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�is study was aimed at investigating the application of deep learning 4D computed tomography angiography (CTA) combined with
whole brain CT perfusion (CTP) imaging in acute ischemic stroke (AIS). A total of 46 patients with ischemic stroke were selected
from the hospital as the research objects. Image quality was analyzed after the 4D CTA images were obtained by perfusion imaging.
�e results showed that whole brain perfusion imaging based on FCN can achieve automatic segmentation. FCN segmentation
results took a short time, an average of 2-3 seconds, and the Dice similarity coe�cient (DSC) and mean absolute distance (MAD)
were lower than those of other algorithms. FCN segmentation distance was 17.87. �e parameters of the central area, the peripheral
area, and themirror area of the perfusionmapwere compared, and themean transit time (MTT) and time to peak (TTP) of the lesion
were prolonged compared with the mirror area. Moreover, the peripheral CBV was increased, and the di�erences between the
parameters were signi�cant (P< 0.05). In conclusion, using the deep learning FCN network, 4D CTA combined with whole brain
CTP imaging technology can e�ectively analyze the perfusion state and achieve clinically personalized treatment.

1. Introduction

Stroke is a sudden disease with high disability rate [1, 2].
Stroke stenosis is the most common cause of ischemic stroke
[3, 4]. Imaging examination of acute ischemic stroke (AIS) is
classi�ed into neuroimaging and advanced neuroimaging
[5–7]. 4D computed tomography angiography (CTA) can be
enhanced with contrast agent images. Compared with
conventional CTA, 4D CTA imaging shows the changes of
cerebral blood vessels within a certain period, accurately
showing the dynamic changes of blood vessels and blood
£ow. CTA combined with CT perfusion (CTP) can evaluate
ischemia, and perfusion imaging plays an important role in
predicting the e�cacy of intravenous thrombolytic therapy
[8–10].Whole brain CTP is a functional imaging technology,
which is also of great value for AIS. Functional maps and
cerebral perfusion parameters obtained by di�erent digital

models can be used to �nd the changes of blood perfusion
volume [11, 12]. CTP imaging is widely used in patients with
ultra-early AIS. Abnormal perfusion areas can be found in
routine examination, and infarct core and ischemic pen-
umbra volume can be evaluated, which is conducive to the
individualized treatment of thrombolytic therapy [13, 14].
4D CTA combined with whole brain CTP can greatly im-
prove the scanning rate, more comprehensive display of the
lesion range, greatly reduce the rate of missed diagnosis, and
improve the time resolution of examination. Deep learning-
based whole brain perfusion imaging can achieve more
treatment time for patients [15, 16].

With its fast nonlinear mapping ability and ultra-fast
propagation ability, it has been widely applied in signal
processing and many �elds. Its application in image rec-
ognition, information processing, model identi�cation, and
other aspects is also quite good, and the operation of training
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depth model becomes more convenient [17]. With the ap-
plication of artificial intelligence in computers, deep learning
has been widely used in organ segmentation and lesion
detection in images [18, 19]. Convolutional neural network
(CNN) is widely used, but translation invariance and
pooling layer exist, which will affect the final model per-
formance. Fully convolutional network (FCN) replaces the
full connection layer behind the traditional convolutional
network with the convolution layer, which can solve the
impact of convolution and pooling on the image size. FCN
classifies images at the pixel level, can solve the problem of
semantic image segmentation, and can also receive input
images of any size. Upsampling with deconvolution layer
can restore the size of the input, retain the spatial infor-
mation in the original input image, and finally classify each
pixel on the feature map of upsampling.

In this study, the CNN model of deep learning was
converted into the fully convolutional neural network (FCN)
of image semantic segmentation to automatically extract the
deep features of image data of AIS patients and realize
automatic segmentation of perfusion images. Using simu-
lated datasets in deep learning neural network, 4D CTA and
CTP realize “one-stop” examination to provide more
comprehensive and detailed imaging information for AIS
patients. Combining cerebrovascular morphological
changes and hemodynamic changes, the characteristics of
AIS patients were analyzed from different perspectives to
provide effective treatment for patients, so as to provide
reference for clinical diagnosis of AIS patients.

