have a college degree or above. For example, the
proportion of college, university, and graduate and higher
level attainment of urban employed persons in the IT in-
dustry in 2019 was 27.5, 39.4, and 4.7, respectively.

3.2.3. Control Variables. Different theories exist in the lit-
erature regarding the effect of technological progress on
employment, among them classical theory, Marxist theory,
neoclassical theory, new growth theory, Schumpeter’s in-
novation theory, and business cycle theory. Up to now,
several studies have revealed a correlation between tech-
nological progress and employment [19-21, 35-38].
Brouwer et al. [35] conducted two innovative studies in the
Netherlands to estimate the effects of technological progress
on employment. They found a positive effect caused by
product-related R&D activities but an adverse effect in re-
lation to overall R&D investments [35]. Greenan and
Guellec [39] used market research in France from 1991 to
analyze employment growth from 1986 to 1990. They found
positive effects for both process and product innovation,
with more muted effects for process innovations [39]. Bloom
et al. estimated that, thanks to progress in artificial intelli-
gence, more than 700 million new jobs will be created be-
tween 2010 and 2030 globally [19]. Acemoglu and Restrepo
believe that, from the perspective of the history of science
and technology, while rendering certain jobs obsolete,
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FIGURE 2: Employed persons by industry from 2000 to 2019. Notes: The results were graphed using Stata 15. This figure displays the

industrial data to identify the trend of the change in the number of people employed from 2010 to 2019.

technological innovation will create many more new jobs in
the long-run. The compensation effect produced by the new
positions can offset the substitution effect [20]. Gregory et al.
studied data from 27 European countries during the period
from 1999 to 2010. They found that conventional substi-
tution resulting from technological change led capital to

replace labor in production, thereby eliminating about 9.6
million jobs. In comparison, the spillover effect from
product demand brought about by technological progress
led to an increase of nearly 21 million jobs. On the whole,
technological progress has had a positive impact on em-
ployment levels for the European labor force [21].
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TaBLE 2: Educational attainment of urban employed persons by industry in 2019.
. Senior Medium . .
Industries Total Junior secondary secondary vocational High Vocgtlonal College University Gr.aduate and
school and below . education higher level
school education
Agriculture 100 89.4 6.6 1.5 0.2 1.5 0.7 0.0
Mining 100 36.4 21.7 12.0 2.6 16.2 10.5 0.7
Manufacturing 100 474 18.4 9.4 1.7 133 9.0 0.8
Utilities 100 20.4 18.3 10.8 2.5 24.4 21.6 21
Construction 100 61.9 14.7 4.6 0.9 10.0 7.4 0.4
Transport 100 46.3 21.2 8.4 1.9 13.5 8.3 0.3
IT 100 8.8 10.7 6.7 2.0 27.5 394 4.7
Science R&T 100 9.9 10.2 5.2 2.1 23.0 38.9 10.7
Chemical 100 44.6 14.5 6.5 1.7 16.2 15.1 1.3
Households 100 53.6 19.7 7.8 1.8 10.8 6.0 0.2
Education 100 8.8 6.6 5.8 1.9 23.7 45.0 8.3
Pharmaceuticals 100 10.9 8.0 10.6 2.3 30.2 33.4 4.5
Source. China Population Statistics Yearbook (2019).
TaBLE 3: Descriptive statistics.
Group Variables Min Max Mean Std. dev Observations
InL 2.28 3.30 2.80 0.30 N=40 n=4 T=10
Group A InRobot -1.54 2.60 0.70 0.87 N=40 n=4 T=10
b InFDI 3.81 6.32 5.07 0.71 N=40 n=4 T=10
InRD 4.91 7.18 5.77 0.72 N=40 n=4 T=10
InL 213 2.80 2.57 0.18 N=20 n=2 T=10
Group B InRobot -1.79 0.48 -0.94 0.69 N=20 n=2 T=10
P InFDI 3.98 5.34 4.96 0.36 =20 n=2 T=10
InRD 3.90 6.32 518 0.99 N=20 n=2 T=10
InL 1.78 3.28 2.59 0.47 N=50 n=>5 T=10
Group C InRobot -1.51 2.19 0.58 1.09 N=50 n=>5 T=10
P InFDI 2.60 5.75 4.85 0.78 N=50 n=>5 T=10
InRD 2.92 4.88 4.11 0.60 N=50 n=>5 T=10
InL 3.10 3.72 3.51 0.17 N=20 n=2 T=10
Group D InRobot -1.89 2.25 0.31 1.44 N=20 n=2 T=10
P InFDI 4.96 6.72 5.89 0.76 N=20 n=2 T=10
InRD 4.17 7.21 5.37 1.17 N=20 n=2 T=10

