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For a variety of well-known approaches, optimum predictors and estimators are determined in relation to the asymmetrical
LINEX loss function. 'e applications of an iteratively practicable lowest mean squared error estimation of the regression
disturbance variation with the LINEX loss function are discussed in this research. 'is loss is a symmetrical generalisation of the
quadratic loss function. Whenever the LINEX loss function is applied, we additionally look at the risk performance of the feasible
virtually unbiased generalised Liu estimator and practicable generalised Liu estimator. Whenever the variation σ2 is specified, we
get all acceptable linear estimation in the class of linear estimation techniques, and when σ2 is undetermined, we get all acceptable
linear estimation in the class of linear estimation techniques. During position transformations, the proposed Liu estimators are
stable. 'e estimators’ biases and hazards are calculated and evaluated. We utilize an asymmetrical loss function, the LINEX loss
function, to calculate the actual hazards of several error variation estimators. 'e employment of δP(σ), which is easy to use and
maximin, is recommended in the conclusions.

1. Introduction

'e practical applications of statistics gained new emphasis
[1–4]. In this approach, we consider the following. A farmer
not only needs to choose the kind of fertiliser that generates
the greatest mean output from a list of ‘k’ fertilisers but also
needs an estimation of the mean for the fertiliser he chooses.
A physician needs not only to choose the kind of drugs from
a list of ‘k’ distinct drugs, quantify its efficiency, and choose
the more efficient one but also needs to evaluate the drug’s
efficiency using the similar information. See [5], for more
information on this subject, including debates and appli-
cations [6]. 'e symmetrical quadratic loss functions have
been frequently employed in assessing risk functions of
certain estimators. It is worth noting that all-biased esti-
mator research employs the mean square error (MSE) or,

equally, the symmetric quadratic loss as the foundation for
evaluating estimator effectiveness. 'e employment of
symmetric loss functions are well acknowledged to be in-
correct in several situations, especially when positively and
negatively errors have differing effects. Varian [7] developed
the asymmetric LINEX (linear exponential) loss function,
which is quite valuable. Since then [8], the features of the
LINEX loss function have been thoroughly explored, and
various research studies on the usage of the LINEX loss
function have been conducted. 'e loss functional is ob-
tained by estimating the variable θ by 􏽢θ [9]:

L(􏽢θ) � b[exp(aΔ) − aΔ − 1], (1)

where a≠ 0, b> 0, andΔ � 􏽢θ − θ/θ are the relative estima-
tion errors when employing 􏽢θ to evaluate 􏽢θ. Because the
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comparative estimation errors are independent of the unit,
it is frequently utilised. We consider (without losing
flexibility) that b � 1 in this research. If overestimation is
much more serious than underestimation, the value of the
shape factor a represents the orientation of asymmetry.
We assign a> 0(a< 0) if overestimation is more serious
than underestimation. 'e degree of asymmetry is rep-
resented by the size of a. In the case of tiny values of
|a|, L(􏽢θ) � 1/2ba2(􏽢θ − θ/θ) which is equivalent to a (SEL)
squared error loss. As a result, the LINEX loss function
could be thought of as an asymmetric generalisation of the
squared error loss function. 'e LINEX loss function has
been evaluated by a number of researchers in several in-
terest difficulties. For instance, see [10–14]. With the
LINEX loss function, Ohtani [15] investigated the risk of
the feasible generalised ridge regression (FGRR) estima-
tion. Whenever a is large and positive, Ohtani [16]
demonstrated that the FGRR estimator could completely
outperform the ordinary least squares (OLS) estimator.
Using the asymmetric LINEX loss function, Wan [17]
investigates the characteristics of the feasible almost un-
biased generalised ridge regression (FAUGRR) estimator.
Positive estimation error is considered more significant
than negative estimation mistake if the variable a is
positive, and vice versa. When multicollinearity is a
challenge, one option is to employ the Liu estimators
suggested by [18] (also, see [19]). Undefined variables are
the finest biasing variables to use; they can be substituted
by sampling estimations. 'e Liu estimators are referred to
as viable Liu estimators in this circumstance. Akdeniz and
Kaçiranlar [19] calculated the accurate MSE of the viable
generalised Liu estimator. Since the usage of symmetrical
loss functions might be problematic in certain practical
scenarios, asymmetric loss function estimating difficulties
has recently received a lot of emphasis (see, for example,
[8]). 'e accompanying important asymmetric LINEX loss
function was developed by Varian [7]:

L(δ, θ) � b(exp a(δ − θ){ } − a(δ − θ) − 1), (2)

where the variables a≠ 0, b> 0 are well-known. Using the
above loss function, Zellner [8] [20] established that the
ordinary sample mean is unacceptable for predicting stan-
dard mean (in the situation where the variation is available).
Roio [21] extended Zellner’s findings by considering the
acceptability of linear functions of the sample mean under
the LINEX loss function (2). Bolfarine [22] looked at esti-
mate difficulties for the limited populations total using the
LINEX loss function at the time, θ, in (2), meant pop-
ulations’ total. He presented the populations’ overall Bayes
estimation technique and addressed the acceptability of
certain generated estimators.'e goal of this study is to see if
linear estimators of an independent linear function of
limited population’s feature variables are admissible under
the LINEX loss function. Assume that the limited pop-
ulations Y1, . . . , YN􏼈 􏼉 are a random sample drawn from the
superpopulations’ prototype [23]:

yk � akβ + bk + εk, (3)

where k � 1, . . . , N, ak > 0 and bk were given variables, β is
the undetermined variable, εk is standard with mean zero
and variation, σ2, and ε1, . . . , εN are directly independent.
Cassel et al. examined this concept in depth and found it to
be highly beneficial. It was also addressed by [24]. Con-
sidering the superpopulation framework, we would inves-
tigate the estimation difficulties of the linear function
􏽐

N
k�1 pkYk(pk > 0, k � 1, . . . , N), with the LINEX loss

function (Eq. 2 and Eq. 3). We consider that the sample
yk, k ∈ s􏼈 􏼉 is generated using an independent sampling
method p(i.e., p(s)satisfiesp(s)> 0, and􏽐s∈Sp(s) � 1,

where S is a class of subsets of 1, . . . , N ). We find all ac-
ceptable linear estimators of 􏽐

N
k�1 pkYk in the scenario,

where σ2 is given. We also analyse the acceptability of a
linear estimator in this instance because σ2 is frequently
undetermined in actual issues. In the class of linear esti-
mation techniques, we achieve all acceptable linear esti-
mation methods of 􏽐

N
k�1 pkYk. Unlike the squared error loss

(SEL), the sufficient and necessary criteria for a linear es-
timator to be acceptable with the LINEX loss function, for
scenarios where σ2 is unknown or known, are significantly
varied, at least within the class of linear estimators, which is
rather unexpected.

'e accompanying factors are the factors why the re-
searcher chooses linear function 􏽐

N
k�1 pkYk:

(i) It contains the normal situation of
E(ε2K) � σ2ag

k(g≥ 0 is a fixed variable) through
transformations

(ii) In certain actual situations, the linear function
􏽐

N
k�1 pkYk must be estimated [25]

We consider b � 1 in the LINEX loss functions because
the values of b have no effects on acceptability.

2. Linex Loss Functions

Zellner studied the LINEX loss functions in his research
work [8]. 'e derivations are as discussed below. 'e scalar
estimating errors in utilizing 􏽢θ to predict θ is denoted as
Δ � 􏽢θ − θ. 'e accompanying convex loss function was
proposed by Varian [7]:

L(Δ) � be
aΔ

− cΔ − b, a, c≠ 0, b> 0. (4)

L(0) � 0 is clearly visible. Moreover, we need ab � c for a
minimum to occur at Δ � 0; therefore, (4)could be rewritten
as

L(Δ) � b e
aΔ

− aΔ − 1􏽨 􏽩, a≠ 0, b> 0. (5)

In (5) there are two variables, a and b, with b determining
the loss function’s scale and a determining its form. For
specified values of a and Δ, values of eaΔ − aΔ − 1 are
graphed in Figure 1. For a � 1 or a> 0, it can be observed
that the functions are asymmetrical, with overestimation
costing more than underestimation. Whenever a< 0, on the
contrary, (5)climbs practically exponentially when
Δ � 􏽢θ − θ< 0, and approximately, linear when Δ � 􏽢θ − θ > 0.

