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Aiming at the 1vs1 confrontation problem in a complex environment where obstacles are randomly distributed, the DDPG (deep
deterministic policy gradient) algorithm is used to design the maneuver decision-making method of UAVs. Traditional methods
generally assume that all obstacles are known globally. In this paper, a UAV airborne lidar detection model is designed, which can
efectively solve the problem of obstacle avoidance when facing a large number of unknown obstacles. On the basis of the designed
model, the idea of transfer learning is used to transfer the strategy trained by one UAV in a simple task to a new similar task, and
the strategy will be used to train the strategy of the other UAV.Tis method can improve the intelligence of the UAVs in both sides
alternately and progressively.Te simulation results show that the transfer learning method can speed up the training process and
improve the training efect.

1. Introduction

In the battlefeld, UAVs can play a role in reconnaissance,
detection, target tracking, attack interception, damage as-
sessment, and others [1]. UAVs can also be used to intercept
the enemy UAV [2]. How both sides maneuver to achieve
the corresponding task objectives has aroused the attention
and research interest of military experts and a large number
of scholars.

At present, many experts have proposed diferent al-
gorithms to solve the maneuver decision-making problems
in diferent situations. In the traditional method, the main
algorithms are the diferential game method [3], expert
system method [4], and guidance law [5]. Tese methods
have shown good efect on simple tasks, but they cannot be
applied to complex battlefelds where the environment is
unknown, and it is difcult to obtain analytical solutions.
Terefore, scholars try to apply intelligent algorithms to
UAV attack and defense confrontation problems, including
bionic modeling [6], fuzzy cybernetics [7], and swarm in-
telligence algorithms [8].

Deep reinforcement learning, as an artifcial intelligence
technology that combines neural networks and reinforce-
ment learning, is a new type of a decision-making method,
which has good application prospects for the research of
UAV countermeasures. For the scenario of UAV swarms
chasing enemy targets, the DDPG algorithm is used to train
UAVs to pursue targets [9]. Aiming at the confrontation
problem with multiple UAVs, the cooperative decision-
making method of multiple UAVs based on the multiagent
reinforcement learning algorithm is proposed [10]. An
MPPO algorithm is proposed to solve the confrontation
problem of a large-scale UAV swarm [11]. A hierarchical
framework based on reinforcement learning and two kinds
of motion planning strategies for the problem of chasing and
escaping games in the presence of obstacles is presented [12].
Liu and Wang proposed an adversarial decision generation
method based on the generative adversarial network for the
confrontation between UAVs in a barrier-free environment
[13]. Wen and Shi proposed an intelligent decision making
method for multicoupled tasks of cluster UAV confronta-
tion in complex environments [14]. Wang and Guo
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improved the reward function of the cluster UAV con-
frontation model and optimized the reward calculation
method [15]. Tese works have verifed the feasibility of
applying deep reinforcement learning to the UAV con-
frontation problem. Most of the current research is carried
out under the condition that the scene information is
completely known, and the designed strategy is suitable for
specifc confrontation scenarios. If the scene becomes
complicated, these studies may turn inefective.

In this paper, to solve the problem of obstacle avoidance
when facing a large number of unknown obstacles, a UAV
airborne lidar detection model is designed, and a 1vs1
maneuver decision-making method based on the DDPG
algorithm is proposed. To get a better training efect, three
training methods are designed by the idea of transfer
learning.Te scenarios corresponding to these three training
methods are interrelated, that is, gradually increasing the
task difculty and fxing the strategy of the other UAV when
one UAV is trained so as to make the confrontation envi-
ronment of the agent relatively stable. We can transfer the
relevant experience gained during the interaction between
the UAV and the environment into new training scenarios to
improve the intelligence of the UAVs on both sides alter-
nately and progressively. Te experimental comparison
between the transfer and nontransfer methods shows that
the transfer reinforcement learning makes the two UAVs
have their own intelligent strategies in a 1vs1 confrontation
game. It also shows that the method can speed up the
training process and improve the confrontation efect.