Expenditure on R&D, contractual value deals in do-
mestic technical markets (CVD), foreign direct investment
(FDI), imports of capital goods, technology purchases,
patent citations, and the index of industrial robots are some
of the most commonly used indicators of technological
change. Interestingly, all of these indicators catch different
dimensions of technology. This study uses expenditure on
R&D activities and FDI to model technological progress. The
amounts of FDI and R&D for each industry were obtained
from 2010 to 2019 from the China Statistical Yearbook.

Since the new millennium, China’s R&D expenditure has
increased at an average annual rate of about 20%. R&D
expenditure has expanded from 89.6 to 2443 billion Yuan in
2000 and 2020, respectively, accounting for 0.89% to 2.40%
of GDP. Especially eight years ago, China became the world’s
second-largest consumer, which is a major phenomenon in
terms of its global economic status and deserves attention.
From 2000 to 2016, China’s contribution to the worldwide

R&D economic expansion was 27.4%, close to the 29.5%
growth of the United States.

3.3. The Empirical Model. According to our discussion in the
theoretical framework, there are three forces about the
power of robots affecting employment, including displace-
ment, productivity, and composition effects [7]. To explore
the total impact of robots on employment in different in-
dustries, we can posit the following formula:

InL; = ay + a; In RobotExposure;, + xiLt + & (23)
where L;, is the level of employment; robot exposure refers to
the penetration of industrial robots in industry i in year f,
which is equal to the stock of industrial robots in Chinese
industry i in t years divided by the employment level of i
industry in China in year t; and x% represents other factors
affecting labor demand. In our empirical model, we use R&D
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TaBLE 4: Effects of robots on employment of the four group.
Group A Group B Group C Group D
(1)OLS ()FE (3 RE (1)OLS () FE (3)RE (1)OLS (2)FE (3)RE (1)OLS (2)FE (3)RE
InRobot 0.258** 0.108***  0.258*** -0.177 -0.194*** -0.177 0.039  0.047*** 0.045*** 0.121 0.137**  0.121**
(3.76)  (1328)  (7.66)  (-4.54) (-855)  (-6.46)  (1.53)  (6.49) (2.62)  (0.69) (2.63)  (2.35)
InEDI -0.402** -0.032 -0.402*** —0.047 0.021 -0.047 0.311*** -0.018 -0.072* -0.006 0.190 —0.006
(-4.78)  (-1.38) (-9.75) (-0.95) (0.49) (-1.04) (-7.39) (-0.99) (-1.79) (-0.03) (1.12) (-0.08)
InRD 0.057 0.029 0.057 -0.065 0.172**  —0.065"** 0.641*** 0.018 0.084** -0.014 -0.004 -0.014
1.72) (0.92) (1.54) (=2.17) (2.21) (-3.07) (5.19) (1.14) (2.24) (-0.15) (-0.10) (-0.35)
Cons 4.331***  2.717***  4.331*** 2.979** 1.401** 2.979*** 1.460** 2.592*** 2.572*** 3579  2.368** 3.579***
- (8.02) (1212)  (17.28) (50.32))  (2.64) (14.54)  (2.90) (27.49) (11.36) (2.29) (222)  (7.28)
N 40 40 40 20 20 20 49 49 49 20 20 20
R? 0.73 0.901 0.890 0.792 0.793 0.427 0.782 0.276
F . 119.941 25.39 51.884 14.268 3.752

Notes. This table reports the impact of industrial robots on employment of the four groups. The dependent variable is employment at the industrial level. All
other variables are defined in Section 3.2. OLS is the pooled regression and FE, RE are the fixed and random effect model, respectively. t statistics are reported

EEE Y

in parentheses.

and FDI as control variables. To standardize the data, we
took log form for all the variables.

