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Preoperative observation of liver status in patients with liver tumors by abdominal Computed Tomography (CT) imaging is one of
the essential references for formulating surgical plans. Preoperative vessel segmentation in the patient’s liver region has become an
increasingly important and challenging problem. Almost all existing methods �rst segment arterial and venous vessels on CT in
the arterial and venous phases, respectively. ­en, the two are directly registered to complete the reconstruction of the vascular
system, ignoring the displacement and deformation of blood vessels caused by changes in body position and respiration in the two
phases. We propose an unsupervised domain-adaptive two-stage vessel segmentation framework for simultaneous �ne seg-
mentation of arterial and venous vessels on venous phase CT. Speci�cally, we �rst achieve domain adaptation for arterial and
venous phase CTusing a modi�ed cycle-consistent adversarial network.­e newly added discriminator can improve the ability to
generate and discriminate tiny blood vessels, making the domain-adaptive network more robust. ­e second-stage supervised
training of arterial vessels was then performed on the translated arterial phase CT. In this process, we propose an orthogonal depth
projection loss function to enhance the representation ability of the 3D U-shape segmentation network for the geometric in-
formation of the vessel model.­e segmented venous vessels were also performed on venous phase CT in the second stage. Finally,
we invited professional doctors to annotate arterial and venous vessels on the venous phase CT of the test set. ­e experimental
results show that the segmentation accuracy of arterial and venous vessels on venous phase CT is 0.8454 and 0.8087, respectively.
Our proposed framework can simultaneously achieve supervised segmentation of venous vessels and unsupervised segmentation
of arterial vessels on venous phase CT. Our approach can be extended to other �elds of medical segmentation, such as un-
supervised domain adaptive segmentation of liver tumors at di�erent CTphases, to facilitate the development of the community.

1. Introduction

­e liver has a complex vascular structure, and clarifying the
vascular system can improve the accuracy of liver disease
analysis, diagnosis, treatment, and surgery [1]. Images ac-
quired at di�erent times, from di�erent viewpoints, or by
various sensors can be complementary. ­erefore, the ac-
curate fusion of helpful information from Computed To-
mography (CT) images of di�erent phases is essential [2].
Especially, in liver vessel segmentation, combining CT
images from venous and arterial phases is of great signi�-
cance for improving organ segmentation and assisting

physicians in diagnosis [3]. Due to the di�erent contrast
between arterial and venous vessels and surrounding tissues
under di�erent phases of CT, the existing annotated data
almost only annotate arterial vessels in the arterial phase and
venous vessels in the venous phase.

Many studies have performed registration to reconstruct
the entire vascular system through various means. For ex-
ample, registration of multiphase data can use clustering and
level sets [4], or use fully automated landmark detection and
thin plate spline deformation [5]. In addition, a displace-
ment map estimator and a spatial transformer network
enable unsupervised learning-based registration [6].
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However, these methods cannot accurately reflect the state
of arterial and venous vessels simultaneously, which is a
significant obstacle to realizing the requirement of real-time
reconstruction of the vascular system in modern precision
surgery. Specifically, Figure 1 shows the venous and arterial
phase image slices of the same subject under the same
physical coordinates generated by the same device and the
corresponding blood vessel annotation results. We can see
that tissues and blood vessels undergo a certain degree of
displacement and deformation in different phases. Anno-
tation results of different categories of blood vessels overlap
and offset, making it impossible to obtain the entire blood
vessel system through simple aggregation directly. .ere-
fore, it is significant to realize the segmentation of the entire
vascular system on single-phase CT images. We can ignore
the displacement and deformation of blood vessels in dif-
ferent phases and can naturally reflect the state of arterial
and venous vessels simultaneously. Based on this, in this
paper, we selected CT images of the venous phase as the
target to achieve segmentation of arterial and venous vessels.