'e function is nearly symmetrical and not far from a
squared error loss function for smaller values of |a|.
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Extending eaΔ � 1 + aΔ + a2Δ2/2, L(Δ) � a2Δ2/2, which is a
squared error loss function. As a result, for low values of |a|,
the best predictions and estimations are similar to those
produced using a squared error loss functions. Whenever |a|

considers significant values, meanwhile, optimum point
predictions and estimations would vary significantly from
those produced with a symmetrical squared error loss
function; for instances, see Varian [7]. 'ere is a desire to
expand the type of estimate for multiparameter estimations
and multivariate prediction challenges (4) and (5) Let Δi �
􏽢θi − θi represent the errors in predicting θi with the estimate
􏽢θi, i � 1, 2, . . . , k. 'e separable expanded LINEX loss
function is then as follows:

L(Δ) � 􏽘
k

i�1
bi exp aiΔi( 􏼁 − aiΔi − 1( 􏼁,

ai ≠ 0, bi > 0, i � 1, 2, . . . , k,

(6)

where Δ′ � (Δ1,Δ2, . . . ,Δk). L(0) � 0, L′(0) � 0, andΔ � 0
correspond to a minimum in this convex loss functions. In
multiparameter multivariate prediction and estimation is-
sues, the function in (6)could be used.

3. The Estimator

'e estimator is discussed extensively in the research work
of Parsian and Farsipour in the year 2000 who made an
extensive study and derived variables, as discussed below
[26]. Let Xi1, Xi2, . . . , Xin, i � 1, 2, be a set of independent

randomly sampling from standard population, each with an
undetermined mean θi and a mutual determined variation
τ2. Let Xi represent the sample mean of the ith population,
where i � 1, 2.'e fundamental method, according to which
the population equivalent to the bigger sample mean is
picked, is used to choose the population with the higher
mean. We would like to calculate the population’s mean M

that could be represented as

M � θ1I1 + θ2I2
� θ2 + θI1.

(7)

Here, θ � θ1 − θ2, I2 � 1 − I1, and

I1 �
1, if X1.>X2,

0, otherwise.

⎧⎨

⎩ (8)

M is, of course, a stochastic variable with a discrete
property and probability functions:

P M � θi( 􏼁

� P Xmax � Xi( 􏼁

� P Xi.>Xj.; i≠ j􏽮 􏽯􏼐 􏼑.

(9)

For i � 1, 2, Xmax � max(X1., X2.).
An estimator δ of θ satisfies the preceding conditions,

which are considered to be risk unbiased by [27]

Eθ[L(θ, δ(X))],

Eθ L θ′, δ(X)( 􏼁􏼂 􏼃,

∀θ′ ≠ θ.

(10)

As a result, we call an estimator δ of M risk unbiased
with consideration to the LINEX loss function (1) (from here
on referred to as L-unbiased) if

E e
aδ

􏼐 􏼑 � E e
aM

􏼐 􏼑. (11)

Otherwise, it is biased because bias is described as

B(δ) �
1
a

In E e
aM

􏼐 􏼑􏼐 􏼑 − In E e
aδ

􏼐 􏼑􏼐 􏼑􏽮 􏽯, (12)

where M has a normal estimation:

δ1 �
X1. + X2.

2
+

X1. − X2.
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2
. (13)

Xmax � max(X1., X2.) is unmistakable. 'e second es-
timation is generated by removing from, on its own, an
λ-multiple of δ1’s predicted bias. 'is results in a slightly
different class of estimators known as bias reducing (BR)
estimators. 'ey are reliant on constants λ that determine
the degree of bias elimination and also have an impact on the
hazard, which is of the type

δ1λ(σ) � Xmax +
aλσ2

2
+
λ
a

In
V(aσ/

�
2

√
− X/

���
2σ

√
) + e

ax
V(aσ/

�
2

√
+ X/

���
2σ

√
)

1 + e
aX

− 1􏼐 􏼑V(X/
���
2σ

√
)

⎧⎨

⎩

⎫⎬

⎭. (14)
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Figure 1: For specified values of a, plots of eaΔ − aΔ − 1.
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where X � X1. − X2., σ � τ/
�
n

√
, λ0 is an arbitrary variable,

andV(Δ) is the usual regular overall distributions functions.
We suggest a third estimator, which is provided by

δ3(σ) � X2. +
1
a

In 1 + e
aX

− 1􏼐 􏼑V
X
���
2σ

√􏼠 􏼡􏼨 􏼩. (15)

Consider that, for a motive of (15) as an estimation of M,
use MLE of 1/aIn E(eaX)􏼈 􏼉 (14):

E e
aM

􏼐 􏼑 � e
aθ2 1 + e

aθ
− 1􏼐 􏼑V

θ
���
2σ

√􏼠 􏼡􏼨 􏼩. (16)