The correlation between robot exposure and employ-
ment was tested using panel data, which provides richer
models and estimation methods than cross-sectional data.
An extreme strategy for estimating panel data is pooled
regression as cross-section data, requiring each individual in
the sample to have exactly the same regression equation. The
disadvantage of pooled regression is that it ignores the
heterogeneity of individuals, which may relate to explana-
tory variables and lead to inconsistent estimates.

In practice, a compromise estimation strategy is often
adopted; it is assumed that individual regression equations
have the same slopes but different intercepts to capture
heterogeneity. This model is called the individual-specific
effects model and is formulated as below.

Ve=xBrzd+u+e(i=1,...,mt=1,...T),

L” = F(w,Q",T), 24
where z; is a time-invariant individual characteristic. x;, can
vary with individuals and over time. The disturbance term
consists of u; +¢;, called composite error term. Among
them, the unobserved random variable u; is the intercept
term representing individual heterogeneity, namely indi-
vidual effects. ¢, is a disturbance term that varies with in-
dividual and time, known as idiosyncratic error.

If u; relates to an explanatory variable, it signals the fixed
effects (FE) model. If u; is not correlated with all explanatory
variables (x;, z;), it implies the random effects (RE) model.
Hence, this research use the Hausman check if this model
follows FE or RE model.

4. Results

4.1. The Empirical Results. Table 3 shows the descriptive
statistics of the relevant variables used in this paper. These
statistics are the mean, maximum, minimum, standard
deviation, and number of observations. For example, the
minimum, maximum, mean, and standard deviation of the
log form of employment in group A are 2.28, 3.30, 2.80, and

, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

0.30, respectively. T is years, n represents four industries in
the first group, and the number of observations is 40. Table 4
shows the statistical results for the above groups. There is a
significant positive correlation between robots’ exposure and
labor demand for Group A. These results show that the use
of robots promotes high-skilled employment. A 10% in-
crease in robot density leads to a 1.1% rise in high-tech jobs.
The Hausman test statistics reject the null hypothesis of the
RE model and accept the FE model at a 5% statistically
significant level. Also, the resulted F statistics reject the pool
regression and accept the FE model.

Group B shows a significant negative correlation be-
tween robots’ exposure and labor demand. According to the
Hausman test and F test, the FE model is superior to the RE
and pooled regression model. Another finding was that R&D
promotes employment in traditional industries according to
the FE model, which explains the fact that various tech-
nological transformations or upgrades have a corresponding
effect on workers. China is predominantly agricultural and
very populous. According to the National Bureau of Sta-
tistics, employment in primary industries, mainly agricul-
ture, accounted for 50% of the total workforce in 2001, 37%
in 2010, and only 24% in 2020.

The proportion of the population employed in primary
industry has declined year by year. Of the country’s more
than 600 million farmers, very few are engaged in the ag-
ricultural sector. More people have chosen to enter sec-
ondary and tertiary industries to go elsewhere for work or to
start a small business. With the rapid development and
industrialization of China, the R&D of agricultural robots
has been gradually expanding. Agricultural robots can be
engaged in planting, spraying pesticides, harvesting, and
other field operations, and they can play an essential role in
animal husbandry. This not only saves human resource costs
but also improves quality control ability and enhances
resilience. For the mining industry, there are many problems
with underground production operations in coal mines:
high accident rates, harsh operating conditions, serious
environmental pollution, and high disaster risk. Faced with
high-risk underground operations, robots have become an
essential means of achieve the safe and efficient production
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TABLE 5: Result of regression analysis of different estimation methods of the four groups.
Group A Group B Group C
(4) FE_Robust (5) LSDV (4) FE_Robust (5) LSDV (4) FE_Robust (5) LSDV
InRobot 0.108*** 0.108*** 0.194** —0.194"* 0.047*** 0.047***
(13.93) (13.34) (~20.59) (~19.94) (9.34) (8.92)
InEDI -0.032 -0.032 0.021 0.021 -0.018 -0.018
(-1.07) (-1.03) (0.29) (0.28) (-1.56) (-1.49)
InRD 0.029 0.029 0.172 0.172 0.018 0.018
(0.76) (0.73) (4.18) (4.04) (1.06) (1.01)
Cons 2.717*** 3.082%** 1.401 1.166 2.592%** 3.237%*
- (12.01) (13.82) (2.51) (1.84) (31.15) (40.29)
N 40 40 20 20 49 49
R? 0.909 0.993 0.805 0.929 0.478 0.996
F 2.1e+04 269.906