2. Materials and Methods

2.1. Patient Information. Forty-six suspected ischemic
stroke patients in the hospital from June 2019 to June 2021
were selected as the research objects. Among them, 28 were
male and 18 were female. Patients were 42–70 years old, with
an average age of 63.62± 7.14 years. All patients underwent
one-stop dynamic volume CTA-CTP examination, and six
patients were admitted because of dizziness. -ere were 12
patients in 24􏽥48 hours after onset. No clinical treatment was
performed before CTA-CTP examination. -ere were 15
patients with ischemic stroke 6–14 days after onset. Clinical
treatment, such as anticoagulation and fibrinogen reduction,
was performed before CTA-CTP examination. -irteen of
the patients were acute stroke patients within four to five
hours and underwent thrombolytic therapy with 1mg/kg
heavy tissue fibrinolytic activator. -is experiment was
approved by ethics committee of the hospital, and all rel-
evant personnel signed the informed consent form.

-e patients met the North American Symptomatic
Carotid Endarterectomy Trial (NASCET). -e stenosis of
middle cerebral artery (MCA) or internal carotid artery
(ICA) was graded into mild (0–29%), moderate (23–69%),
severe (70%–99%), and occlusion (100%).

Inclusion criteria were as follows: (I) clinical diagnosis of
acute cerebral hemorrhage; (II) complete clinical data; (III)
those who cooperated with medical workers independently;
(IV) those who had not interrupted the treatment in this
hospital; and (V) those who met the treatment indications.

Exclusion criteria were as follows: (I) patients combined
with no serious heart and kidney disease and iodine contrast
agent allergy; (II) patients with mental diseases; (III) patients
with poor treatment compliance; (IV) patients with com-
munication disorder; (V) discontinuation of treatment due
to multiple reasons; and (VI) patients with cerebral hem-
orrhage and other lesions.

2.2.Whole Brain Perfusion Imaging. Patients were examined
by GE660 functional 128-slice CT equipment. Cranial ca-
rotid artery CTdata were obtained. -e total scanning range
was 30 cm, and the tube transfer time was 0.5 s/r, covering
the whole brain. Scanning conditions: 80 kV, 300mA. Layer
thickness was 1.25mm, matrix was 512× 512, and scanning
field was 200mm× 200mm. -e scanning interval was 1.5 s,
and a total of 22 scans were performed. 45.14 s was the total
scanning time. Intravenous injection of nonionic contrast
media included normal saline (30mL) and iopromide
(370mg/mL, 30mL).-e injection flow rate was 5mL/s, and
the dynamic scanning delay was 5 s. -e original data were
reconstructed and analyzed by dynamic CTA perfusion
imaging.

After 8–10 minutes of CTP scanning, the contrast agent
iopromide 50mL was injected, and automatic tracking
triggered scanning was started after 8 s delay. Tube current
was 250mAs, voltage was 120 kV, and the layer thickness
was 1.25mm.

Figure 1 shows the imaging staging of regional cerebral
microcirculation disorders in the precerebral infarction
stage. -e CTP manifestations before cerebral infarction are
shown in Table 1.

2.3. Image Processing. -e original data are transmitted to
Vitrea workstation for processing through data packets. -e
perfusion parameters were automatically generated by the
perfusion software, including mean transit time (MTT),
cerebral blood volume (CBV), cerebral blood flow (CBF),
time to peak (TTP), and delay time.-e perfusion parameter
images were composed of 420 images with a thickness of
0.5mm. 4D CTA images and perfusion parameters received
any plane reconstruction, and then quantitative analysis of
perfusion parameters was implemented.-e collateral blood
flow state was evaluated according to the reconstruction
degree of distal occluded vessels in reconstructed images,
which can be “good” or “reduced.”-e “good” condition was
that the distal branch vessels of MCA or ICA occlusion were
no less than 50%. -e “reduced” lateral branches showed
that MCA or ICA occlusion of distal branches was less than
50%. -e images were obtained by advanced vascular
analysis software, and the compensations of arterial and
collateral vessels were observed by two neuroimaging
physicians.

2.4. Network Structure Model. -e single use of traditional
CNN for image segmentation tasks in deep learning is not
suitable for the prediction of target objects. When CNN
solved the image segmentation problem, some scholars
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proposed to divide patch into several small images. -e
category of image block is the category to which the center
pixel of each image block belongs. -e image is matched
according to the judged category and then used as the input
information of the network. In deep learning network, pixel
information of different scales can be combined to extract
the best size information. -e size of convolution kernel can
improve the running speed of neural network. Deconvo-
lution network can be used to solve the problem of image
semantic segmentation and can also be used to visualize the
features extracted by CNN. Figure 2 shows a schematic
diagram of a typical CNN. Inspired by the local perception of
biological vision, local receptive fields, pooling, and weight
sharing are integrated into the network, which can make the
network have stronger feature extraction ability, consider-
ably reduce the content of network parameters, and effec-
tively avoid the occurrence of overfitting in the training
process. Typical CNN includes input layer, convolution
layer, and full connection layer.-e core layer is convolution
layer. Pooling can reduce the dimension of features, and the
convolution needs nonlinear transformation after operation.
-e full connection layer transforms the matrix features into
column vectors for the connection of classifiers.