Segmenting venous vessels on venous phase images is a
supervised segmentation problem. Traditional hepatic vessel
segmentation algorithms mainly include active contour
methods [7–11] that allow adjustment of deformation curves
to detect object boundaries, model-based tracking methods
[12–16], and least-cost path methods [17, 18]. However,
these methods require initialization variables, such as preset
initial points or rough segmentation results. .ey are not
enough to accurately segment tiny blood vessels and blurred
boundaries. .erefore, with the increase in computing
power, the application of deep learning methods that allow
extracting the best-fitting internal representation of images
for hepatic vessel segmentation is becoming increasingly
popular. Examples include portal vein segmentation using
CNN [19], hepatic vessel segmentation based on multi-pass
CNN architecture [20], attention-guided tandem module
[21], and cascaded incremental learning model [22]. Fur-
thermore, since 3D medical images can retain more con-
textual information, most of the current blood vessel
segmentation algorithms are improved based on classic 3D
segmentation models, such as 3D U-Net [23], V-Net [24],
and densely connected convolutional networks [25]. In
recent years, researchers have improved on 3D segmentation
model [20, 21, 26–27]. Kitrungrotsakul et al. [20] proposed a
multi-path 3D hepatic blood vessel segmentation network
VesselNet. Xu et al. [27] proposed a new mean-teacher-
assisted confident learning framework. We noticed that the
existing supervised deep learning methods for hepatic blood
vessel segmentation all focus on the changes to the network
structure while ignoring the potential of combining tradi-
tional vision-inspired algorithms and deep learning methods
in the cross-sectional area.

However, limited by labeling blood vessels, the key to the
segmentation task of arterial vessels on venous phase images
is to solve the problem of unsupervised domain adaptation.
Transfer learning [28] and domain adaptation techniques
[29] have been developed to generalize a model trained on
the source domain (labeled training dataset) so that it can be
applied to the target domain (test dataset). It is worth noting

that Generative Adversarial Networks (GANs) [30] provide
a way to learn deep representations without extensive an-
notated training data. GANs are powerful enough to gen-
erate high-quality images, and their learning nature is
unsupervised. Researchers have made a series of techno-
logical breakthroughs around GAN, such as DCGAN [31],
CGAN [32], WGAN [33], and CycleGAN [34]. .e lack of
sufficient public datasets has led to another trend in deep
learning methods. Unsupervised deep learning and semi-
supervised learning are becoming more common [35–37].
For example, Yao et al. [38] developed an unsupervised
domain adaptation framework that significantly improves
segmentation accuracy in unlabeled target domains in two
challenging cross-modality tasks, namely, brain structure
and abdominal multi-organ. Hong et al. [39] proposed a
novel unsupervised domain adaptation framework for cross-
modal liver segmentation through joint adversarial learning
and self-learning. However, most research on unsupervised
domain adaptation for image segmentation has focused on
simple tasks such as organs and tumors. .ere is no un-
supervised cross-modal research and application for vessel
segmentation yet because the size and number of blood
vessels observed on CT images of different phases are in-
consistent. Another focus of this task is to retain as many
vessel features at various levels as possible so that the trained
model can obtain better generalization performance.

.e data used in this work were all derived from liver
tumor patients. Considering that doctors need to observe the
relationship between tumors and blood vessels, this study
aims to solve how to segment arterial and venous vessels on
venous phase CT simultaneously. A two-stage network is
designed to achieve it (see Figure 2). .e modality con-
version from the arterial phase CTimage to the venous phase
CT image is realized in the first stage. .e model trained in
the second stage can realize the segmentation of arterial
vessels. .e segmentation of venous vessels is performed
concurrently with the second stage of arterial vessel seg-
mentation. .e main contributions of this paper are

(1) Unsupervised domain adaptive segmentation of
arterial vessels on venous phase CT is realized.
Combined with supervised segmentation of venous

Original image Ground truth

Arterial
phase

Venous
phase

Figure 1: CT images and annotations of the same subject at the
same coordinates generated by the same device. .e rightmost
image is cropped from an arterial phase CT. .e red and green
areas are the ground truth of arterial and venous vessels,
respectively.
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vessels, we can obtain the complete vascular system
on single-phase CT data without registration;

(2) We achieved domain adaptation of unpaired arterial
and venous phase CT using an improved generative
adversarial network. .e newly added discriminator
strengthens the role of blood vessel information in
the network, which can more effectively improve the
training efficiency of the network;

(3) An orthogonal depth projection loss function is
proposed, which uses the 3D geometric information
of blood vessels to strengthen the constraints on the
segmentation network, further improving the ac-
curacy of blood vessel segmentation.

2. Materials and Methods

2.1. Data Description. .e dataset for this study involved 25
liver tumor patients from Zhongshan Hospital of Fudan
University from March 2020 to January 2021. Each subject
provided CT images of the venous and arterial phases,
corresponding to slice thicknesses of 0.8 or 1mm. .e pixel
size of each slice is 512× 512, the corresponding minimum
spacing is 0.619mm, and themaximum spacing is 0.988mm.
Professional doctors in the hospital provide the ground truth
used in training. CT images of 20 subjects were used
throughout the experiments for training and validation to
select the optimal parameters of the model. .e rest of the
data are used to evaluate model performance. .e envi-
ronment we use in the experiment is python3.9, torch1.8.1,
and Tesla V100-DGXS 32GB.