Notes. This table reports the results of the robustness test in Section 4.2. FE_Robust is FE using clustering robust standard and LSDV is least-squares dummy
variables regression. The dependent variable is employment at the industrial level. All other variables are defined in Section 3.2. t statistics are reported in

EEE Y

parentheses.

goals in coal mines. To achieve safety of coal miners, it is a
general trend for robots to replace miners in underground
operations. Coal mine production will therefore develop
toward the use of unmanned, autonomous, intelligent, and
highly efficient robots in the future. Artificial intelligence
technology can play an irreplaceable role in that and di-
versified artificial intelligence technology can be applied to
coal mine robots. Although the current application of ar-
tificial intelligence in the field of industrial coal mining is still
in a period of exploration, with the increasing application of
artificial intelligence technology in the field of coal mining; it
is imperative to build unmanned mines.

For Group C, after the Hausman test and F test, the FE
model is superior to the RE model and pooled regression.
Table 4 indicates that the use of robots has a positive effect on
the third employment sector. Robots have been used in the
service industry for decades. Helpmate, a service robot
created in the 1980s by Joseph F-Engelberger, the so-called
“father of robotics,” delivers meals, medicine, and supplies to
hospital patients [16]. Helpmate, of course, is a square box,
impersonal and rudimentary. Service robots are growing fast
in Japan in another direction: entertainment robots. In
recent years, robots have been increasingly used in the
service industry. As Engelberger predicted, robots are more
likely to be used in the service industries, including main-
tenance, repair, transportation, cleaning, security, rescue,
and domestic tasks and nursing [16]. In recent years, modern
information technologies have developed rapidly including
cloud computing, the “Internet of Things,” artificial intel-
ligence, and “big data.” A series of proactive policies con-
tinued to develop, including the transformation of the real
economy, cross-border e-commerce, and support for rural
e-commerce. Also, new forms of online retail and orders
have risen, creating a large number of new jobs in wholesale
and retail trade, hotels, and restaurant industries.

In Group D, the results of the Hausman and LR tests in
MLE support the RE model against the FE and pooled re-
gression models. Nonetheless, the LM test results suggest a
pooled regression against the RE model. In this group, there
is no significant correlation between robot density and
employment in the secondary sector. Secondary industries

, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

involve many industries, such as steel manufacturing, au-
tomobile production, and wired and wireless communica-
tion. Some companies have tried to liberate front-line
workers by using industrial robots in recent years. Foxconn,
the largest mobile phone manufacturer, uses industrial ro-
bots to perform the tasks previously performed by workers
on production lines. Now, some domestic manufacturing
enterprises have begun to replace front-line operators with
industrial robots, improving their efficiency.

4.2. Robustness Check. Table 5 shows the results of different
estimated regression methods on the employment of robots.
The regression results of FE using clustering robust stan-
dards in Table 5 show that robots have a positive relationship
with the employment of the first and third groups, and a
negative relationship with the employment of the second
group. Both of them are significantly valid at 0.05, which
indicates that the use of industrial robots increases em-
ployment in tertiary sectors and high-tech industries, but is
ineffective in employment in agriculture and mining in-
dustries. Table 5 shows that the results obtained by different
regression estimation methods (i.e., FE_Robust and LSDV)
are the same, which verifies the validity and robustness of the
basic FE regression and the empirical results.

In addition to using different regression methods, we
add a lagged core explanatory variable for endogeneity
problems. In this paper, the lag variable L.InRobot of ex-
planatory variable InRobot is used as a substitute variable to
conduct regression tests. Table 6 shows the results. The
coefficients of lag variable L.InRobot on the employment of
the three groups are 0.096, -0.202, and 0.033, respectively,
and significant at the 1% level, indicating that the regression
results are still robust after considering endogeneity.

Following [40], the equation of demand for labor is as
follows:

L” = F(w,Q",T), (25)

where L” is labor demand or the desired level of employ-
ment, W is the wage rate, Q” is the output or product
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TaBLE 6: Adding lagged core explanatory variables to deal with
endogeneity.

11

TaBLE 7: Result of FE model by adding control variables for
intervention.