'is form of estimator has a broader version, which is
provided by

δ2λ(σ) � X2. +
1
a

In 1 + e
aX

− 1􏼐 􏼑V
X
���
2σ

√􏼠 􏼡􏼨 􏼩 +
aλσ2

2

+
λ
a

In
V(aσ/2 − X/2σ) + e

aX
V(aσ/2 + X/2σ)

1 + e
aX

− 1􏼐 􏼑V(X/
���
2σ

√
)

⎧⎨

⎩

⎫⎬

⎭,

(17)

where λ is a variable. 'e reason for δ1λ(σ) is similar to for
δ2λ(σ), and it is calculated by removing a λ-multiple of δ3(σ)

estimated bias from its own. Another estimation that we will
look into is provided by

δH(c) �

X1. + X2.

2
, if X1. − X2.

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

���
2cσ

√
,

Xmax, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

where c is a variable that can be changed. It is worth noting
that we obtain Xmax, for c � 0, which is similar to δ1λ(σ) for
λ � 0. 'e estimator δH(c) is frequently referred to as a
hybrid estimator, and it has been taken into consideration.
It is explained how δH(c) has been adjusted. We acquire
this estimator using Xmax and a preliminary testing. We
now develop the next estimation utilizing a concept of
references. It is worth noting that, in most circumstances,
the categorization of the selected group maintains to be
fascinating after the decision has been made. In most cases,
the preliminary decision effects are omitted in the esti-
mation [28].

After early significant testing has been completed, the
challenge of estimating arises. 'e post-selection estimating
challenge is particularly important in the development of
processes and equipment with a large number of elements, as
[29] pointed out in relation to his approach. If the risk rates
or another feature value of the entire system or equipment is
evaluated, the accumulating bias might create quite a de-
ceptive conclusion if both the assortments and the number
of components are considerable [30].

When it comes to estimation, additional information is
generally accessible than when it comes to decision. 'e
statistics accessible at the period of choosing are denoted by
Z1 and Z2, and the extra data accessible at the time of es-
timation are denoted by W1 and W2. Z1, Z2, W1, andW2 are
clearly designed to be independent factors:

E e
aZi􏼐 􏼑 � E e

aWi􏼐 􏼑

� e
aθi i

� 1, 2.

(19)

'is is how we characterize:

M1 �
θ1, if Z1Z2,

θ2, Otherwise.
􏼨 (20)

'e accompanying formulas can be used to determine
the parameters Zi and Wi:

Zi � Xi. +
Vi

c
−
1
2

aσ2 c
2

+ 1􏼐 􏼑

c
2 ,

Wi � Xi. − cVi −
1
2

aσ2 c
2

+ 1􏼐 􏼑, i � 1, 2,

(21)

where c is a positive value and V1 and V2 are independent
random factors.'ey are regularly generated, with a mean of
0 and a variation of σ2, and are unaffected by X1. and X2..
'ey can be specified as a function of the actual sampling
components or created using a table of stochastic numbers.
Now, let us establish

U �
W1, if Z1Z2

W2, otherwise.
􏼨 (22)

It is then simple to prove that

E e
aM1􏼐 􏼑 � E e

aU
􏼐 􏼑. (23)

Specifically, U is an L-unbiased M1 estimator that is
biased for M. Instead of U, a different estimate is generated
as specified:

E e
aU

|X1., X2.􏼐 􏼑 � e
aX2 .− (1/2)a2σ2

e
aX

V
cX
���
2σ

√ −
acσ

�
2

√􏼠 􏼡 + V −
cX
���
2σ

√ −
acσ

�
2

√􏼠 􏼡􏼢 􏼣.

(24)

As a result, a M estimation is provided by

δ4(c) � X2. −
1
2

aσ2 +
1
a

In

e
aX

V
cX
���
2σ

√ −
acσ

�
2

√􏼠 􏼡 + V −
cX
���
2σ

√ −
acσ

�
2

√􏼠 􏼡􏼨 􏼩.

