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Despite the emergence of various human-robot collaboration frameworks, most are not su�ciently �exible to adapt to users with
di�erent habits. In this article, a Multimodal Reinforcement Learning Human-Robot Collaboration (MRLC) framework is
proposed. It integrates reinforcement learning into human-robot collaboration and continuously adapts to the user’s habits in the
process of collaboration with the user to achieve the e�ect of human-robot cointegration. With the user’s multimodal features as
states, the MRLC framework collects the user’s speech through natural language processing and employs it to determine the
reward of the actions made by the robot. Our experiments demonstrate that the MRLC framework can adapt to the user’s habits
after repeated learning and better understand the user’s intention compared to traditional solutions.

1. Introduction

 e limitations of “human-centered” or “robot-centered”
robots have become increasingly essential with the ad-
vancement of the theories and applications of natural hu-
man-robot interaction. Regardless of the type of robots,
understanding human intentions is indispensable for
achieving complex human-robot collaboration processes [1].
A well-designed robot should dynamically adapt its behavior
to di�erent tasks and help humans more e�ciently and
respond to changes in the environment, humans, and own
state in real time. In our daily life, we often communicate
with others by expressing behavioral intentions [2–4] (such
as gazes, gestures, and actions) to obtain a tacit under-
standing when collaborating with them. ese intentions are
frequently expressed through messages such as body lan-
guage, voice, and mannerisms.

Perceiving the information mentioned above is not a
complex problem for robots, and there have been many
related studies making robots more e�ective in perceiving

people and environments [5]. However, this modal infor-
mation obtained through sensors does not intuitively and
accurately express real human intentions. Using this in-
formation rationally to acquire the exact human intentions is
a popular research ¡eld at present.

2. Related Work

2.1. Human-Robot Collaboration and Intention
Understanding. Many excellent algorithms have emerged in
implementing human-robot collaboration based on inten-
tion understanding. In 2007, Suzuki et al. [6] estimated the
intention of a paraplegic patient using the reaction forces on
the �oor while walking and standing.  eir conclusions
demonstrated the e�ectiveness of this approach in sup-
porting the daily life of people with disabilities. In 2013, the
Bayesian model was applied by Wang et al. [7] to estimate
intentions on kinetic models generated in the process of
human motion and recognition intention results were
updated when additional motion data were obtained. In
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2015, Ref. [8] employed manually applied forces and hip
rotations to identify motion intention. -eir conclusions
verified that the method was effective in helping older people
with turning assistance. In 2018, a hidden Markov model
was used by Berg et al. [9] to recognize human motion,
allowing robots to better adapt to human behavior and
achieve human-robot synergy on production lines. Refer-
ence [10] utilized brain-computer interfaces (BCIs), visual
interfaces, and remote robots to perform “emulated haptic
shared control,” through which a remote proximity per-
ception system was established to achieve human-robot
collaboration and enable tetraplegic patients to interact with
friends and the environment. Reference [11] performed
excellent work in the opposite direction by proposing a
method to interpret robot behavior as intention signals using
natural language sentences, so as to better reveal robot
behaviors and reduce misunderstandings caused by infor-
mation asymmetry. Reference [12] proposed the proactive
incremental learning (PIL) framework that learned the
connection between human gestures and robot actions,
which contributes to efficient human-robot interaction. In
2019, Ref. [13] proposed a cooperative fuzzy impedance
control with embedded safety rules, a method that provides
assistance and safety for human operators in heavy industrial
scenarios. Reference [14] computed the probability distri-
bution of intentions corresponding to each modality and
then output these distributions through a Bayesian approach
to combine independent opinion bases. -e results sug-
gested that this approach was better in accuracy and ro-
bustness than a unimodal-based classifier. In 2021, Ref. [15]
achieved intention understanding using a single modality,
gaze. -eir study confirmed that gaze enabled more efficient
human-computer collaboration in specific scenarios. In
addition to conventional modalities (such as gesture, gaze,
voice, and action), many studies exploited the information of
less detectable modalities for intention understanding. For
example, Ref. [16] designed a new approach for intention
understanding of upper limb movements using mobile
electroencephalography (EEG) via LSTM-RNN, which
could provide early warning of impending danger to im-
prove the safety of the system. Reference [17] constructed a
projective recurrent neural network to estimate the joint
angular intention of the user during motion using a Hill-
based muscle model. Another interesting approach exploits
the human’s preference to adapt the robot’s behavior based
on the human’s feedback. Reference [18] discussed the
necessity of user preferences in the design of robotic exo-
skeletons. Reference [19] proposed a path-based velocity
planner, which uses the optimization method based on user
pairwise preferences, can classify different paths and adjust
the robot execution velocity more finely.