2. Problem Description and Modeling

2.1. 1vs1 Confrontation Problem. Te scenario of 1vs1
confrontation can be described as that there are one blue
UAV and one red UAV in a limited planar area, which are
called the attack UAV and the defense UAV.Te purpose of
the attack UAV is to break through the interception of the
defense UAV to reach the target area (light red area in the
fgure) from the initial position (blue fag). Te purpose of
the defense UAV is to intercept and destroy the attack UAV
from the initial position (red fag). As shown in Figure 1, this
paper assumes that circular obstacles (black areas) are
distributed in the environment randomly. Only when the
obstacles are within the detection range of the UAV’s air-
borne radar, the UAV can obtain their positions.

In Figure 1, a and d represent the attack UAV and the
defense UAV, respectively. sip � (xip, yip)(i � a, d) repre-
sents the position coordinates of the UAVs. sid � ψi(i � a, d)

represents the heading angle of the UAVs. Ra and Rd

represent the radar detection radius of the UAVs, respec-
tively. (xtp, ytp) represents the position of the center point of
the target area. Rt represents the efective radius of the target
area. sk

op � (xk
o, yk

o) represents the position of the kth ob-
stacle center point. For the convenience of research, there is
a battlefeld boundary in the limited confrontation envi-
ronment, and neither UAV can move out of the boundary.

It is assumed that the defense UAV can obtain the
position and heading of the attack UAV in real time through

the ground surveillance radar, and both sides carry lidar to
detect obstacles and boundary of the local environment. It is
also assumed that the attack UAV knows the position of the
ground target area in advance.

2.2. KinematicsModel of UAVs. It is assumed that the UAVs
fy in a two-dimensional plane. Te kinematics equations of
the UAVs are shown in formula:

_xip � vi cosψi,

_yip � vi sinψi,

_vi � ai,

_ψi � ωi,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i � a, d), (1)

where vi represents the speed of the UAVs. ai and ωi rep-
resent the acceleration and angular velocity of the UAVs,
respectively.

xmin ≤ xip ≤ xmax ,

ymin ≤yip ≤ymax,

0≤ vi ≤ vimax,

0≤ψi < 2π,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i � a, d),

−aimax ≤ ai ≤ aimax,

−ωimax ≤ωi ≤ωimax,
 (i � a, d),

(2)

where xmin, xmax and ymin, ymax represent the boundary of
the area. vimax represents the upper limit of the UAV speed.
aimax represents the maximum value of the UAV accelera-
tion. ωimax represents the maximum value of the UAV
angular velocity.

Te current state of the UAV i is [xt
ip, yt

ip, vt
i ,ψ

t
i ], and the

state will change under the action of the acceleration ai and
angular velocity ωi. Te state [xt+1

ip , yt+1
ip , vt+1

i ,ψt+1
i ] at the

next moment will be determined by the state transition
equation as

battlefeld
boundary

battlefeld
boundary

ψa

d

a

k
obstacle 

(xap,yap)

(xdp,ydp)

(xko,yko)

ψd

Figure 1: Te scenario of 1vs1 attacking and defensive
confrontation.
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x
t+1
ip � x

t
ip + vi · ΔT · cos ψt

i + ωi · ΔT ,

y
t+1
ip � y

t
ip + vi · ΔT · sin ψt

i + ωi · ΔT ,

v
t+1
i � v

t
i + ai · ΔT,

ψt+1
i � ψt

i + ωi · ΔT,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(i � a, d). (3)

2.3. Radar Detection Model. It is assumed that both UAVs
are equipped with lidar to detect the circular obstacles and
enemy in the environment. As shown in Figures 2 and 3, the
detection area of the UAVs is discretized into m state
variables. In the fgures, Ri(i � a, d) represents the UAV
radar detection radius. θi(i � a, d) represents the detection
angle range. Rk

o(k � 1, · · · , Nk) represents the radius of the
circular obstacle, where Nk represents the number of ob-
stacles with diferent radius sizes. (xk

o, yk
o)(k � 1, · · · , No)

represents the position of the obstacles, where No represents
the total number of obstacles.

As shown in Figures 2 and 3, in order to better represent
the detection state of the radar, the detection angle range of
the UAV radar is discretized into l (l� 7) directions at equal
intervals. In the fgure, it is represented by 7 rays, and the
length of each ray is Dn (n� 1, . . ., l). Te length of the blue
ray is the maximum detection radius of the UAV radar, and
the length of the red ray is the relative distance between the
UAV and the obstacle or boundary detected in the corre-
sponding direction. xn

io(i � a, d)(n � 1, · · · , m) represents
the ratio of Dn to the UAV radar maximum detection radius.
If the ratio is closer to 1, it indicates that the UAV is farther
from the obstacle or boundary in this direction. Otherwise, it
indicates that the UAV is closer to the obstacle or boundary
in this direction.