(25)

'e δ4(c) estimator is an L-unbiased estimation:

θ2 +
1
a

In e
aθ

− 1􏼐 􏼑V
cθ

���������

2σ
�����
c
2

+ 1
􏽰􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (26)

for large c, which becomes θ2 + 1/aIn

(eaθ − 1)V(θ/
���
2σ

√
) + 1􏼈 􏼉. As a result, by increasing c, the

bias of δ4(c) as an M estimator could be reduced. 'e
Pitman-type estimator of M, which is the generalised
Bayesian estimation of M with regard to the regular priori
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on the two-dimensional (2D) space (θ1, θ2), is the con-
cluding estimation under consideration:

δP(σ) � X1.I1 + X2.I2 −
aσ2

2
I
2
1 −

aσ2

2
I
2
2.

(27)

It proves to be

δP(σ) � Xmax −
aσ2

2
, (28)

as well as it is a minimax.
To conclude this section, it is essential noting that

whenever symmetries were available in a situation, it is
normal to demand a comparable symmetry to exist for the
estimation, according to the selection theoretic method.
'ere are intrinsic symmetries in many statistics estimating
issues. In our estimating issue, this is likewise the situation.
'e proposed estimators were stable by position modifi-
cations in the sense that if 􏽢M represents for an estimator of
M,

􏽢M Y1 + c, Y2 + c( 􏼁 � 􏽢M Y1, Y2( 􏼁 + c,∀c ∈ R. (29)

SinceMMy1; y2 is also stable by position modifications,
this is a desired characteristic.

4. TheFeasibleGlEstimator’sRiskPerformance

Akdeniz widely studied the feasibility of the GL estimator
risk performance [31]. According to his research work, we
established a suitable requirement for the GL estimator with
di � ⋋i(β

2
i − σ2)/⋋iβ

2
i + σ2 to dominating the OLS estimator

when the LINEX loss functions are applied in the preceding
section. However, in practise, this biasing factor comprises
the undetermined parameters, βi and σ2, that can be
substituted by their sampling estimations. 'e practicable
GL estimator has the following parameters: 􏽢di � λi(

􏽢βi
2 −

􏽢σ2)/λi
􏽢βi

2 + 􏽢σ2 and 􏽢σ2 � (y − X􏽢β)′(y − X􏽢β)/n − l. In
this section, we look at how the feasible GL estimator
performs whenever the LINEX loss function is applied.

We’ll define zi � λ2i 􏽢βi/σ andV � (n − l)z2/σ2. 'erefore,
with v � n − l degrees of freedom, zi and V are distributed as
N(θi, 1) and chi-square distributions, correspondingly. 'e
feasible GL estimator of βi could be expressed as using zi and
V:

􏽥β
∗
i �

λi + 􏽢di

1 + λi

􏽢βi. (30)

Or

􏽥β
∗
i �

λi + λi
􏽢β
2
i − 􏽢σ2􏼒 􏼓/λi

􏽢β
2
i + 􏽢σ2

1 + λi

􏽢βi,

z
2
i

z
2
i + v/]

􏽢βi.

(31)

We can define 􏽢βi � ziβi/θi since zi � λ1/2i
􏽢βi/σ

an dθi � λ1/2i βi/σ. As a result,

􏽥β
∗
i �

z
3
i βi/θi

z
2
i + v/]

. (32)

Or
􏽥β
∗
i

βi

�
z
3
i βi/θi

z
2
i + v/]

. (33)

'e hazard function of 􏽥β
∗
i is

R 􏽥β
∗
i􏼐 􏼑 � E exp a

􏽥β
∗
i

βi

− 1􏼠 􏼡􏼢 􏼣 − a
􏽥β
∗
i

βi

− 1􏼠 􏼡 − 1􏼨 􏼩

� E 􏽘
∞

j�0
a

j
􏽥β
∗
i /βi − 1􏼐 􏼑

j

j
!

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ − E a
􏽥β
∗
i

βi

− 1􏼠 􏼡 + 1􏼢 􏼣

� E 1 +
a 􏽥β
∗
i /βi − 1􏼐 􏼑

1!
⎡⎢⎣ ⎤⎥⎦ + E 􏽘

∞

j�2
a

j
􏽥β
∗
i /βi − 1􏼐 􏼑

j

j
!

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− E a
􏽥β
∗
i

βi

− 1􏼠 􏼡 + 1􏼢 􏼣

� E 􏽘
∞

j�2

a
j

j!
􏽘

j

r�0
C(j, r)

􏽥β
∗
i

βi

􏼠 􏼡

r

(− 1)
j− r⎡⎢⎢⎣ ⎤⎥⎥⎦

� 􏽘

∞

j�2
a

j
􏽘

j

r�0

j!

r!(j − r)!j!
(− 1)

j− r
E

􏽥β
∗
i

βi

􏼠 􏼡

r

⎡⎣ ⎤⎦.