Since the original image is a full-abdominal CT image,
but the annotations for blood vessels are concentrated in
slices with liver tissue, we only extract slices with blood
vessel annotations. Furthermore, to reduce the require-
ment of GPU memory size during training, we compress
the size of each slice from 512× 512 to 352 × 352, which
ensures the integrity of the tiny blood vessels. CT images
use cubic spline interpolation during the image scaling
process, and labels use nearest-neighbor interpolation [40].
By counting the CT values corresponding to the existing
tags in the dataset, we set the window width of the CT image
to 420 and the window level to 190. After threshold

truncating the CT image according to this setting, the
effective labeling ratio of blood vessels is 99.08%. Selecting
the threshold range can effectively reduce the erroneous
labeling caused by unclear blood vessel boundaries. Also,
we normalized the data.

.ere are many ways of data augmentation, such as
rotation, translation, scaling, and cropping [41, 42]. .is
study uses random angular rotation to simulate small body
twists of subjects during imaging examinations. .e simu-
lation of the fatness and thinness of different subjects is
achieved by random scaling. In particular, when using 3D
models for training, we ensure the consistency of model
input by taking 3D patches with dimensions of
96× 352× 352 (see Figure 3). .is way of cropping data can
reduce the demand for GPU, perform data enhancement to a
certain extent, and avoid removing more tiny blood vessels
by changing the thickness of the slice.

2.2. Vascular Reinforcement Domain Adaptive Network.
We propose a two-stage model to achieve adaptive vessel
segmentation across modality domains. In the first stage, our
vascular reinforcement domain adaptive network (VRA-
Net) achieves modality conversion from arterial phase CT
images to venous phase CT images. .e task-oriented new
discriminator unit introduces a local information loss
function. .is design can significantly enhance the repre-
sentation ability of the generative network for local vascular
information.

.eVRA-Net is based on the classic CycleGAN [34] with
the addition of two new discriminators. As shown in Fig-
ure 4, VRA-Net performs adaptive learning between arterial
phase CT (domain A) and venous phase CT (domain B). Our
VRA-Net has two paths to train simultaneously. One di-
rection is to convert the arterial phase CT image IA to a
pseudo-venous phase CT image 􏽢IB through the generator
GAB. .e translated 􏽢IB then reconstructed into the arterial
phase CT image _IA by the generatorGBA. Another path starts
from IB, generates 􏽢IA through GBA, and then reconstructs _IB
through GAB.

.e VRA-Net is a two-dimensional network, which
means the network input is 2D slices. VRA-Net contains
two generators and four discriminators. .e network
structures of the generators and the discriminators are
shown in Figure 5. .e goal of the generator GAB is to

Figure 3: Schematic diagram of selecting 3D patch..e patches are
extracted from top to bottom according to the step size of 80 and
take at least two patches at the top and bottom of each case.
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Figure 2: Overall frame diagram..e blue arrows indicate the flow
of the unsupervised domain adaptive network for arterial vessel
segmentation, and the green arrows mean that the segmentation of
venous vessels is supervised.
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convert arterial phase CT images into venous phase CT
images. .e generator GBA can complete the translation
from venous phase CT images to arterial phase CT images.
.e discriminator DA and discriminator LDA identify ar-
terial phase CTand pseudo arterial phase CT. Similarly, the
discriminators DB and LDB identify natural and pseudo
venous phase CT.

Traditional adversarial training does not guarantee that
tiny blood vessels in an image will look like we want. Some

small veins are only a few pixels in size on an image, which is
not suitable for multi-layer convolution operations. Unlike
DA and DB, which extract global information from images,
LDA and LDB only focus on local information related to
blood vessels. We use the ground truth YB and YA of the
corresponding blood vessels to activate 􏽢IB and 􏽢IA, which
means only the elements in the corresponding image with
annotated positions. .en they are retained as the input of
the new discriminator (see Figure 5)..is design enables our

Lcycle
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Llocal

Llocal Llocal

Lidt

LidtLcat

Lidt

Ladv

Ladv Ladv

LDB

LDA

DB

DA

IB

IB

IB IA

IB

IA

IA

IA IA

IB

IB

IA
GBA

GBA

GAB

GAB

Network: Generator
Discriminator

Loss: Loss Terms

Path: Training Path A
Training Path B

Training Images
Intermediate Images

Images:

Figure 4: Overall architecture of VRA-NET. .e red and green arrows represent the two simultaneous training paths, the solid line
represents the network training process, and the dashed line indicates the loss computation.