-e feature map obtained from the original image in the
CNN model is used as the input of the convolution layer.
After the operation, the new feature map enters the con-
volution operation of the next layer. In general, for con-
tinuous functions, two functions are required for integral
operation. If there are g(x) and f (x) in M which are two

continuous integrable functions, the convolution definition
equation is expressed as follows.

w(t) � 􏽚
+∞

℘�−∞
+f(℘)g(t − ℘)d℘. (1)

If both g(x) and f (x) are discrete variables, the con-
volution operation is transformed from the integral oper-
ation of the continuous function to the corresponding
summation operation. -e convolution expression equation
is expressed as follows.

w(t) � 􏽚
+∞

℘�−∞
+f(℘)g(t − ℘). (2)

In the CNN calculation process, the feature map of the
input layer and other layers is a high-dimensional array, the
two-dimensional tensor is called a two-dimensional matrix,
and the three-dimensional tensor is called a three-dimen-
sional matrix, which is represented by the form (X, Y, Z).-e
number of channels in an image is represented by X. If the
color image X value is 3, the gray image C is 1, and Y and Z
represent the height and width of the image matrix, re-
spectively, the expression in the convolution calculation is as
follows.
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Figure 1: Schematic diagram of imaging staging of regional cerebral microcirculation disorders in the precerebral infarction period.

Table 1: CTP findings before cerebral infarction.

Stage CTP manifestations Microcirculation state Cerebral blood flow status

I1 All parameters were normal Well-established local collateral circulation
in the brain No drop in CBF

I2
Prolonged TTP and normal MTTCBF and

CBV
Uncompensated dilation of microvessels in

the brain
CBF above electrical failure

threshold

I3
Prolonged TTP and MTT, normal/slightly

decreased CBF, and elevated CBV
Compensatory dilation of microvessels in

the brain
CBF above electrical failure

threshold

II1
Prolonged TTP andMTT, decreased CBF, and

normal/slightly decreased CBV
Mild stenosis of local microvascular

compression in the brain
CBF between electrical failure

threshold and membrane failure

II2
Prolonged TTP and MTT and decreased CBF

and CBV
-emicrovessels in the brain were obviously

compressed and narrowed
CBF between electrical failure

threshold and membrane failure
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In the above equations, xl
j is the output of the previous

layer l− 1 layer, sl
ij is the connection parameter between any

neuron of the i-th layer of the l− 1 layer and the l-th layer,
and Ul

j is the operation result obtained by any j-th neuron in
the l-th layer of the network.

-e sigmoid function is used as the activation function,
and the expression of the sigmoid function is as follows.

f j
l
k􏼐 􏼑 �

1
1 + exp −j

l
k􏼐 􏼑

�
1

1 + exp −A
l−1
p ∗ c

l
k􏼐 􏼑

. (4)

-e pooling layer extracts its maximum value as a feature
value in a local range based on the operation of the con-
volution layer. It is only necessary to perform nonlinear
operations on the mapped image, and then the feature map
size of the image is expressed as follows.

αl− 1
− m

l
+ 1􏼐 􏼑

s
×

αl− 1
− m

l
+ 1􏼐 􏼑

s
. (5)

In the above equation, s is the size of the pooling
operation.

For classified CNN algorithms, the output layer should
be a classifier, and the softmax classifier (SMC) is one of
the commonly used classifiers in CNNs. SMC is a su-
pervised logistic regression model, which is calculated as
follows.

B
l
Cl y

l− 1
􏼐 􏼑 �

1
1 + exp −C

l
y

l− 1
􏼐 􏼑

. (6)

According to the logistic regression cost function, the
cost function of softmax regression can be obtained as
follows.

J C
l
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1
N

􏽘
N

i�1
C(i)log C

l
[y(i)] +[1 − y(i)]log 1 − C

l
􏼐 􏼑y(i)

⎧⎨

⎩

⎫⎬
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In the above equation, y(i) represents the training set,
and y(i) ∈ 1, 2, . . . , k{ }.