(34)

As a result, the risk function for 􏽥β
∗
i is

R 􏽥β
∗
i􏼐 􏼑 � 􏽘
∞

j�2
a

j
􏽘

j

r�0

j!

r!(j − r)!j!
(− 1)

j− r
E

z
3r
i

θr
i z

2
i + v/]􏼐 􏼑

r
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(35)

As a result, the risk functional of the practicable GL
estimator, 􏽥β

∗
i , satisfies the risk component of the feasible

GRR estimation method, which is provided. By replacing
β2i and σ2 with their unbiased estimations 􏽢β

2
i − z2/λi and 􏽢σ2,

we get the following estimates of di:
􏽥di � 1 − 􏽢σ21+

λi/λi
􏽢β
2
i , i � 1, 2, . . . , l (refer, for instance, Liu (1993)) [23].

'e viable GL estimation of βi in this example is expressed as

􏽥bi �
λi + 􏽥di

1 + λi

􏽢βi. (36)

Or

􏽥bi � 1 −
V

vz
2
i

􏼠 􏼡
ziβi

θi

. (37)

As a result,

􏽥bi

βi

� 1 −
V

vz
2
i

􏼠 􏼡
zi

θi

. (38)

'e 􏽥bi risk function is
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R 􏽥bi􏼐 􏼑 � 􏽘
∞

j�2
a

j
􏽘

j

r�0

j!

r!(j − r)!j!
(− 1)

j− r
E

􏽥bi

βi

􏼠 􏼡

r

􏼢 􏼣. (39)

Or

R 􏽥bi􏼐 􏼑 � 􏽘
∞

j�2
a

j
􏽘

j

r�0

j!

r!(j − r)!j!
(− 1)

j− r
E 1 −

V

vz2
i

􏼠 􏼡

r
zi

θi

􏼠 􏼡

r

􏼢 􏼣. (40)

'e rth moment of 􏽥bi/βi is provided as indicated in
Appendix.

(a) r � 2p:

E
􏽥bi

βi

􏼠 􏼡

2p

�
θ2i
2

􏼠 􏼡

− p

􏽘

∞

q�0

θ2i
2

􏼠 􏼡

q

exp −
θ2i
2

􏼠 􏼡
Γ(p + q + v + 1/2)

q!Γ(q + 1/2)Γ(]/2)

× 􏽚
1

0
f

q− p−
1
2 f(v + 1) − 1

v
􏼢 􏼣

2p

(1 − f)
v/2− 1

df.

(41)

(b) r � 2p + 1:

E
􏽥bi

βi

􏼠 􏼡

2p+1

�
θ2i
2

􏼠 􏼡

− p

􏽘

∞

q�0

θ2i
2

􏼠 􏼡

q

exp −
θ2i
2

􏼠 􏼡
Γ(p + q + v + 1/2 + 1)

q!Γ(q + 3/2)Γ(]/2)

× 􏽚
1

0
f

q− p−
1
2 f(] + 1) − 1

]
􏼢 􏼣

2p+1

(1 − f)
v/2− 1

df.

(42)

By replacing for (42) and (43) in (39) the risk functions
could be derived.

5. Risk Functions

Kazhuhiro Ohtani is one of the researchers who studied the
extensive risk functions involved in LINEX functions.
According to him, the following discussion is done [16]. In
his study, the following variables are defined first:

u � n
x − μ0( 􏼁

2

σ2
,

v � 􏽘
n

i�1

xi − x( 􏼁
2

σ2
.

(43)

While u is allocated as X’2
1 (λ), v is allocated as X2

n− 1,
X’2

1 (λ) the noncentral chi-square distributions with 1 degree
of freedom, X2

n− 1 signifies the chi-square [31] allocation with
n − 1 degrees of freedom, and noncentrality variable is λ �

n(μ − μ0)
2/σ2 Taking into account that 􏽐

n
i�1 (xi − μ0)

2 �

σ2(v + u) and J � σ2v/σ20 � v/θ, wherein θ � σ20/σ
2 ≤ 1,

􏽢σ∗2/σ2:

􏽢σ∗2

σ2
� I

v

θ
< c􏼒 􏼓θ +

I v/θ≥ c, v/v + u< a1/a2( 􏼁v

a1

+
I v/θ≥ c, v/v + u≥ a1/a2( 􏼁(v + u)

a2
.