3. 1vs1 Confrontation Maneuver Decision-
Making Method Based on
Reinforcement Learning

In this paper, the reinforcement learning algorithm of
DDPG is used to study the 1vs1 confrontation scenarios.
Before using this algorithm, it is necessary to defne the state
space, action space, and reward function.

3.1. State Space. Te position, speed, and heading of the
attack UAV a can be characterized as [xap, yap, va,ψa]. Te
discretization number l of the radar detection range is set to
7, so the detection state can be characterized as
sao � [x1

ao, x2
ao, x3

ao, x4
ao, x5

ao, x6
ao, x7

ao]. Te attack UAV usu-
ally knows the position of the target area in advance. To
simplify the input state dimension of the UAV, the position
of the target is combined with the radar detection state. As
shown in Figure 4, the direction corresponding to the
maximum value of state quantity xi

ao, (i � 1, ..., l) in sao

(there may be multiple such directions, such as the four blue
ray directions in Figure 4) will be determined, and then the
direction with the smallest angle with the UAV target line of
sight direction will be selected as the optimal heading (such
as the green ray direction in the fgure) of the attack UAV.

Te number of this direction is marked as c(1≤ c≤ 7), and
let xc

ao equals to 2, which means that the attack UAV moves
in this direction as much as possible.

In summary, the state of the attackUAV includes theUAV’s
own position, speed, heading angle, the radar’s detection state,
and the target’s direction. Terefore, the state contains 10 di-
mensional data in total, which is defned as formula:

sa � sap, sad, sav, sao 

� xap, yap,ψa, va, x
1
ao, x

2
ao, x

3
ao, x

4
ao, x

5
ao, x

6
ao, x

7
ao .

(4)

For the defense UAV d, the status is similar to the attack
UAV, which is defned as formula.

Ro
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1
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2)

(xo
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1)

Figure 2: Obstacles detected by the UAV radar.
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Figure 3: UAV radar detects the boundary of the battlefeld.
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sd � sdp, sdd, adv, sdo 

� xdp, ydp,ψd, vd, x
1
do, x

2
do, x

3
do, x

4
do, x

5
do, x

6
do, x

7
do .

(5)

3.2. Action Space. It is assumed that the attack UAVs have
stronger maneuverability. Te control inputs of both UAVs
are acceleration and angular velocity, and the action space is
shown as formula:

A � ai,ωi (i � a, d). (6)

3.3. Te Reward Function. Reinforcement learning mostly
uses sparse rewards in the feld of AI games and has achieved

good results [16]. However, the sparse reward cannot make
the UAVs to learn efciently at the beginning of the con-
frontation task.

Terefore, the reward function of this experiment is set
by the combination of guided reward and sparse reward.Te
design of guided reward Rg is shown in the following
formula:

Rd � dt−1 − dt,

Rh � 
7

n�1
x

n
io − 1( ,

Rv �
vi

vimax
,

Rc � ψopti − ψi



, (i � a, d),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where dt−1 and dt represent the relative distance between the
UAV and the target at time t− 1 and t, respectively. Rd

represents the variation of relative distance. Rh represents
the cumulative value of the UAV radar detection state
variable xn

io relative to 1. Rv represents the reward of the
current speed of the UAV. Rc represents the deviation of the
current heading ψi of the UAV from the optimal heading
ψopti.

Rg � α1Rd + α2Rh + α3Rv + α4Rc. (8)

Te design of sparse reward Rs is expressed in the fol-
lowing formula:

Rs �

R1, if xip ≤ xmin or xip ≥xmax or yip ≤ymin or yip ≥ymax ,

R2, if dis sip, sio ≤R
k
o k � 1, L, Nk( ,

R3, if dis sip, sit ≤RtorRf,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i � a, d) . (9)

where R1 represents the penalty for the UAV colliding with
the boundary. Rk

o represents the radius of the k − th obstacle.
dis(·) represents the Euclidean distance in two-dimensional
space. R2 represents the penalty for UAV colliding with the
obstacle. Rt represents the radius of the target area. Rf

represents the attack distance of the defense UAV. R3 is the
reward of the attack UAV to reach the target or the pun-
ishment for it being destroyed. Te success signal of the
defense UAV is that the attack UAV is destroyed.