For each image block, the category of the image block
finally obtained through the sliding window is expressed as
follows.

i � argmax p
l
Cl y

l− 1
􏼐 􏼑􏽨 􏽩. (8)

In the above equation, pl
Cl represents the probability that

the image block x is classified as j, and its calculation method
is as follows.

p
l
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e
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In the above equation, θ is the model parameter.
1

􏽐
k
i�1 e

θr
jxl

. (10)

Equation (10) is the probability distribution normali-
zation term.

It is assumed that the kernel convolution area of the
feature map A is Qi, and O is the offset of a specific position i
on Qi; then, the image position after the conventional
convolution operation in the deformable branch can be
expressed as follows.

Qi � Q + A,

Ni � Qi + O � Q + A + O.
(11)

In the above equations, Ni represents the new coordinate
value of the image A after the convolution operation.

Based on region segmentation performance evaluation,
Dice similarity coefficient (DSC) is used for evaluation. -e
DSC is often used to evaluate the similarity between the
automatic image segmentation results and the artificial re-
sults. -e larger the value, the better the segmentation effect.
-e calculation for the DSC is as follows.

Dice(A, B) �
2|A∩B|

|A| +|B|
. (12)

In the above equation, A is the pixel set for automatically
segmenting the image, B is the pixel set for manually de-
lineating the image, and C is the number of all pixels in the
image.

2.5. Experimental Configuration and Process. Medical Image
Computing and Computer Assisted Intervention 2016
dataset was used for training on the network catenary. 1542
images of the training set and 900 images of the test set were
randomly selected from the dataset. -e size of the input
images was 521 pixels ∗ 512∗ . -e research was carried out
in Ubuntu system, and the constructed FCN and decon-
volution network were run on GPU (Intel I7-7700) with
16GB memory and NVIDIA GTX1070 GPU configuration.
-e neural network used in the experiment converged after
continuous forward propagation and backpropagation

Conv
Conv Conv Conv 

Pooling layer Input 

Pooling layer Convolutional layer 

output 

fully connected layer Convolutional layer 

Figure 2: Schematic diagram of a typical CNN structure.
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iterative learning, and the parameters were saved. In the test
stage, only the test image was input, and the segmentation
result was obtained through the discrimination and classi-
fication of each pixel by softmax classification layer (Fig-
ure 3). In this study, different parameter values were selected
to test the sensitivity, and the accuracy of different pa-
rameters on the whole image segmentation was analyzed.

2.6. Statistical Analysis. SPSS 19.0 was used for data pro-
cessing in this study. Measurement data that conformed to
normal distribution were expressed as mean± standard
deviation (x± s), and the count data were expressed by
frequency or percentage (%). Data differences were com-
pared using the t test, and the chi-square test was used for
quality comparison. P< 0.05 was considered statistically
significant; otherwise, it was insignificant.

3. Results

3.1. Network Parameter Sensitivity Test. -e convolution
layer of the network model replaced the 5 ∗ 5 large kernel
convolution of the single layer of the network with two
consecutive 3 ∗ 3 convolutions without changing the size of
the extracted feature map. Multiple convolution operations
also included nonlinear capabilities of multiple activation
functions. In the selection of parameters, different parameter
settings also had a certain image on the segmentation effect.
-e overall fluctuation effect was small, and the difference
value set within a certain range had little effect on the overall
segmentation accuracy of the image. -e values of θ were 5,
7, 9, 11, 13, and 15, and the corresponding sensitivity test
results are shown in Figure 4.

3.2. Different Methods of Segmentation and Comparison.
-e segmentation results of different methods in references
[20, 21], FCN, and CNN were compared.-e results showed
that the segmentation speed of FCN improved by CNN was
significantly improved, and the average absolute distance of
FCN was significantly better than the other three methods
(P< 0.05, Figures 5 and 6).

3.3. Image Processing Results of Patients with AIS.
Figure 7 shows a 65-year-old patient who had intermittent
dizziness for more than 5 years, with good compensation,
and was followed up for observation in the later period.
Figures 7(a) and 7(b) are CT images. After deep learning
processing, the image was clear, and the cerebral perfusion
imaging arteries were clearly visible. Figures 7(c)–7(f) are all
cerebral artery imaging results. After being processed by
intelligent algorithm, the images were clearly visible and the
veins of blood vessels were clear.