(44)

Here, a1 � n + 1 and a2 � n + 2.
Equate

exp(aΔ) � 􏽘
∞

k�0

(aΔ)k

k!
. (45)

'e risk function of 􏽢σ∗2 with the LINEX loss is given:

R 􏽢σ∗2􏼐 􏼑 � E L 􏽢σ∗2􏼐 􏼑􏽨 􏽩

� E 􏽘
∞

K�2

a
k

k!
􏼠 􏼡

􏽢σ∗2

σ2
− 1􏼠 􏼡

k

⎡⎢⎣ ⎤⎥⎦.

(46)

R(􏽢σ∗2) is reduced to utilizing the binomial expansions:

R 􏽢σ∗2􏼐 􏼑 � 􏽘
∞

k�2

a
k

k!
􏼠 􏼡 􏽘

k

m�0
kCmE

􏽢σ∗2

σ2
􏼠 􏼡

m

􏼢 􏼣(− 1)
k− m

􏽘

∞

k�2
a

k
􏽘

k

m�0

(− 1)
k− m

m!(k − m)!
E

􏽢σ∗2

σ2
􏼠 􏼡

m

􏼢 􏼣.

(47)

'e standard equation for the components of the PTSV
estimation (i.e., E[(􏽢σ∗2/σ2)m]) is provided in Appendix:

E
􏽢σ∗2

σ2
􏼠 􏼡

m

􏼢 􏼣 � θm
P

v

2
,
θc

2
􏼠 􏼡

+
1

a
m
1

􏽘

∞

i�0
ωi(λ)

2mΓ(v/2 + m)

Γ(v/2)

1 − P
v

2
+ m,

θc

2
􏼠 􏼡􏼢 􏼣

−
1

a
m
1

􏽘

∞

i�0
􏽘

∞

j�0
ωi(λ)

(− 1)
j2m

j!(1/2 + i + j)a
1/2+i+j
1

×
Γ(] + 1/2 + m + i + j)

Γ(]/2)Γ(1/2 + i)

× 1 − P
(v + 1)

2
+ m + i + j,

θc

2
􏼠 􏼡􏼢 􏼣

+
1

a
m
2

􏽘

∞

i�0
ωi(λ)

2m

Γ(v/2)Γ(1/2 + i)
􏽘

m

r�0
mCr

× 􏽘
∞

j�0

(− 1)
jΓ(v + 1/2 + m + i + j)

j!(1/2 + i + m − r + j)a
1/2+i+m− r+j
1

× 1 − P
v + 1
2

+ m + i + j,
θc

2
􏼠 􏼡􏼢 􏼣.

(48)

Here,

wi(λ) � expi(− λ/2)(λ/2)

i!
. (49)

'e incomplete gamma functions ratio is denoted as
P(∝ , y):
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P(∝ , y) �
1
Γ(∝ )

􏽚
y

0
t
∝− I exp(− t)dt. (50)

We get the risk function equation by equating (48)into
(46)

6. The Liu Estimator’s Probability Shrinking
Factor Distributions

According to Akdeniz and Öztürk, the Liu estimator
probability shrinking factor and distributions were discussed
as shown below [32]. Using the CLRM requirements, we
need to get the density functions of 􏽢di(i � 1, 2, . . . , p), as
described in (51) [32, 33]. 'e accompanying theory ex-
presses the conclusion. 'e Liu estimator’s probability
shrinking factor distributions are

􏽢di � 􏽢di(OLS) �
λi

􏽢β
2
i − 􏽢σ2􏼒 􏼓

λi
􏽢β
2
i + 􏽢σ2

, (51)

y � Zc + ε, (52)

ε ∼ N 0, σ2I􏼐 􏼑. (53)

Theorem 6. <e density functions of
􏽢di(OLS) � λi(

􏽢β
2
i − 􏽢σ2)/λi

􏽢β
2
i + 􏽢σ2 with the assumptions pro-

vided in (52) and (53) are provided by

f d̂i􏼐 􏼑 �
e

− θi/2v
v/2 1 + λi/1 − 􏽢di − 1􏼐 􏼑

− 1/2
1 + λi/ 1 − 􏽢di􏼐 􏼑

2

Γ(v/2) v − 1 + 1 + λi/1 − 􏽢di􏽨 􏽩
v+1/2

× 􏽘
∞

j�0

θi/2 1 + λi/1 − 􏽢di − 1􏼐 􏼑

v − 1 + 1 + λi/1 − 􏽢di􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

j

×
Γ(v + 1/2 + j)

Γ(j + 1)Γ(j + 1/2)
,

(54)

where θi � λiβ
2
i /σ

2andv � n − p.