Figure 5: Network structure of generators and discriminators in VRA-NET.
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adversarial training to achieve both global and local style
transfer of small blood vessels.

During the training process, the entire network needs to
be jointly constrained by four different loss functions.

(1) .e classic adversarial loss Ladv is to make the
generated images more like target domain images.
.e ultimate goal of adversarial training is to make
the images generated by the generator indistin-
guishable from the discriminator. According to the
cross-entropy loss [43], the two adversarial losses
introduced during network training are

La dv DB, IB, 􏽢IB􏼐 􏼑 � EIB ∼ B logDB IB( 􏼁􏼂 􏼃

+ EIA ∼ A log 1 − DB
􏽢IB􏼐 􏼑􏼐 􏼑􏽨 􏽩,

La dv DA, IA, 􏽢IA􏼐 􏼑 � EIA ∼ A logDA IA( 􏼁􏼂 􏼃

+ EIB ∼ B log 1 − DA
􏽢IA􏼐 􏼑􏼐 􏼑􏽨 􏽩.

(1)

(2) .e newly added local information loss Llocal ensures
that the microvascular information is preserved as
much as possible during the domain adaptation
process. Similar to Ladv’s definition, we introduce
two local information losses:

Llocal LDB, IB, 􏽢IB, YB􏼐 􏼑 � EIB ∼ B logLDB IB( 􏼁􏼂 􏼃

+ EIA ∼ A log 1 − LDB IB∙YB( 􏼁( 􏼁􏼂 􏼃,

Llocal LDA, IA, 􏽢IA, YA􏼐 􏼑 � EIA ∼ A logLDA IA( 􏼁􏼂 􏼃

+ EIB ∼ B log 1 − LDA
􏽢IA∙YA􏼐 􏼑􏼐 􏼑􏽨 􏽩.

(2)

(3) .e cycle consistency loss Lcycle is to constrain the
source domain image reconstructed by the two
generators with the original image to avoid the
generator from over-learning the target domain.
According to the L1 loss [43], the cycle consistency
loss is

Lcycle IA, _IA, IB, _IB􏼐 􏼑 � EIA ∼ A
_IA − IA

􏼌􏼌􏼌􏼌
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2􏼔 􏼕

+ EIB ∼ B
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2
2􏼔 􏼕.

(3)

(4) .e role of the identity loss Lidt is to ensure that the
generated images are not mapped to other domains
when the input to the generator is from the target
domain. Lidt’s expression:

Li dt IA, 􏽢IA, IB, 􏽢IB􏼐 􏼑 � EIB ∼ B
􏽢IB − IB

􏼌􏼌􏼌􏼌
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􏼌􏼌􏼌􏼌
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+ EIA ∼ A
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
2􏼔 􏼕.

(4)

Finally, the overall target loss for VRA-Net is a
weighted combination of the above losses:

LVRA � λ1Lcycle + λ2La dv + λ3Llocal + λ4Li dt. (5)

2.3. Vascular Segmentation Network Constrained by Or-
thogonal Depth Projection. .e modality conversion of ar-
terial and venous phase CT images can be realized using
VRA-Net. Combined with the clinical needs of doctors, our
goal is to achieve the segmentation of arterial and venous
vessels on venous phase images. We only need to combine
the pseudo venous phase 2D images generated by the
generator into corresponding 3D volume images for
each subject and use the related arterial blood vessel labels
as the ground truth on the generated dataset. We can use
the classical supervised training of the segmentation
algorithm.

Because there are different levels of branch vessels in the
whole vascular system and their directions are different,
some small blood vessels only appear in one image and are
only a few pixels in size. To make more use of the 3D in-
formation of blood vessels, the main body of the segmen-
tation network structure used in this paper is the classic 3D
U-Net [23] (see Figure 6 for details). .e whole network has
four layers of downsampling and four layers of upsampling.
Each layer in downsampling consists of two 3× 3× 3 con-
volutions, batch normalization, ReLu [44], and max_pool-
ing. .ere are two inputs in the upsampling process, one is
from the next layer, and the other is the output from the
same layer of downsampling. Splicing the two inputs to-
gether ensures that the restored feature map incorporates
features of different scales.