2.2. Reinforcement Learning. Reinforcement learning, as a
field of artificial intelligence, has made significant progress
since its introduction. An increasing number of human-
robot collaborations use reinforcement learning to handle
their problems. Reference [20] proposed the DQN algorithm
in 2015. -e core idea of the DQN algorithm is to use the

strong fitting property of neural networks to calculate the
score of each action A in the input state S. It tackles the
problem that the Q-Learning algorithm cannot handle
scenarios with large state spaces. DQN takes two neural
network structures of the same architecture: Q_target and
Q_eval. -e former intermittently updates the parameter θ−,
while the latter updates the parameter θ in real time. Ad-
ditionally, DQN experience replay saves the experienced
state-action pairs (s, a), the corresponding reward, and next
states in a memory bank, from which previous experiences
randomly selected from the memory bank can be learned
while the DQN is iterating. DDQN [21] is an improved
version of DQN. Although DQN has been revealed to be
effective in many applications, it still has some shortcom-
ings. Since DQN uses the maximum operation to estimate
the reward for the next state, DQN overestimates the Q value
after several iterations. DQN strips the selection of the action
and the evaluation of the action, estimates the best action in
the Q_eval network parameters, and finds the score of the
action in the Q_target network parameters. -e authors put
forward theoretical and experimental suggestions that
DDQN effectively eliminates the drawbacks of DQN
overestimation.

In 2019, Ref. [22] adopted the Soft Actor Critic rein-
forcement learning algorithm to build a robotic platform
that the robot is capable of learning cooperative tasks with
people in only 30minutes without simulation training.
Reference [23] proposed a multirobot path planning al-
gorithm with deep q-learning combined with a convolu-
tional neural network algorithm. -eir simulation results
revealed that the robot using this method had flexible and
efficient motion performance in various environments
compared to the traditional method. Reference [24] first
applied deep reinforcement learning to the Urban Search
and Rescue Team. -ey combined deep reinforcement
learning with the robotic exploration of uncharted terri-
tory, which allowed the robot to explore the location en-
vironment autonomously. -eir experiments
demonstrated that the method could shrink victims faster
than other methods. Inspired by Google Deep Mind, Ref.
[25] formatted the collaborative human-robot assembly
workflow as a chessboard. Specifically, the motion selection
on the chessboard was used to simulate the human and
robot decision-making in the human-robot collaborative
assembly workflow. -e self-training algorithm based on
reinforcement learning was used for training, and the best
strategy of collaborative human-robot work sequence was
obtained without guidance or domain knowledge beyond
the rules of the game, so as to improve efficiency. Reference
[26] encoded the task and safety-related requirements into
reinforcement learning and applied reinforcement learning
to protect users in the process of human-robot cooperation.
Reference [27] designed a human-centered collaborative
system based on reinforcement learning that adopted
unsupervised end-to-end learning to effectively tackle
uncertainty in human behavior recognition and improve
the behavioral decisions of the robot. In this way, the risks
and benefits achieved by the robot after taking action were
balanced. In 2020, Ref. [28] modeled the complex human-
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computer interaction dynamics and proposed a model-
based reinforcement learning variable impedance control,
which minimizes the human force consumption. In 2021,
Ref. [29] used reinforcement learning on dynamic task
partitioning in assembly tasks with good results. Reference
[30] presented an adaptive training method based on a deep
Q-learning approach. -e method treated robots and
humans as agents in an interactive training environment
for learning.-eir algorithm addressed how to consider the
dynamics of the time dimension and the stochasticity in the
program sequence when the collaborative assembly was an
industrial task.

Reinforcement learning has demonstrated its pow-
erful role in robotics by enabling robots to learn inde-
pendently [31]. In summary, human-robot collaboration
cannot be separated from the process of intention un-
derstanding. -e fusion of multiple modalities has been
discovered to have higher robustness in the correctness of
intention understanding. Most human-robot collabora-
tion frameworks based on intention understanding have
explored an intention understanding paradigm working
for all users to improve the robustness of the algorithm
and the accuracy of intention understanding. However, it
is tough to find a suitable paradigm for all users, as each
user has different habits in expressing their intentions
due to the variability among individuals. It is a problem
that needs to be solved to make the robots work efficiently
with various users.

To this end, a multimodal human-robot collaboration
(MRLC) framework based on reinforcement learning is
proposed in this article. MRLC is divided into two parts. -e
first part is the intention understanding process based on the
deep reinforcement learning algorithm (DDQN) [21], which
adapts to the habits of individuals through iterative training
and forms habit rules for each user. Hence, our collaboration
framework can eliminate the issues of inconsistent collab-
oration when facing users with different habits in traditional
human-robot collaboration. -e second part is the task
assignment process. -rough the first part of intention
understanding, the robot understands “what the user wants
to do” and then MRLC assigns tasks to the robot to col-
laborate with the user.