3.4. Te DDPG Algorithm. Te DDPG algorithm is a classic
reinforcement learning algorithm based on the actor-critic
framework [17]. It is a deterministic policy gradient algo-
rithm referring to the experience playback mechanism and

the dual network structure in the DQN algorithm, and it
realizes the direct mapping from the continuous state space
to the specifc high-dimensional action space through the
actor network. Te network architecture of DDPG is shown
in Figure 5.

As shown in Figure 5, the algorithm mainly includes the
interactive environment, the experience pool, and the net-
work module of the algorithm. Before the UAV interacts
with the environment, it is necessary to determine the
number of layers and nodes of the network. We need to
initialize the current network parameters randomly and
copy the evaluated network parameters to the corresponding
target network for the frst time. In each step of interaction,
the initial state st of environmental feedback is taken as the
state input of the actor evaluated network, and the action

θi

(xip,yip)

Ri

xc
ao = 2

D2

D3

D4

Figure 4: Schematic diagram of UAVs selecting the optimal
direction.
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value μ(st; θ) of UAV is obtained by the actor network. We
need to add Gaussian noise to increase the exploration of the
action space on this basis. Due to the limitation of the UAV’s
angular velocity, the action of the UAV is the combination of
Gaussian noise and motion constraints, which is expressed
in the following formula:

at � fclip μ st; θ(  + N( , (10)

where fclip represents the limitation function of the UAV
action,N is Gaussian noise, which should obey the formula :

N ∼ N 0, σ2 , (11)

where σ represents the variance of action noise. Te state of
the UAVs is determined by the state transition formula (3),
and the corresponding reward is obtained according to the
reward function. Ten, the network training sample
[st, at, rt, st+1] is obtained, and we stored it in the experience
pool. If the number of samples reaches the requirements for
starting training, the parameters of the network are trained
according to the method of random sampling. Te specifc
method is to randomly take m sets of sample data from the
experience pool. sn, an, rn, sn

′  represents the n − th sample.
Te back propagation algorithm can be used to update the
evaluated network parameters.

Te loss function J(ω) of the critic evaluated network is
calculated as formula:

J(ω) �
1
m



m

n�1
yn − Q sn; an;ω( ( 

2
 , (12)

where ω represents the parameters of the critic evaluated
network, Q(sn, an;ω) represents the evaluation value of the
critic evaluated network of the current state and the actions
performed, and yn is defned as formula:

yn � rn + cQ′ sn
′; μ′ sn
′; θ′( ;ω′( , (13)

where rn represents the reward after the UAV performs
action an, c represents the attenuation coefcient of the
reward, and Q′(sn

′; μ′(sn
′; θ′);ω′) represents the evaluation

value of the critic target network.
Te parameter of the critic evaluated network is updated

as formula:

ω � ω − αC∇ωJ(ω), (14)

where αC is the learning rate of the critic evaluated network,
and ∇ωJ(ω) is calculated as formula:

environment

st

output layerinput layer

hidden layer

.

…

.

.

θ' ω'

ω

output layerinput layer
hidden layer

.

…

.

.

output layer
input layer

hidden layer

.…

.

.

output layer
hidden layer

.…

.

.

input layer

at

+

+

{st,at,rt,st+1}
st

st+1

st+1

sn+1

μ (st+1;θ)

π (st;θ)

sn+1

experience pool
upload

sn

sof update network 
parameters θ'

optimizer optimizer

updateθ update ω

sn

{sn,an,r n,sn'}n = 1,2...batch_size

rt

batch_size samples

randomly sample

action
limitation Gaussian

Noise∑

Actor loss
function 
μ (si ;θ)

Actor online
network θ

Q (si;ai;ω)

Actor target
network

Critic target
network

sof update network
parameters ω'

Critic online
network

Critic loss
function Q (si;ai;ω)

Figure 5: Te DDPG algorithm network structure.
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∇ωJ(ω) �
1
m

, 
m

n�1
yn − Q sn; an;ω( ( ∇ωQ(s; a;ω)|s�sn,a�an

.