Group A Group B Group C Group A Group B Group C
(6) InL (6) InL (6) InL (7) InL (7) InL (7) InL
0.096*** —-0.202%** 0.033*** 0.0876*** —-0.160* 0.035*
LInRobot (12.10) (~7.83) (4.45) InRobot (8.00) (~2.05) (1.78)
-0.028 0.015 -0.015 —-0.0306 0.040 —-0.026
InFDI (-1.24) (0.35) (~0.85) InFDI (-1.37) (0.69) (-1.26)
0.060* 0.180* 0.035** —0.00840 0.199* 0.016
InRD 1.91) (1.95) (2.29) InRD (~0.26) (2.00) (1.06)
Cons 2.552%** 1.340** 2.535%** InWage -0.132 —-0.142 0.531**
- (12.56) (2.16) (25.97) 8 (-0.56) (-0.36) (2.68)
N 36 18 44 InVA 0.204 -0.121 —-0.409**
R? 0.887 0.774 0.293 (1.29) (-0.40) (-2.08)
F 93.396 20.750 8.265 Cons 2.766*** 2.399 1.858***
Notes. This table reports the results of the robustness test in Section 4.2. The B (5.14) (1.21) (3.92)
lag variable L.InRobot of explanatory variable InRobot is used as a substitute N 40 20 49
variable to conduct regression test. The dependent variable is employment R? 0.916 0.765 0.493
at the industrial level. All other variables are defined in Section 3.2. t F 86.743 13.561 11.119
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statistics are reported in parentheses. ***, **, and * indicate significance at
the 1%, 5%, and 10% levels, respectively.

demand, and T'is the technology. We add wage and value-
added (VA) in our model, and the robot, R&D, and FDI
represent technology. Table 7 displays that industrial robot
still has a significant impact on employment under the
model of increasing control variables, indicating that the
regression results are still robust after the intervention of
increasing control variables.

4.3. Discussion of the Results. According to the capital-skill
complementarity hypothesis discussed in the literature re-
view, technological progress leads to an increase in demand
for skilled labor and a decrease in demand for unskilled
labor. An initial objective of this study was to identify the
relationship between industrial robot adoption and China’s
employment in different industries and skills. Our results
suggested that an association existed between robot adop-
tion and employment across industries. There is a significant
positive correlation between robots’ exposure and labor
demand for high-skilled employment and third sector
employment. A 10% increase in robot density leadsto a 1.1%
rise in high-tech jobs. However, multiple regression analysis
reveals that robots have reduced employment in traditional
industries such as agriculture and mining. This study sup-
ports evidence from previous observations [11, 12, 41, 42]
that industrial robots are a skilled-biased technology change.

Using data about Germany, Dauth et al. found that
industrial robots reduce manufacturing employment, but
the reduced employment is offset by increased employment
in the tertiary industry [9]. The industry-based estimates in
this study are inconsistent with those of Acemoglu and
Restrepo [7], which are based on data about the United
States. Their findings showed that the negative effects of
robot adoption on employment are mainly felt in highly
mechanized industries, such as automobile manufacturing,
chemical, pharmaceutical, and food manufacturing. Robotic
applications will promote labor employment in industries
such as finance, the public sector, and nonrobotized

Notes. This table reports the results of the robustness test in Section 4.2. The
dependent variable is employment at the industrial level. We add wage and
value-added (VA) in our model as control variables. All other variables are
defined in Section 3.2. t statistics are reported in parentheses. ***, **, and
* indicate significance at the 1%, 5%, and 10% levels, respectively.

manufacturing [7]. These results are inconsistent for two
reasons. First, compared with developed countries such as
the United States, China’s robot adoption is still in its early
stages. The first adopters of robotic production technology
can use this competitive advantage to expand their market
share, thereby increasing the demand for labor. This role is
particularly prominent in the capital- or technology-in-
tensive industries, such as information transmission, soft-
ware and information technology, communication
equipment, and computer and other electronic equipment
manufacturing. Second, with the rise in labor costs in China,
labor-intensive  industries such as  construction,
manufacturing, and mining face more prominent cost
pressures, indicating that such industries have more sub-
stantial economic incentives to replace labor with robots.