-is article has three main contributions:

(1) -eMRLC human-robot collaboration framework is
proposed. Reinforcement learning is adopted for
intention recognition to make the human-robot
collaboration framework more robust to different
users.

(2) -e MRLC framework uses a reward function in-
corporating natural language processing, which
maintains the user experience during robot’s
learning process.

(3) -eMRLC human-robot collaboration framework is
successfully applied to a scenario where humans and
robots work together to build a Jenga tower.

A human-robot collaboration scenario is designed for
building the Jenga tower to verify the feasibility of our

proposed collaboration framework. In this scenario, the
robot needs to consider the state of the Jenga tower and
user’s intention to achieve dynamic collaboration among the
robot, Jenga tower, and user.

3. Materials and Methods

3.1. MRLC Structure. Existing human-robot collaboration
frameworks mainly use a unified paradigm to observe user’s
characteristics to achieve intention understanding and human-
robot collaboration. In contrast, the MRLC framework has the
following features. (1) MRLC is capable of adapting to each
user’s behavioral habits rather than applying a uniform par-
adigm to every user. (2) It enables a three-way interaction
between robot and user, user and environment, and robot and
environment. -e structure of MRLC is illustrated in Figure 1.
-e main goal of MRLC is to allow the robot to learn user’s
behavioral habits, to recognize user’s intentions, and to assign
tasks to the user’s following different intentions. It guarantees
that the robot can perform human-robot collaboration tasks
dynamically and safely.

-e MRLC framework is divided into two main modules:
multimodal intention understanding module and task assign-
mentmodule. First, the robot collects the characteristics of user’s
three modalities and learns user’s behavioral habits through
reinforcement learning to obtain user’s behavioral intention.
After user’s intention is obtained, the robot enters the task
assignment phase, in which the robot’s action sequence is
specified based on user’s behavior. -en, the robot starts to
interact with the environment and the user.

3.2. Multimodal Intention Understanding Based on Rein-
forcement Learning. -e MRLC framework contains a novel
multimodal reinforcement learning intention understanding
algorithm. -e core idea is to learn users’ behavioral habits
through deep reinforcement learning in iterative iterations, so as
to eliminate errors induced by differences in behavioral habits of
different users and to achieve a more robust intention
understanding.

Figure 2 illustrates the architecture of the multimodal
reinforcement learning intention understanding algorithm. It is
divided into three stages: (1) extraction of user multimodal
features. -e data obtained from the sensors first go through
three subclassifiers to obtain the classification results ofm1,m2,
and m3. -e user modal data are finally converted into a 3D
vector s� [m1,m2,m3]; (2) the extracted user features are used
as state inputs to fit the scores under each intention outcome;
(3) calculation of the optimal operation corresponding to the
user intention according to the optimization objective by
equation (1), followed by the analysis of the user’s linguistic
feedback using NLP to obtain the user satisfaction Sa, which is
learned iteratively as part of the reward:

i � maxQ(s, I; θ), (1)

where s represents the user’s features, i represents the best
intention at moment, I represents intentions spaces, Q
represents the value of each intention calculated using the
q_eval neural network, and θ represents the parameter of the
q_eval neural network:
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3.3. User Multimodal Feature Extraction.  e user’s be-
havioral characteristics are de¡ned as autonomous, natural
movements (such as gestures and speeches) made during
human-robot collaboration.

 ree sensors are arranged to implement the user’s
input in three modalities: speech, body gesture, and hand
gesture. In our work, a stable and e�cient data pro-
cessing method is selected to process the data obtained
from the sensors. Regarding speech modality, the user’s
speeches are converted into text and classi¡ed into seven
categories by combining keyword recognition. Another
interesting approach is the use of pointing to achieve
natural human-computer interaction.  ere has been a
lot of outstanding work [32, 33] on their methods to
detect user pointing accurately. However, considering
the complexity of the system, we do not apply these
results in our system.  e category numbers

corresponding to the speech keywords are listed in Ta-
ble 1. Concerning body gesture modality, KinectGesture
in KinectV2 is adopted to implement the recognition of
four types of static user body gestures. With respect to
hand gesture modalities, e�cientnetV2 is employed to
implement ¡ve types of hand gesture recognition. All the
body gestures and hand gestures that can be detected are
exhibited in Figures 3 and 4.

3.4. Reward Functions Based onNatural Language Processing.
In the process of human-robot collaboration, it is tricky to
determine an appropriate reward function while ensuring
the user experience.  e robot needs to know whether its
behavior is correct during the learning process. Telling the
robot whether the behavior is correct every time by manual
input would cut o� the user experience.

Multimodal Reinforcement Learning Intention Understanding Task assignment

subtask

Robot

User......
Motion#1 Motion#1

Motion#n Motion#n

Reinforcement
learning

body gesture

hand gesture

speech

Figure 1:  e structure of MRLC.