In addition, in addition to the Dice loss function [45], we
propose a novel and effective projection similarity loss to
improve the segmentation network’s ability to learn the 3D
geometric information of the vascular system during
training. .e core of the projection loss function is to cal-
culate the cosine similarity of the orthogonal depth pro-
jection of the 3D model on the x, y, and z planes. .e
formulas of the two loss functions are as follows:

Ldi ce � 1 −
2|X∩Y|

|X| +|Y|
, (6)

Lps � 1 −
1
3

Px(X)∙Px(Y)

| Px(X)| × Px(Y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
+

Py(X)∙Py(Y)

| Py(X)| × Py(Y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝

+
Pz(X)∙Pz(Y)

| Pz(X)| × Pz(Y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼡,

(7)

where X is the element representing the blood vessel in the
prediction result, Ymeans the element of the blood vessel in
the ground truth, |X∩Y| is the intersection between X and Y,
and |X| and |Y| are the number of elements. In addition, Px,
Py, and Pz are orthogonal depth projection functions, and x,
y, and z are projection directions. Our projection function is
designed for the mask obtained by segmentation during
network training, a binary 3D matrix. .e specific way to
find the orthogonal depth projection is summed along a
certain axis (x, y, or z) to obtain the density matrix of the
vessel model in that direction and expand it into a one-
dimensional vector.
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Finally, using the parameter λ to control the influence of
different losses, the overall target loss LSeg of the segmen-
tation network is expressed as

LSeg � Ldi ce + λLps. (8)

2.4. Evaluation Indicators. In this paper, we use a popular
metric, Dice Similarity Coefficient (DSC), to evaluate the
segmentation results of different organs. .e meaning of
each symbol is consistent with that in Equation (6). .e
formula is

DSC �
2|X∩Y|

|X| +|Y|
. (9)

3. Results and Discussion

3.1. Experimental Results of VRA-Net. During the generative
adversarial training process in the first stage, we set λ1 � 10,
λ2 � λ3 � 1, and λ4 � 5. After the training, we extracted the
generator from the trainedmodel to test the effect of pseudo-
venous phase images generated by arterial phase CT. For the
effect of modal transformation, we conducted a qualitative
comparative study. .e difference between our method and
the classic CycleGAN is that a new local information loss is
introduced through a newly designed discriminator unit.

A qualitative comparison of the generated results of
domain adaptation is shown in Figure 7. We use test set data
that did not participate in any training for testing and select
slices from different positions (upper, middle, bottom) in a
CT for display. Intuitively, the main differences in arterial
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Figure 6: Network structure of vascular segmentation network.
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Figure 7: Rendering of the generated pseudo venous phase image. .e circular area pointed to by the red arrow is the aortic vessel, and the
yellow dotted circle is the representative tiny arterial vessel.
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vessels between the two phases lie in brightness and contrast
with adjacent tissues. From the position indicated by the red
arrow, we can observe the changes in the brightness of the
arterial vessels in the pseudo-venous phase images generated
as the training progresses. .e high-contrast location in the
yellow circle is the tiny arterial vessel. It can be seen that
when the training progresses to 100 epochs, the corre-
sponding positions of the arteries and blood vessels in the
generated results of CycleGAN become highlighted again.
After that, with the progress of training, although the
brightness of arterial blood vessels decreased again, some
blood vessels gradually became blurred, some slender
branch blood vessels were broken, and some tiny blood
vessels even disappeared. Correspondingly, our proposed
method solves these problems well.

Experiments show that our introduction of local in-
formation loss can improve the generative adversarial net-
work’s ability to generate and discriminate tiny blood vessels
during domain adaptation, thus making the whole network
more robust.

3.2. Experimental Results of Vascular Segmentation Network.
.e pseudo-venous phase CT image obtained by the gen-
erator is used as the input of the segmentation network, and
the corresponding arterial annotation of the original image
can be used as the ground truth to supervise the training of
the segmentation network. We compare the results of the
classical 2DU-Net segmentation network and 3DU-Net and
conduct qualitative and quantitative studies. We selected
two examples to visualize the segmentation results in
qualitative research. We invite doctors to label the arteries
and veins on the CT images of the venous phase on the test
set not participating in the training. .e first row of Figure 8
visualizes the labeling results. As we can observe, the ex-
perimental results demonstrate the effectiveness of the vessel
segmentation network. After training on modality trans-
formed images, we can achieve arterial vessel segmentation
on venous phase images.