5. Conclusion

Our study aims to assess how robots contribute to the
employment of different industries and skills. The results of
this investigation show a significant positive correlation
between robots’ exposure and labor demand for the third
sector of employment. The results show that the use of
robots promotes high-skilled talent employment. However,
multiple regression analysis reveals that the use of robots has
reduced employment in traditional industries such as ag-
riculture and mining. This study represents the first com-
prehensive assessment of how industrial robots contribute to
the employment of different industries and skills of China. A
limitation of this study is that the robot data is only from
2010, because the use of robots in China has started late but
has increased rapidly since the 2000s.The use of robots af-
fects not only employment but also other aspects of the labor
market and the economy as a whole. There is still uncertainty
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about whether robot technical progress impacts wage in-
equality. Further work needs to be done to establish whether
the application of robots is conducive to improving the labor
share of national income. Much uncertainty still exists about
the relationship between the industry robots, total factor
productivity, and added-value of China. Further research
needs to examine more closely the links between industrial
robots and productivity.

The robot industry will be the main engine of economic
growth in the next few years. The progress of robotics is
inevitable. There will be unprecedented significant devel-
opment and improvement in the field of robotics. We must
accept this trend and seize this opportunity to leap into
economic development. Obviously, under the state’s lead-
ership, robot technology as a whole is helping to promote
positive economic growth, and it has become an opportunity
for people to find jobs again. The findings of this study have a
number of important implications for future practice.
Studying the impact of robots on economic outcomes may
provide guidelines for governments about China’s economic
growth and employment in the future.

This study showed that the employment promotion
effect of robot adoption mainly lay in the middle- and high-
skilled labor groups, indicating that intelligent
manufacturing provided by robots needs a large medium-
and high-skilled labor force to match it. The average skill
level in China’s current labor force was low, and the low-skill
labor force accounted for a large proportion of the total labor
force. Therefore, China should further strengthen the
guidance and expenditure on vocational skill education and
training, provide abundant labor resources for intelligent
manufacturing, and reduce frictional unemployment caused
by technological change.

We also found the employment substitution effect of
robot adoption in traditional industries, such as agriculture
and mining. The government should provide more guidance
and support for unemployment insurance, job-transfer
training, and especially new skills learning. The government
should also alleviate the employment impact of new tech-
nology adoption on traditional industries and ensure a fuller
and higher employment quality.

We provide three recommendations for the education
system. First, higher vocational education should be de-
veloped. The state can establish and improve the majors of
artificial intelligence and robotics, train high-skilled pro-
fessors, and establish practice bases to cultivate intelligent,
automated, and information-based technical workers. Sec-
ond, re-employment training should be strengthened. In
addition to the existing higher vocational colleges, the
government should support the establishment of more re-
employment training centers. Subsidies should be increased
for the return of low-skilled young people to advance their
studies and for the unemployed to undergo re-employment
training; this would reduce re-education costs for both
groups and enable them to acquire competent skills in in-
telligent, automated, and information-based production
positions. Finally, relevant preferential policies should be
introduced to guide the flow and transfer of labor among
various industries of the national economy in an orderly
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manner so that citizens do not need to bear more costs for
acquiring new labor skills and positions.

Data Availability

All variables used in this study are listed with the sources in
the following: Industrial Robot: robotics data for industries
comes from the International Federation of Robotics (2019).
Source: https://ifr.org/worldrobotics/. Employment: the
number of employed persons in urban units by sector.
Source: China Statistical Yearbook compiled by the National
Bureau of Statistics of China. https://data.stats.gov.cn/
english/. Education: educational attainment of urban
employed persons by sector and sex. Source: China pop-
ulation and employment Statistics yearbook complied by
Department of Population and Employment National Bureau
of Statistics of China. https://www.yearbookchina.com/. FDI:
Foreign Direct Investment by sector, investment actually
utilized. Source: China Statistical Yearbook compiled by the
National Bureau of Statistics of China. https://data.stats.gov.
cn/english/. R& D: intramural expenditure on R& D of R&D
institutions by industrial sector in which the R&D institu-
tions served. Source: China Statistical Yearbook on Science
and Technology. https://www.yearbookchina.com/. Wage:
average Wage of Employed Persons in Urban Units by
_Sector. Source: China Statistical Yearbook compiled by the
National Bureau of Statistics of China. https://data.stats.gov.
cn/english/. Value-added: Value-added by Sector. Source:
China Statistical Yearbook compiled by the National Bureau
of Statistics of China. http://www.stats.gov.cn/tjsj/ndsj/
2019/indexeh.htm.
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