NLP (feedback_speech)

Motions

speech
body gesture
hand gesture

S

S′, i′

S, i

s, i, s′, i′, r memory

random choice

batch_memory

sub-classifier Robot

Replace θ

update θ

params θparams θ-
loss

function

Q-eval
Net

Q-target
Net

Figure 2: Multimodal reinforcement learning intention understanding algorithm architecture. s represents the user’s features, s′ represents
the user’s features next time, i represents the result of intention understanding, and i′ represents the result of intention understanding next
time.
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-erefore, natural language processing techniques are uti-
lized to collect users’ evaluations: NLP (feedback_speeches).
With the snownlp module, speech emotion analysis is per-
formed on the speech collected by themicrophone.-e result of
NLP (feedback_speeches) is between 0 and 1 and is judged as
positive feedback when the result is higher than 0.5. -e in-
tention is understood correctly when the user’s evaluation is
positive (such as “good job”). Notably, if the user does not give
any feedback, we believe the user’s tacit approval of the behavior
and regard it as positive feedback:

R �
10, NLP(feedback_speeches)> 0.5 or nonexistent,

10, NLP(feedback speeches)< 0.5.


(2)

3.5. Multimodal Reinforcement Learning Intention Under-
standing Algorithm Network Structure. -e multimodal re-
inforcement learning intention understanding algorithm
proposed in this article has two neural networks with the
same structure: q_target and q_eval [21], both of which
consist of two fully connected layers l1 and l2. Among them,
l1 consists of 50 neurons. -e multimodal reinforcement
learning intention understanding algorithm also adopts a
memory bank to store the previously learned results and
implement the offline learning. -e input to q_eval is the
user features s, which are also the results of the three
subclassifiers. q_eval first fits the user features s using
random weights to derive a score for each state. -e in-
tention with the highest score is selected as the best result for

(a) (b) (c) (d)

Figure 3: User’s body gesture. (a) Cross arms; (b) point to the unplaced pile of blocks; (c) point to the built Jenga tower; (d) raise your hand
in a small increment.

(a) (b) (c) (d) (e)

Figure 4: User’s hand gestures. (a) Fingers bent slightly upward; (b) fingers bent slightly downward; (c) open palm; (d) index finger up; (e)
pick up a block.

Table 1: User’s keywords and category numbers.

Keywords Category numbers
Stop 1
Take a block 2
Put the block on 3
Hand me the block 4
Take the block 5
Put the block aside 6
-ere is your block 7
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output. After the user gives feedback, the reward value R is
derived according to the reward function (2). -en, the sum
of current rewards and expected future rewards y’ is cal-
culated by the following equation:

y′ � R + c∗max iQ s′,max iQ s′, I; θ( ( ; θ−
, (3)

where c represents the decay factor of future reward, θ
represents the parameter of q_eval net, θ− represents the
parameter of q_target net, R represents the current reward, s’
designates the multimodal input at the next intention un-
derstanding, and I represents the intentions spaces.

Since the update frequencies of q_target and q_eval are
different, the following loss function can be obtained by
using Temporal-Difference (TD).

Loss � y′ − Q(s, i; θ)( 
2
, (4)

where s denotes the multimodal input and i represents the
result of intention understanding.

3.6. Task Assignment. In the previous section, the user’s
intention has been derived based on the multimodal rein-
forcement learning intention understanding algorithm. In
this section, task assignment is performed based on the
intention.

-e MRLC framework uses a top-down, progressively
refined dynamic task assignment approach as illustrated in
Figure 5. Specifically, a database M(intention, task) of in-
tentions and subtasks, and a database M(subtask, motion) of
subtasks and actions are constructed. -e final task is
progressively refined to all pending action sequences
Motion.

A reasonable task assignment module can dynamically
assign tasks to the robot based on the user’s behavior instead
of rigidly specifying the tasks that the robot needs to be
responsible for. Under the concept of sets in mathematics, all
tasks are considered a full set Motion.-e tasks that the user
has completed are a subset Motionuser. -en, the tasks that
the robot needs to be responsible for are the complement of
Motionuser where Motionrobot �Motion−Motionuser. -is
approach allows the MRLC framework to achieve dynamic
task assignments to further increase the flexibility of col-
laboration. Additionally, the MRLC framework can be easily
applied to other collaboration scenarios by modifying the
two databases.

For example, if Motionuser is {“user picks up a block”}
and Motion is {“user picks up a block”, “robot moves to-
wards user’s hand”, “robot grabs the block in user’s hand”},
then Motionrobot is {“robot moves towards user’s hand”,
“robot grabs the block in user’s hand”}.