(15)

Te parameter updating method of the actor evaluated
network:

θ � θ + αA∇θJ(θ), (16)

where αA is the learning rate of the actor evaluated network.
∇θJ(θ) is calculated as formula:

∇θJ(θ) �
1
m



m

n�1
∇aQ(s, a;ω) s � sn, a � μ sn; θ( 



∗∇θμ(s; θ) s � sn

 .

(17)

Te parameters of the actor target network and the critic
target network are updated through a soft update method.
Such a slow updating process makes the training process
more stable. Te process of updating as formula:

ω′←τω +(1 − τ)ω′,

θ′←τθ +(1 − τ)θ′,

⎧⎨

⎩ (18)

where τ represents the soft update coefcient.

4. Confrontation Maneuver Decision-Making
Method Based on Transfer
Reinforcement Learning

4.1. Transfer Learning. It is common that the trained
strategies of deep reinforcement learning can only be applied
to specifc environments. As the complexity of the task
increases, it is more difcult for the strategies to apply to new
scenarios. Transfer learning is an algorithm that can make
full use of the knowledge and experience that could be
gained in previous related tasks and applied to new tasks
[18]. Transfer learning has a strong ability of model gen-
eralization. Tis idea can also be refected in daily learning.
For example, people use their mother tongue to learn foreign
languages. People who are familiar with C++ can quickly
learn other programming languages. A solid mathematical
foundation is helpful for learning professional courses. All
those mentioned previously are based on the previous
knowledge to continue learning to solve new problems.
Diferent scenarios or tasks in transfer learning are generally
called domains. Te domains that have learned experience
and knowledge are called source domains, and the domains
to be learned are called target domains. Te defnition of
transfer learning is as follows.

Based on the given source domain Ds and source domain
task Ts, the knowledge Ks learned in the source domain is
used to learn Kt in the target domain Dt to complete the task
Tt of the target domain.

Te idea of transfer learning can also be applied to re-
inforcement learning. In this paper, the parameter transfer
method of transfer learning is used to deal with the scenario
of 1vs1 confrontation. Te core idea of this method is that

the agent learns in a simple task frstly, and if the learned
strategy is getting better, the difculty of the agent’s task can
be gradually increased. Te agent strategies which are
suitable for simple tasks will be transferred to more complex
tasks to continue learning. Tis process can reduce the
difculty of exploring complex tasks efectively and avoid the
problems caused by sparse rewards successfully.

4.2. ConfrontationManeuverDecision-MakingMethod Based
on Transfer Learning. Aiming at the 1vs1 confrontation
model established in Section 2, this paper lets the UAV learn
in a simple environment frstly and gradually transfer the
learned experience tomore difcult mission scenarios. In the
learning process, when one side’s strategy is to be trained,
the other side’s strategy trained in the previous scenario will
be used initially. After the training is completed, the strategy
of this training will be used to train the other side. We can
use alternate training methods to improve the strategy of the
UAVs from the two sides progressively. Te specifc training
process is shown in Table 1.

Te pseudocode of the strategy training algorithm for
DDPG-based 1vs1 confrontation is shown in Table 2.

5. Simulation Experiment

5.1. Experimental Environment and Parameter Settings.
Te experimental software package is PyCharm 2020.1 and
Anaconda3. Te experimental program is based on the
Python language. Te settings of the confrontation scenario
are shown in Figure 1. Tis paper uses the standard GUI
writing library named Tkinter of Python to build a two-
dimensional environment. Te neural network is con-
structed by the PyTorchmodule, and the version of it is 1.8.1.

Te specifc parameters of the experimental environ-
ment are introduced as shown in Table 3. Te obstacles are
distributed in each episode randomly, and they are limited in
the specifc area.

Te simulation step ΔT is 1s. Te PyTorch module is
used to build the neural networks of this paper, which all are
3-layer fully connected feedforward neural networks. Te
number of neurons in each layer of the actor network is [10,
128, 64, 2], and the number of neurons in each layer of the
critic network is [12, 128, 64, 1]. Te activation function is
the ReLU function. To ensure that the action output by the
actor network is reasonable, the value output by the fnal
output layer is multiplied by the maximum action limit value
by the tanh function. Te network parameter optimizer uses
the AdamOptimizer module. To reduce the burden of the
neural network and speed up the training of the network, the
state input of both UAVs will be processed in advance. In
this paper, the position coordinates are divided by the
maximum boundary length, and the angle is limited to [0, 2π
and divided by 2π.

