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Te rapid rise of data value, such as social media and mobile applications, results in large volumes of data, which is what the term
“big data” refers to. Te increased rate of data growth makes handling big data very challenging. Despite a Bloom flter (BF)
technique having previously been proposed as a space-and-time efcient probabilistic method, this proposal has not yet been
evaluated in terms of big data. Tis study, thus, evaluates the BF technique by conducting an experimental study with a large
amount of data. Te results revealed that BF overcomes the efciency not present in the space-and-time of indexing and ex-
amining big data. Moreover, to address the increase of false-positive rate in using BF with big data, a novel false-positive rate
reduction approach is proposed in this paper. Te initial experimental results of evaluating this method are very promising. Te
novel approach helped to reduce the false-positive rate by more than 70%.

1. Introduction

Te fast growth of data value, such as social media and
mobile applications, leads to generating huge volumes of
data. Tus, methods for gathering structured and unstruc-
tured digital information, which form big data, have been
developed [1]. Big data has several applications, such as in
social networks and healthcare. A recent survey by the
authors of reference [2] indicates that profciently handling
big data is competitive and challenging. Tis challenge
centers mainly on big data security analytics (BDSA) because
of a rapid increase in the type of cyber-attacks [3]. While
deeply testing the networks’ packet is central [4], correlating
events across space and time appears an important stage for
BDSA [5].

A Bloom Filter (BF) can be termed as a space-and-time
efcient technique that was developed by Burton Bloom [6].
Tis attribute of BF refects the prospect of employing this
method for security analytics that supports monitoring the
network stream [3, 4]. Even though eighteen BF types have
been introduced as described in reference [7], only a few

types are employed in the network security domain. In 2016,
the BF was previously introduced for BDSA [8]. However,
this study evaluated the performance of BF with a smaller
dataset in order to only provide a proof of concept.

Tis paper, therefore, utilizes the BF with a large dataset
for evaluating the performance and success rate of the
proposed technique as well as proposing a novel approach
for a false-positive rate reduction. Te standard BF is se-
lected, and themain reason behind choosing the standard BF
is its involvement in the network security domain.Terefore,
an experimental study is conducted using a high-perfor-
mance machine with a dataset that is available in reference
[9]. Te results confrmed that the standard BF technique
seems an applicable tool to address the data growth rate.
However, the false positive of the proposed approach has a
noticeable rate. Hence, a novel false positive reduction
approach is proposed using a check bits’ methodology. Tis
approach is empirically evaluated, and the results are en-
couraging in terms of reducing the false positive rate (FPR).

Te frst contribution of this research is to evaluate the
standard BF technique with a large dataset [9] and
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demonstrate its performance and success rate. Our second
contribution is to address the issue of the false-positive rate
and decrease it by introducing a novel false-positive re-
duction approach using check bits’ methodology as
explained in Section 7.

Te rest of the paper is organized as follows: the lit-
erature review is presented in Section 2, whereas Section 3
details BF and its types. Te big data defnition is provided
in Section 4. Section 5 explains the experiments and the
dataset. Te results are illustrated in Section 6. Te next
section shows how the false-positive rate is reduced using
the check-bits approach, whereas a discussion is provided
in Section 8. Finally, the conclusion is given in Section 9
with future work.

2. Related Work

Te only related work, as far as we know, is the study in
reference [8] that applied the counting BF with a smaller
dataset. Despite the fact that the study provided a proof of
concept using the counting BF with a smaller dataset, our
study extends the concept with a large dataset using the
standard BF, as will be explained in Section 5. Tus, this
section highlights BF and its application as well as big data
security analytics.

Recent work suggests enhancing BF flters by using a
preflter based on machine learning for learning a function
that can then model a data set the BF is meant to represent.
Mitzenmacher [10] models such BF with the following
outcomes: (1) What assurances can and cannot be attained
with such a structure? (2) Assessing what scope the hashing
function must acquire for amended performance? (3) A
sandwiching approach for heightening learned BF (4) A
design and analysis approach for a learned Bloomier flter,
based on this learned BF.

Similarly, the authors in reference [11] suggest a novel
machine-learning (neural network) based memory archi-
tecture, the neural BF (NBF), which can attain substantial
compression gains over classical BF and prevailing
memory-augmented neural networks and substitute data
structures that have been created manually.