3.7. Algorithm Analysis. Based on the above research ideas
and the MRLC architecture diagram in Figure 1, a specific
description of the MRLC architecture algorithm1 is pre-
sented as follows.

-e MRLC framework aims to eliminate the bias in
collaboration effectiveness caused by the variability of in-
dividual user habits. Multimodal reinforcement learning
intention understanding methods are employed to learn

each user’s habits and thus weaken the impact of individual
differences. One of the crucial metrics to evaluate the ef-
fectiveness of the MRLC framework is the correct rate of
intention understanding, which is the core of the MRLC
framework’s ability to adapt to different user habits.

When a new user tries to collaborate with the robot for
the first time in our human-robot collaboration scenario, the
multimodal reinforcement learning intention understand-
ing algorithm is set up to first sense the three modal in-
formation of the user and use it as input to predict the user’s
intention and perform task assignment; besides, the pa-
rameters of the algorithm are adjusted relying on the
feedback given by the user; in this way, the issue of how to
make the robot learn the user’s habits is theoretically
overcome.With an increase in the number of learning times,
the multimodal reinforcement learning intention under-
standing algorithm gradually converges. -e intention un-
derstanding becomes more effective, suggesting that the
MRLC framework learns the user’s habits.

-e MRLC framework implements the perception of
different modal data through an efficient subclassifier, in-
stead of feeding the collected basic information directly into
the deep reinforcement learning neural network to ensure
real-time collaboration. -e multimodal reinforcement
learning intention understanding algorithm only needs to
process a three-dimensional matrix representing multi-
modal information, which contributes to a significant de-
crease in the time complexity and ensure the real-time
performance of the algorithm.

-e MRLC framework theoretically addresses the issue
presented in this article: how can robots still maintain ef-
ficient collaboration facing users with different habits?

4. Experimental Results and Analysis

4.1. Experimental Scenes. Our human-robot collaboration
scenario is shown in Figure 6, which consists of the Xarm 7-
axis mechanical arm, mechanical gripper AG-95, two RGB
cameras, and an RGB-D camera, where two RGB cameras
are used to detect the status of the Jenga tower. -e com-
puter’s CPU, GPU, and RAM are I7–10875H, RTX2060, and
16G, respectively. Furthermore, microphones and an RGB-
D camera are employed to capture the user’s speeches, body
gestures, and hand gestures.

4.2. Experimental Scenes. Ten experimenters, including six
males and four females, with an average age of 25 years were
invited to participate in the experiment.-ey had never been
exposed to similar human-robot collaboration scenarios
before. Before the experiment, we informed the experi-
menters about the modalities that the robot could perceive
some specific modal data, such as specific hand gestures and
keywords.

-e task of human-robot collaboration is to establish
Jenga tower rather than playing Jenga game. Six categories of
intentions are set. Table 2 lists all intentions and the cor-
responding numbers.
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A complete collaborative process is recorded, as
exhibited in Figure 7.-e robot and the user are in a face-to-
face position, and the unplaced Jenga blocks are stacked on
the side of the robot where the robot can easily clip them.

4.3. Experiment Procedure

4.3.1. 7e Differences in User Habits When Expressing
Intentions. It is necessary to demonstrate the differences in
expression habits of different users when expressing the same

intention. -us, a questionnaire was distributed to the ex-
perimenters before the formal experiment to verify the
specific modal categories used by each experimenter in
expressing the same intention, in which we marked the
specific body gestures, hand gestures, and keywords in Section
3.2.1. -e table of the questionnaire is provided in Table 3.

4.3.2. 7e Success Rate of Human-Robot Collaboration.
In this section, the experiment is performed on the rela-
tionship between the success rate of human-robot

Build Jenga tower

�e robot hands a block to the user, �e
robot takes the block from the user.....

intention-
subtask

subtask-
motion

Take a block to the user, place a block
for the block tower.....

User: Extend hand, point to block tower, hand robot blocks......
Robot: move towards user’s hand, pick up a block, put the picked up block into the

block tower......

Final Task:

Intentions:

subtasks:

motions:

Figure 5: Task assignment process.

Input: User_speeches, User_body gestures, User_hand gestures, final_task, M(I, subtask), M(subtask, motion)
Initialize: NLP, sub_classifier, memory M, episode←0, load θ, Sub_classifier (User_speeches, User_body gestures, User_hand
gestures), replace_ iter
Output: Motionrobot.
While not finishing final_task do:
s← Sub_classifiers

With probability ε to select a random intention i
Otherwise use equation (1) to calculate i subtask←M(i, subtask)
Motion←M(subtask, motion)
Motionrobot←Motion−Motionuserr←NLP (feedback_speech)
//s′ is the next behavior feature of User after robot executes Motionrobot
s′← Sub_classifiers after Robote executes (Motionrobot)
Calculate Reward rt according to equation (2)
M← (s, i, r, s′) batch_memory← random choice (M)
If s means the end of collaboration:
y′← r

Else:
Use equation (3) to calculate y′

Use equation (4) to calculate loss
Minimize loss
If (episode> replace_ iter):
θ−← θ

End

ALGORITHM 1: MRLC Multimodal Reinforcement Learning Cooperation

Computational Intelligence and Neuroscience 7



Mechanical
arm 

AG-95 gripper

RGB cameras

RGB-D camera

Unplaced
Jenga blocks 

Jenga tower 

Figure 6: Schematic diagram of the experimental scene.