Te algorithm training parameter settings are shown in
Table 4.

In addition, there are two specifc conditions of episode
termination in this experiment. One is the number of time
steps that the UAV interacts with the environment reaching
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the maximum number of time steps per episode.Te other is
that the UAVs collide with obstacles and boundaries or
successfully achieve their required targets. For sparse

rewards, if the UAV collides with an obstacle or boundary,
the rewards R1 and R2 are set to −10. If the UAV completes
the required task, the reward R3 is set to 10. For the guided

Table 1: Te training method of 1vs1 confrontation maneuver decision-making based on transfer learning.

Step Diferent scenario requirements from simple to difcult

1 Set that there is only one attack UAV in the battlefeld environment and train the UAV to avoid collision with obstacles and
boundaries until it can reach the target area

2
Use the strategy of the attack UAV in step 1 and add a defense UAV in the environment. Te maneuverability of the defense UAV is
not as good as that of the attack UAV.Te defense UAV is trained to avoid collision with obstacles and boundaries, and we perform

the task of intercepting and attacking the attack UAV

3 Use the strategy of the defense UAV trained in step 2. It is set that the attack UAV can detect the defense UAV in advance. Use the
transfer strategy and the nontransfer strategy for training, respectively

Table 2: Pseudocode of the 1vs1 countermeasure algorithm based on DDPG transfer learning.

Pseudocode of the 1vs1 countermeasure algorithm based on DDPG
(1) Randomly initialize the parameters θ and ω of the evaluated network of actor and critic. Initialize experience pool D with a capacity of
M. Te number of initialization batch samples is batch_size. Te initial attenuation factor is c. Te initial soft update coefcient is τ. Te
initial Gaussian noise variance is noise. Te maximum number of initialization rounds is Max_Episode. Te maximum number of
initialization steps per round is Max_Step
(2) For episode� 1 to Max_Episode do
(3) Obtain the respective state st of both sides according to the initial settings of the simulation environment
(4) For t� 1 to Max_Step do
(5) Enter st as the input of the actor evaluated network to get the UAV’s action at � fclip(μ(st; θ) + N), where fclip represents the
function of the upper and lower limits of the UAV’s restricted action
(6) If there is an enemy UAV, the enemy UAV takes the corresponding confrontation maneuver decision-making according to the
description in Table 2and we need to execute action act and update its own state sct to sc(t+1)

(7) Select the action according to the ε − gree dy strategy, that is, training the UAV to randomly select the action within the action range
with a certain probability or the action at of step 5, then obtain the corresponding reward value rt, and change the environment state to st+1
at the next moment
(8) Store the sample data [st, at, rt, st+1] of the interaction between the UAV and the environment in the experience pool D
(9) Randomly select batch_size of training sample data [sn, an, rn, sn

′] from experience pool D
(10) Calculate the loss function of the critic evaluated network and update the parameter ω of the critic evaluated network through
backpropagation to minimize the loss function
(11) Calculate the loss function of the actor evaluated network and update the parameter θ of the actor evaluated network through
backpropagation loss function
(12) Update the parameters θ′ and ω′ of the actor and critic target network for every step C
(13) end for
(14) end for

Table 3: Design of the training method for 1vs1 confrontation strategies.

Experiment environment parameters Parameter values
Task area boundary xmin, xmaxymin, ymax [0, 100]× [0, 80] (km)
Number of obstacles, No 9
Te radius Rk

o and the number of diferent kinds of obstacles 4 km (3), 5 km (3), 6 km (3)
Area where obstacles appear randomly [15, 85]× [15, 65] (km)
Radar detection range of attack UAV, Ra ∗ θa 12 km× 120°
Radar detection range of defense UAV, Rd ∗ θd 8 km× 120°
Discrete number of detection range, m 7
Maximum speed of attack UAV, vamax 340m/s
Maximum speed of defense UAV, vdmax 300m/s
Te upper limit of the acceleration of the attack UAV, aamax 20m/s2