Proof. From (53),

􏽢di �
λi

􏽢β
2
i − 􏽢σ2􏼒 􏼓

λi
􏽢β
2
i + 􏽢σ2

�
vδi − uλi

vδi + u
.

(55)

where u � v􏽢σ
2

/σ2 ∼ X2
v is a central Chi-square allocation

with v degrees of freedom and δi � (􏽢βi/σ/
��
λi

􏽰
)2 ∼ X2

1(θ)i is a
noncentral Chi-square allocation with one degree of free-
dom and noncentrality factor θi. Because 􏽢σ2 and 􏽢βi are
unrelated, it proves that

w �
δi/1
u/v

� λi

􏽢β
2
i

􏽢σ2
∼ F(1,v) θi, 0( 􏼁. (56)

With regard to density,

λi=1.5 ; θi=1.25

λi=2 ; θi=0.25

λi=10 ; θi=1.25

2.5

2

1.5

1

0.5

0
-5 -4 -3 -2 -1 n 1

Figure 2: 'e density functional measures of 􏽢di’s graph.

λi=10 ; θi=2.5

λi=20 ; θi=5

λi=30 ; θi=7.5

0.25

0.2

0.15

0.1

0.05

0
-30 -25 -20 -15 -10 0 5

Figure 3: 'e density functional measures of 􏽢di’s graph.

Computational Intelligence and Neuroscience 7



f(w) �
e

− θi/2v]/2w− 1/2

B(1/2, v/2)(v + w)
v+1/2

× 􏽘
∞

j�1

θiw/2
v + w

􏼠 􏼡
Γ(v + 1/2 + j)Γ(1/2)

Γ(j + 1)Γ(j + 1/2)Γ(v + 1/2)
w> 0,

(57)

where Γ(∝ ) � 􏽒
∞
0 t∝− 1e− tdt andB(∝ , β) � Γ(α)Γ(β)

/Γ(∝ + β). After that, there is the stochastic factor:

􏽢di �
vδi − uλi

vδi + u
� 1 −

1 + λi

1 + w
. (58)

When using the reverse transformations,

w �
1 + λi

1 − 􏽢di

− 1. (59)

possesses the density

f 􏽢di􏼐 􏼑 �
e

− θi/2vv/2 1+λi/1− 􏽢di− 1( 􏼁
− 1/2

1+λi/ 1− 􏽢di( 􏼁
2

Γ(v/2) v − 1 + 1 + λi/1 − 􏽢di􏽨 􏽩
v+1/2

× 􏽘
∞

j�0

θi/2 1 + λi/1 − 􏽢di − 1􏼐 􏼑

v − 1 + 1 + λi/1 − 􏽢di􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

j

×
Γ(v + 1/2 + j)

Γ(j + 1)Γ(j + 1/2)
,

(60)

with the given − λi < 􏽢di < 1.
'e density of 􏽢di is determined by the values of

v � n − p, θi � λiβ
2
i /σ

2, and λi. 'e density functions plots

are shown in Figure 2 (forλi � 1.5, 2, 10; σ2 � 4; βi � 1;

v � 20), Figure 3 (forλi � 15, 25, 35; σ2 � 4; βi � 1; v � 20),
and Figure 4 (forλi � 55, 80, 100; σ2 � 4; βi � 1; v � 20), in
which the values of 􏽢di were on the horizontal axes and
f(􏽢di). □

7. Conclusion

Under the conditions of multicollinearity, certain biased
estimators, such as the Ridge and Liu types, might be able to
handle the OLS estimator’s drawbacks. 'e efficiency of the
Liu estimators addressed in this research was evaluated using
the asymmetrical LINEX loss function. As a result, we can
determine that these Liu estimator categories are gradually
equivalent. Furthermore, the LINEX loss function is more
complex to estimate and implement, whereas the density
function of the shrinkage biasing variables of the generalised
Liu-type estimator. 'e characteristics of the resultant Liu
estimator are probably to be affected by the random be-
haviour of the predicted shrinkage biasing variables. 'e
Liu-type estimator is based on the values of
v � n − p, θi � λiβ

2
i /σ

2, and λi. 'at could be considered a
variation of the Liu estimator, which is simpler to compute
and implement.
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