(a) (b) (c) (d)

Figure 7: A typical human-robot collaboration process. (a) -e user makes an act of pointing to an unplaced block and speaks the speech
keyword “put the block on”; (b) the multimodal reinforcement learning intention understanding algorithm derives the user’s intention: the
robot actively picks up the blocks; (c) the user gives the speech evaluation: “-at is it” NLP evaluates this feedback to be positive; (d) the
robot is reset, and the reinforcement learning learns the user’s habit and the round of collaboration ends.

Table 2: Intentions and numbers.

Intentions Numbers
-e robot stops immediately 1
Robot takes a block and gives it to the user 2
Robot actively picks up a block 3
-e robot takes the blocks from the user 4
Putting aside the blocks that the robot clips up 5
Put the blocks that the robot clips up onto the Jenga tower 6

Table 3: -e questionnaire.

Intentions Body gestures that can express the
intention (if none, fill in 0)

Hand gestures that can express that
intention (if none, fill in 0)

Keywords that can express the
intention (if none, fill in 0)

-e robot stops immediately
-e robot takes a block and gives it to
the user
-e robot actively picks up a block
-e robot takes the block from the
user
Put aside the block that the robot
clips up
Put the blocks that the robot clips up
onto the Jenga tower

8 Computational Intelligence and Neuroscience



collaboration and learning times, as well as the success rate
of human-robot collaboration in the MRLC framework for
new users with different habits.

To explore the relationship between the success rate of
human-robot collaboration, ten people are divided into five
groups: A1, A2, A3, A4, and A5; we limit the number of
times the robot learns to 200, 400, 600, 800, and 1000 for the
A1, A2, A3, A4, and A5. At the end of the learning phase, the
experimenter performs 100 tests using the learned param-
eters θ. -e user feedback is positive as a successful human-
robot collaboration. Moreover, the success rate of human-
robot collaboration for each group is recorded.

Equation (5) is used to calculate the success rate of
human-robot collaboration:

Acc �
countT
100

, (5)

where countT indicates the number of successful human-
robot collaborations during the test.

To explore the success rate of human-robot collaboration,
ten people are divided into groups B and C, with two people in
group B and eight people in group C. -e experimenters in
group B are divided into B1 and B2, with one experimenter in
each group; the experimenters in group C are divided into C1,
C2, C3, andC4, with two experimenters in each group. First, the
robot learns the habits of the experimenters in group B 800
times, and then, we switch the users to the experimenters in
group C. -e experimenters in group C1 perform 100 tests
without learning; the experimenters in group C2 perform 100
tests after 400 times of learning; the experimenters in group C3
perform 100 tests after 600 times of learning; and the experi-
menters in group C4 perform 100 tests after 800 times of
learning. -is process is adopted to simulate the robot’s per-
formance in an actual situationwhen it is confrontedwith a new
user with different habits.

4.3.3. Comparison of Multimodal Reinforcement Learning
Intention Understanding Algorithms with Naive Bayesian
Intention Understanding Algorithms. -e core of the MRLC
framework lies in the multimodal reinforcement learning
intentional understanding algorithm, by which the MRLC
framework can learn the user’s habits. -erefore, the mul-
timodal reinforcement learning comprehension algorithm is
compared with the classical traditional intention intentional
understanding algorithm (the naive Bayes intention un-
derstanding algorithm) in this section. Bayesian decision
formula (6) is employed to calculate the probability of each
intention when the user expresses the intention, and the
intention with the highest probability is taken as the final
result:

wj|X �
P X|wj P wj 


N
n�1 P X|wn( P ωn( 

�


M
k�1 P xk|wj  P wj 


N
n�1

M
k�1 P xk|wn(  P ωn( ,

(6)

where wj represents the results of intention understanding,
and X refers to the user input multimodal data matrix, and
xk represents the kth component of X.