Te upper limit of the acceleration of the defense UAV, admax 20m/s2

Te maximum angular velocity of the attack UAV, ωamax π/15.7
Te maximum angular velocity of the defense UAV, ωdmax π/22.6
Te initial position coordinates and heading angle of the attack UAV [2.5, 2.5] (km), π/4
Te initial position coordinates and heading angle of the defense UAV [97.5, 77.5] (km), 5π/4
Te center point coordinate (xtp, ytp) and radius Rt of the target area [95, 75] (km), 5 (km)
Te attacking radius of the defense UAV, Rf 1 km
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rewards, diferent reward coefcients α1, α2, α3, and α4 are
set to 0.3, 0.2, 0.2, and 0.3 in formula (8).

5.2. Training Result Analysis. Te purpose of the rein-
forcement learning algorithm is to train the agent’s strategy
to maximize its cumulative reward expectation. Te eval-
uation index of training results can generally be the average
reward value of the episode. It is a graph which shows the
change of the reward value obtained by the agent training
with the number of the episodes. Te faster the reward value
rises and the more stable and higher the reward value
converges, the better the training efect is.Tis paper uses the
average reward of the last 100 episodes as the fnal average
reward value. If there are less than 100 episodes from the
beginning of training, only the average reward value of the
existing rounds will be used.

According to the training steps in Table 2, we can use the
strategies trained by the UAVs in the simple task scenarios in
step 1 and step 2 to in the scenario of step 3. In step 3, the
task difculty increases gradually, and the transfer and
nontransfer methods are used for comparative analysis,
respectively. Te migration methods are based on the net-
work parameters of 1500 episodes previously trained. Te
details are as follows:

As shown in Figure 6(a), the ofensive UAV has prior
information of its starting position and goal position in the
environment of step 1, and it is trained to avoid obstacles
and boundaries. After 1500 episodes of training, the reward
function curve of the attacking UAV is shown in Figure 6(b).

Te abscissa of Figure 6(b) represents the number of
training episodes, and the ordinate represents the average
rewards of the most recent 100 episodes. It can be seen
from the fgure that the UAV is not clear about what it is

Table 4: Algorithm training parameter settings.

Parameters Description Values
Discount factor, c Decay factor of cumulative reward 0.95
Inertial update rate, τ Calculate the parameters of the target network by the soft update method 0.01
Experience pool size, M Te sample size of the experience pool, which is the source of training samples 1e5

Number of samples per batch, batch_size Te number of samples used for learning in each batch, randomly chosen from
the experience pool 64

Actor network learning rate, αA Update the parameters of the actor network 1e− 5
Critic network learning rate, αC Update the parameters of critic network 1e− 4
Exploration rate, ε Te exploration rate of the agent’s random actions 0.1⟶ 0
Action noise, σ (variance of the normal
distribution) Action noise variance 3⟶ 0

Maximum number of rounds, Max_Episode Total number of rounds in training 1500
Maximum number of steps per episode,
Max_Step Maximum number of steps in each episode 500

Number of steps between parameter soft
update, c Number of steps between parameter soft update 10

(a)

300

200

100

0

-100

-200

Re
w

ar
d

Episode
2000 400 600 800 1000 1200 1400

Reward
Average Reward

(b)

Figure 6: (a) Te training environment of step 1 and (b) the average training reward curve.
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going to do at the beginning. It is just exploratory in-
teraction with the environment, and the data of these
interactions are extremely useful. After the experience
pool is flled (about 520 rounds), as the algorithm begins
to train, the reward curve begins to rise gradually, and it
starts to show a trend of convergence after 720 episodes
with good stability.

As shown in Figure 7(a), in step 2, the defense UAV uses
the trained strategy of the attack UAV in step 1 to avoid
obstacles and boundaries, and on this basis, the defense
UAV is trained to intercept the attack UAV. If the distance
from the attack UAV to the target location (yellow) is less
than the distance from the defense UAV to the target lo-
cation, the defense UAV cannot complete the interception
and strike mission, it is due to the fact that the maneu-
verability of the attack UAV is better than the defense UAV.
Terefore, the episode will be terminated early, and it means
that the attack UAV completes its task successfully and the
defense UAV fails to defend.