For 4D CTA and whole brain CTP imaging, the CNN-
based network showed good results for image segmentation.
Postoperatively, whole brain perfusion imaging showed
hypoperfusion changes in the cerebral arterial supply area,
and the segmented region of interest showed a good degree
of accuracy (Figure 8).

3.4. Comparison of Patient Imaging-Related Indicators.
-e parameters of the central area, the peripheral area, and
the mirror area of the perfusion map were compared, and
the results are shown in Figure 9. Compared with the mirror
area, the MTT and TTP of the lesion were prolonged, the
peripheral CBV was increased, and the differences between
the parameters were significant (P< 0.05).

4. Discussion

Stroke is about 10% of brain diseases, including acute is-
chemic cerebral hemorrhage disease and acute hemor-
rhagic cerebrovascular disease. In recent years, the
incidence of stroke shows a trend of younger age. How to
make the early diagnosis of acute cerebral infarction, de-
termine the ischemic penumbra, actively treat thrombolysis
within the effective reperfusion time, and implement ef-
fective brain protection measures have been the hot spots of
acute cerebral infarction research in recent years [22, 23].
Hypoperfusion is the final pathway of all etiological
mechanisms of cerebral ischemia. Dynamic CTP imaging
can clearly display hemodynamic abnormalities in the early
stage of cerebral infarction and provide relevant functional
information of cerebral hemodynamics according to the
ratio and correlation of various parameters [24]. In this
study, CBV in peripheral area increased, while CBV and
CBF in central area decreased. Zhang et al. [25] performed
image analysis of anterior circulation patients with AIS,
including one-stop whole brain dynamic volume four-di-
mensional CTA and cranial imaging for all patients. CT
angiography parameters of patients have important value
for the treatment prognosis of patients with AIS. CTP-
ASPECTS scores were negatively correlated with clinical
prognosis. -e higher the CTP-ASPECTS score of patients
with anterior circulation ischemic stroke before treatment,
the better the prognosis. 4D CTA combined with CTP
imaging feature analysis can provide changes in cerebral
vascular morphology in cerebral stroke. Wagemans et al.
[26] showed that 4D CTA improved the diagnostic accu-
racy of proximal intracranial anterior circulation occlusion
in acute stroke. 4D CTA, used as an additive to conven-
tional CTA and CTP in patients with AIS eligible for
intraarterial therapy, showed a tendency to increase di-
agnostic accuracy and improve diagnostic certainty when
reviewed by radiologists in training, while only slightly
extending the time to diagnosis. Craniocerebral CT plain
scan and CTP imaging for patients with suspected ischemic
cerebrovascular disease can be comprehensively evaluated
from multiple perspectives, to identify responsible lesions
and blood vessels, providing objective, comprehensive, and
reliable image basis for physicians to make rational clinical
decisions. However, the disadvantages are radiation dose
and high examination cost. Cao et al. [9] used 4D CTA and
a comprehensive and objective scoring system to evaluate
collateral circulation, and 4D CTA can be used to effectively
evaluate the status of collateral circulation. Accurate as-
sessment of collateral circulation based on 4D CTA will
help make medical decisions, especially for patients who
will undergo endovascular intervention.-e results showed
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that 4D CTA combined with CTP imaging based on deep
learning had important clinical application value.

In this study, 4D CTA and whole brain CTP imaging
based on FCN segmentation algorithmwere used to examine
patients with AIS, and abnormal cerebral blood flow could
be found. Each parameter can be used to quantitatively
evaluate the degree of ischemic damage in brain tissue. CTP

imaging technology optimized by FCN can be used to an-
alyze cerebral perfusion status. However, there was still no
unified standard for individual differential memory perfu-
sion conditions, and there was no corresponding consensus
on the optimal perfusion threshold of penumbra and ce-
rebral infarction area. Compared with the mirror area, the
MTT and TTP of the lesions were prolonged, the peripheral

Figure 8: -e segmented images.

(a) (b) (c)

(d) (e) (f )

Figure 7: -e image of the case.
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CBV was increased, and the parameters were significantly
different (P< 0.05). -e image segmentation based on FCN
showed good results.

5. Conclusion

In this study, 4D CTA was combined with CTP imaging
based on deep learning to explore the changes of cerebro-
vascular morphology and hemodynamics. Deep learning
intelligent segmentation algorithm applied to AIS CTP
imaging can effectively improve patient image features and
improve classification efficiency. Nevertheless, there are still
some limitations in this study. -e interference of subjective
factors cannot be excluded from the experimental data, and
specific standardization of each indicator is required in
future research.
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