Meanwhile, the MRLC framework was used to let the
robot learn the user’s habit from scratch. Ten experimenters
were divided into five groups: D1, D2, D3, D4, and D5, each
group of two. One experimenter User #1 was randomly
selected from each group to collaborate with the robot using
the multimodal reinforcement learning intention under-
standing algorithm. Starting from a learning count of 300,
the robot paused learning every 200 times and tested the
accuracy of the multimodal reinforcement learning inten-
tion understanding algorithm and the naive Bayes intention
understanding algorithm 100 times, for a total of three times.
After the 700 learning of User #1 was finished, the robot was
replaced by another experimenter from the same group,
User #2, to collaborate with the robot. -is process stim-
ulated the realization of a real scenario where the robot is
confronted with a new user with different habits. -e second
experimenter was the same as the first one, starting from the
300th learning, pausing learning every 200 times, and
performing 100 tests, for a total of three tests.

4.3.4. Evaluating MRLC with Human Factors. -e degree of
success of human-robot collaboration depends on the joint
consideration of the robot factor (RF) and the human factor
(HF) [34].-e experiment mentioned above is an evaluation
of the robot factor. -erefore, this section uses four human
factors indicators to evaluate the MRLC qualitatively. -e
four indicators are trust, anxiety, safety perception, and
fatigue [34]. -e score interval of each indicator is [1–10],
and the lower score means the worse performance under the
indicator, 0 means very poor, and 10 means very good. We
collected the subjective feelings of all experimenters during
the experiment through a questionnaire. It should be noted
that during this experiment, we collected the subjective
feelings of experimenters after MRLC fully learned the
experimenter’s habits.

4.4. Experiment Results

4.4.1. Differences in User Habits When Expressing Intentions.
-e data collected from the questionnaires in Section 4.3.1
were organized in the heat map (Figure 8), with a total of 10
questionnaires received. -e maximum number of identical
expressions in the same modality was recorded under the
same intention. For example, in intention #1, if 7 ques-
tionnaires were selected to use one outcome under the
modality of body gestures, the value for that position was 7.

Figure 8 reveals that users can reach a consensus on
expression habits for specific intentions. For instance, the
number of experimenters who choose to use the same ex-
pression reaches 8–9 in intention #1, implying that most
users tend to express intentions in the same expression.

However, the expression habits vary significantly among
users for some intentions, such as intention #6 and intention
#3. Since traditional intention understanding algorithms,
such as SVM and naive Bayes, aim at demonstrating cor-
relations between modal data and intentions, this phe-
nomenon can tremendously degrade the performance of
traditional intention understanding algorithms.
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4.4.2. Human-Robot Collaboration Success Rate. -e data
during the experiment are recorded in Table 4, involving the
number of failed MRLC algorithm human-robot collabo-
ration trials for individual experimenter of each group.
Furthermore, each group’s success rate of human-robot
collaboration is plotted in Figure 9.

As observed in Table 4, the failure number of human-
robot collaboration gradually decreases as learning times
increase when learning times are between 400 and 850. -e
result reflects that the robot is gradually learning the user
User #2’s habits. Meanwhile, the intention understanding is
gradually becoming more accurate. However, the failure
number of human-robot collaboration increases when
learning times rise to 1000. -e principal reason is that the
overfitting of the MRLC algorithm leads to a decrease in the
effectiveness of human-robot collaboration.

A similar conclusion can be drawn from Figure 9. -e
success rate of human-robot collaboration in groups A1, A2,
A3, and A4 rises and finally reaches 92%. -e human-robot
collaboration system achieves acceptable levels.

Table 5 presents the change in the failure number of
human-robot collaboration with learning after changing
experimenters with different C groups of habits.

Table 5 and Figure 10 demonstrate a significant decrease
in the success rate of human-robot collaboration when the
robot faces a user with different habits. In other words, the
robot cannot effectively understand the user’s intention
when facing a new user, which is consistent with our ex-
pectation. -e success rate of human-robot collaboration
increases as learning times increase in the interval of 400 to
800 times of learning, which suggesting that the robot is
continuously adapting to new user’s habits. -e robot
reaches a success rate of 93% after 800 times of learning.

As revealed in the previous experiment, the success rate
of human-robot collaboration decreases to a specific level
when the number of learning times reaches 1000, which is
ascribed to the overfitting of MRLC.

-is experiment implies that the MRLC framework is
malleable and achieves a success rate of more than 90% after
hundreds of learning times for a new user’s habit.

4.4.3. Comparison of Multimodal Reinforcement Learning
Intention Understanding Algorithms with Naive Bayesian
Intention Understanding Algorithms. As illustrated in Fig-
ure 11, the multimodal reinforcement learning intention un-
derstanding algorithm achieves 63.2% accuracy of correct
intention understanding after 300 times of learning, which is
9.2% lower than the naive Bayes algorithm. However, after 500
times of learning, the multimodal reinforcement learning in-
tention understanding algorithm reaches 84.2% accuracy of
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Figure 8: Maximumnumber of identical expressions with the same
intention in the same modality.
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Figure 9: Success rate with the change in learning times.