Te abscissa of Figure 7(b) represents the number of
training episodes, and the ordinate represents the average
rewards of the most recent 100 episodes. It can be seen from
the fgure that after the experience pool is flled (approxi-
mately 580 episodes), the training curve begins to gradually
rise and begins to converge around 850 episodes with good
stability.

In step 3, the defense UAV used the defensive strategy
trained in step 2. It is assumed that the attack UAV can
detect the defense UAV by its airborne lidar and take the
defense UAV as obstacles to avoid. Ten, the attack UAV is
trained by the strategy of the attack UAV trained in step 1
and the nontransfer method, respectively. Te training re-
sults are shown in Figure 8. Similarly, if the distance between
the attack UAV and the target position (yellow) is less than
the distance between the defense UAV and the target po-
sition, the episode will be terminated in advance, and it will
be judged that the attack of the attack UAV is successful and
the defense of the defense UAV is failed.

Te abscissa of Figure 8 represents the number of
training episodes, and the ordinate represents the average
rewards of the most recent 100 episodes. It can be seen from
the fgure that both transfer and nontransfer methods can
converge within a certain period of time. In contrast, the
transfer method has a better round reward value before
training and a higher reward value after convergence.

5.3. Experiment Result Analysis. In this paper, the training
results after 1500 episodes are tested by Monte Carlo for
10000 times. Te parameters of the trained actor evaluated
network are set in the UAVs.

Tree diferent scenarios are tested.Te efects of this test
are shown in Figures 9–11 (each small circle represents the
current position of the UAV at every time step, which is 5 s.).
Te test result data are shown in Figure 12.
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Figure 7: (a) Step 2 training environment and (b) training average reward curve.
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Figure 8: Te average reward curve of step 3.
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Te test results of step 1 show that the attack UAV
trained by the presented method can avoid obstacles suc-
cessfully. Te fnal strategy can achieve stable convergence,
and the success rate of avoiding obstacles and reaching the
designated area is 99.29%.

Te test results of step 2 show the success and failure of
the defense UAV, respectively. As shown in Figure 12, both
UAVs can avoid obstacles successfully. Te defense success
rate of the defense UAV is 55.54%. Most of the cases of
defense failure are that the two UAVs evade from diferent

Figure 9: Training results of test step 1 (ofensive success).

(a) (b)

Figure 10: Training results of test step 2 (a) (defense success) and (b) (defense failure).

(a) (b)

Figure 11: Training results of test step 3 (a) (ofense success) and (b) (ofense failure).
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sides of the obstacle, so the defense UAV cannot intercept
efectively.

Te test results of step 3 show the success and failure of
the attack UAV, respectively. Compared with the results of
the nontransfer method (86.05%), the transfer reinforce-
ment learning method proposed in this paper can increase
the ofensive success rate (87.56%). Moreover, the results of
both sides are greatly improved compared to step 2
(43.55%).

1000 Monte Carlo experiments are conducted be-
tween the attackers and defenders trained by the tradi-
tional MADDPG algorithm and the attackers and
defenders trained by the DDPG algorithm based on
transfer learning. Te experiment results are shown in
Figure 13.

As shown in Figure 13, on the attack side, the winning
rate of the transfer learning algorithm is 94.2%, which is
signifcantly higher than MADDPG’s 45.2% winning rate,
while on the defense side, the winning rate of the transfer
learning algorithm is 54.8% which is also signifcantly higher
than MADDPG’s 6.8% winning rate. Tese results dem-
onstrate the efectiveness and superiority of the algorithm
proposed in this paper.

6. Conclusion

In this paper, reinforcement learning is applied to the UAV
confrontation problem, and a 1vs1 confrontation method is
designed based on the DDPG algorithm. Based on the
model, transfer learning is introduced to train the UAVs.
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Te results show that the proposed method can make
training converge faster and can increase the ofensive
success rate.

Due to its limited mobility, the task success rate of a
single defense UAV is not high. Terefore, the next step will
continue to study the maneuver decision-making of multiple
defense UAVs against a single ofensive UAV on the basis of
the method proposed in this paper. In the far future, op-
timizing the framework structure of the algorithm or
complicating the environment and adding more UAVs to
the scenario will be the development direction.
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