In particular, the classical algorithm has poor segmen-
tation results for the junction of the inferior vena cava and
the hepatic vein in Case 2. It is not easy to label this junction
properly without the doctor’s experience, which is sur-
rounded by liver tissue and has poor contrast with the
surrounding tissue. .is result suggests that the orthogonal
depth projection loss can improve the ability of branch
vessels to learn geometric information.

We mainly calculated the DSC metrics on the seg-
mentation results in quantitative research..e segmentation
results of arterial and venous vessels are shown in Tables 1
and 2. Real A represents the original arterial phase CT image,
and fake B represents the venous phase CT image obtained
by sending the arterial phase CT image into the generator.
Real B represents the original venous phase CT image. In
addition, the ground truth used in calculating the arterial
segmentation results is the manual annotation results from
professional doctors on the corresponding modalities.

From rows 2 and 3 of Table 1, the arterial segmentation
model trained on CT in the arterial phase has a poor

segmentation effect on arterial vessels in the venous phase.
.is is obvious because the data distributions are different
for the two different modalities. In fact, in this case, the
model cannot segment the branches of arterial vessels at all.
By comparing lines 1, 3, and 5 or lines 2, 4, and 5, it is not
difficult to find that some features of arterial vessels are
inevitably lost after modal transformation (domain adap-
tation). Our method reduces this loss, which further proves
that the local information loss function can improve the
representation ability of the generator for tiny blood vessels
in adversarial training. In addition, the designed projection
similarity measure enables the segmentation network to
bring about 1.14% and 1.81% performance improvement in
arterial segmentation and vein segmentation, respectively.

4. Discussion

In this work, we propose a novel task of unsupervised
segmentation of blood vessels and establish a general two-
stage framework. Specifically, we develop a VRA-Net to
adaptively perform modality transfer on arterial phase CT
images and venous phase CT images. .e generated 2D
images are then combined into volume images and fed into
the vessel segmentation network to simultaneously complete
unsupervised training of the arterial vessel segmentation
model and supervised training of the vein segmentation
model.

Our research has three important implications. First, our
proposed network framework enables unsupervised training
of arterial vessels. .is scheme, which does not require the
target modality ground truth, alleviates the manual anno-
tation requirement for the target modality. On the contrary,
our research results can assist in subsequent annotation
work. .en, we achieve simultaneous segmentation of ar-
teries and veins in the venous phase, which avoids the need
for separate post-segmentation registration work in the
arterial and venous phases. In addition, both of our pro-
posed loss functions can enhance the network’s ability to
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Figure 8: Results of segmentation of arterial and venous vessels on
venous phase CT. Representative blood vessels are shown in the
yellow dotted circle, and the position shown in the third column is
the junction of the inferior vena cava and the liver.
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represent branch vessels. .e effectiveness of the projection
similarity measure in the segmentation network shows that
the combination of traditional vision-inspired algorithms
and deep learning methods has excellent potential in in-
terdisciplinary computer applications.

However, our study still has certain limitations. As seen
from the visualization results shown in Figure 8, some tiny
blood vessels still cannot be accurately segmented, especially
for arterial segmentation, which is unsupervised. .is is
because our domain-adaptive network focuses on learning
domain-invariant features in the two modal data, missing
the ability to represent some arterial vessels that are difficult
to observe in the venous phase. In addition, our study lacks
quantitative assessment methods for tiny vessels. In future
research, we can try to segment the liver’s interior according
to the vascular system’s anatomical structure to select the
area where some tiny blood vessels are concentrated for
quantitative evaluation.

5. Conclusions

In summary, we propose a vessel segmentation framework
that enables supervised training of venous vessel segmen-
tation and unsupervised training of arterial segmentation on
venous phase CT. We demonstrate the effectiveness of this
framework. One of the cores of our framework is the un-
supervised domain adaptation network, which can greatly
reduce the pressure on physicians to annotate data. Our
research can be generalized to multi-object segmentation on
multi-modal data from multiple centers. .e multi-object
segmentation achieved in a single phase can naturally avoid
the displacement and deformation of organs or tissues
caused by data generated at different times. We believe this
technology can effectively assist surgical decision-making
and even promote the further development of precision
medicine soon.

Our study still has some limitations, such as the lack of
quantitative assessment methods for tiny vessels and the
validation of multicenter data. In future studies, we will

further improve the accurate segmentation of tiny vessels
and combine the task of liver tumor segmentation to
evaluate the possibility of applying this framework to real-
time surgery and perform multicenter validation.
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