Table 4: Number of failures for different experimenters’ human-
robot collaboration results.

Times of learning/group User #1 User #2
400/A1 30 21
550/A2 13 16
700/A3 12 13
850/A4 9 7
1000/A5 20 17

Table 5: -e failure numbers of human-robot collaboration with
the change in learning times when facing new users.

Times of learning/Group User #1 User #2
0/C1 75.5 78
400/C2 27 21.5
600/C3 21 19
800/C4 8.5 6
1000/C5 17 11.5
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Figure 10: Variation in the human-robot collaboration success rate
with the change in learning times when facing new users.
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intention recognition compared to the other method, with
14.3% performance improvement. -e performance difference
reaches 16.5% after 700 times of learning.

After changing experimenter User #2, the accuracy of the
multimodal reinforcement learning intention understand-
ing algorithm decreases to 52.6% which is lower than 69.7%
accuracy of the naive Bayes algorithm.-is is induced by the
difference in habits between the experimenters. With the
increasing learning times, 90.7% accuracy is reached after
700 times of learning, which is significantly higher than
64.3% accuracy of the naive Bayes algorithm.

-is experiment demonstrates that the multimodal re-
inforcement learning intention understanding algorithm
eliminates the inconsistent performance of traditional in-
tention understanding algorithms for different users by
providing accuracy over 90% after enough times of learning.

4.4.4. Evaluating MRLC with Human Factors. Ten ques-
tionnaires are collected in this article. Figure 12 illustrates the
results of the assessment of human factors indicators for both
frameworks. In the indicator of “trust,” MRLC performed
significantly better, and most of the experimenters felt that the
MRLC collaboration framework brought them more trust.
-ere is not much difference between the two on “anxiety,”
withMRLC performing slightly better and a significant portion
of the experimenters scoring within 2 points. Neither a col-
laborative framework was effective in reducing user anxiety
with the robot. Similar conclusions are found for the two
indicators of safety perception and fatigue. Considering the
differences between the experimenters and the resulting errors,
there is no significant difference between the two algorithms.

5. Conclusion

Most of the traditional human-robot collaboration frame-
works specify the process of human-robot collaboration,
which corresponds to the user’s instructions and the robot’s
actions.

-eMRLC framework has the following advantages over
traditional human-robot collaboration frameworks: (1)
greater flexibility and higher adaptability. -e multimodal
reinforcement learning intention understanding algorithm
achieves intention understanding in human-robot collab-
oration and thus solves the problem that the efficiency of
traditional human-robot collaboration frameworks de-
creases when facing different user habits. (2) Stronger re-
usability. -e MRLC framework can be easily applied to
other human-robot collaboration scenarios. With the ad-
dition of reinforcement learning algorithms, users do not
need to make an extra effort on editing the rules of human-
robot collaboration. Concurrently, users can directly modify
the database between layers to achieve dynamic human-
robot task assignments owing to the hierarchical design of
the task assignment module.

-e experiments suggest that the success rate of col-
laboration in the MRLC framework reaches more than 90%
after many times of learning, which improves over 10%
compared with the traditional algorithm.

In our experiments, users are required to learn more
than 800 times to achieve an excellent synergistic effect.
Since the MRLC framework is based on deep reinforcement
learning, it also inherits the shortcomings of deep rein-
forcement learning algorithms, such as slow convergence.

-erefore, the issues of slow learning speed and slow
convergence of the MRLC framework should be overcome
in the following research.
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[7] Z. Wang, K. Mülling, M. P. Deisenroth et al., “Probabilistic
movement modeling for intention inference in human–robot
interaction,” 7e International Journal of Robotics Research,
vol. 32, no. 7, pp. 841–858, 2013.

[8] Y. H. Hsieh, K. Y. Young, and C. H. Ko, “Effective maneuver
for passive robot walking helper based on user intention,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 10,
pp. 6404–6416, 2015.

[9] J. Berg, T. Reckordt, C. Richter, and G. Reinhart, “Action
recognition in assembly for human-robot-cooperation using
hidden Markov models,” Procedia CIRP, vol. 76, pp. 205–210,
2018.

12 Computational Intelligence and Neuroscience



[10] M. P. Pacaux-Lemoine, L. Habib, and T. Carlson, “Human-
robot Cooperation through Brain-Computer Interaction and
Emulated Haptic Supports,” in Proceedings of the IEEE In-
ternational Conference on Industrial Technology (ICIT),
pp. 1973–1978, Lyon, France, April 2018.

[11] Z. Gong and Y. Zhang, “Behavior Explanation as Intention
Signaling in Human-Robot Teaming,” in Proceedings of the
2018 27th IEEE International Symposium On Robot And
Human Interactive Communication (RO-MAN), pp. 1005–
1011, Nanjing, China, August 2018.
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