Christen et al. [12] argue that the BF’s encoded values
have vulnerabilities to cryptanalysis attacks. In the simu-
lation, the novel efcient attack is carried out on BFs, which
shows that these attacks are successful and thus repeatedly
occurring sensitive attribute values can be re-identifed.
Terefore, the authors simulate and analyze the novel ef-
cient attack on real databases that is founded on the con-
struction principle of BFs of hashing elements into bits’
positions. Te proposed scheme is independent of the
encoding function and can re-identify sensitive encoded
values in a few seconds.

One-Hashing BF (OHBF) approach is presented by
researchers in reference [12] because of its simplicity and as
it requires one base hash function and some modulo op-
erations. Te overheads encountered due to using hash
functions are mostly low despite keeping the same theo-
retical false-positive ratio as in the standard BF (SBF), hence
increasing its performance.

To identify repeatedly co-occurring bits’ position in the
set of BF, a novel attack method-based technique is intro-
duced [13], which is referred to as the frequent itemset
mining technique. Although the encoded item set in the
database is unique, still these proposed attack methods can
re-identify sensitive encoded values. After analyzing and
testing these proposed attack methods on various real-world
problems, it efectively shows the re-identifcation of values
from the encoded BF, even in such situations where the
earlier attacks failed in the process.

An enhanced version of BF known as ultrafast BF
(UFBF) is proposed in reference [14] by taking advantage of
the single instruction multiple data (SIMD) processor ap-
proach. First, to speed up the membership checking process,
three advancements have been made in UFBF. An improved
novel hash computation algorithm has been developed that
uses SIMD instruction to apply multiple hash functions in
parallel resulting in reduced execution times. Second, BF’s
bit-test process is set to work in parallel, enabling it to carry
out an increased number of bit-tests per unit time.Tird, the
efcacy of the membership check is improved by encoding a
bit’s information into a small block to be suitable for the
cache. In the overall analysis, UFBF signifcantly outper-
forms state-of-art BF variants’ membership checking speed.

On the other hand, big data indexing techniques have
been enhanced in terms of accuracy performance. In
particular, recent studies focus on optimizing search per-
formance in big data with a better time-and-space tradeof.
Accordingly, a survey conducted in reference [15] reports
the indexing for large datasets and has evaluated and
classifed indexing techniques into three classes: artifcial
intelligence (AI), non-AI (NAI), and collaborative AI
(CAI) methods. NAI is the traditional approach, such as
graph query processing, in which the indexing construction
is straightforward and query responses. It performs
practically in volume, velocity, variety, variability, value,
and complexity. However, it could not detect the big un-
known data. Tis unknown challenge is overcome by AI,
such as a case-based data clustering technique that can be
integrated with a fuzzy decision tree to develop a hybrid
model that produces efcient results for test data.

Patgiri [16] developed a high-accuracy bloom Filter,
HFil, a combination of several 3D BFs, to achieve high
accuracy and reduced false positive rate. Te best confgu-
ration achieved an accuracy of 99.99%. Kiss et al. [17] de-
veloped a novel data structure called EGH flter, supporting
bloom flter operations and devoid of any false positives
(mentioned as a false positive free zone).

Rottenstreich et al. [18] developed memory-efcient
bloom flters also with a false positive free zone and dis-
cussed the role of Orthogonal Latin Square codes. Patgiri
et al. [19] developed 3D BF specifcally to manage passwords.
Teir approach got an accuracy of 99.99% and only
0.000001882 false positives. Najam et al. [20] used multiple
BF (MBF) for DNA sequencing, whereby MBF stores the
chromosome data. Te false probability rate is kept at 0.01.
Te experiments showed that the FP plays an important role
in compression, and a higher FP is able to get better
compression.
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Figure 1 summarizes the state-of-the-art big data
indexing techniques based on previously mentioned
categories.

Although there exists a considerable amount of related
work considering a BF as an indexing technique, these
formulations do not ft exactly with our approach.

3. Bloom Filter (BF) Technique

Tis section gives an overview of the BF and its types.

3.1. Bloom Filters: An Overview. Generally, a compact in-
discriminate data structure to help membership queries is
inferred as a BF [6, 21]. Even though the BF accumulates
several elements in compact memory, a poor rate of false
positives may arise in membership queries. On the contrary,
the features of BF, i.e., space-saving and locating time,
frequently harmonies the downside when the ratios of false
positives are reduced.

Formerly, BFs have captivated vast notoriety in innu-
merable networking applications, namely, security and web
caching [11]. Te idea of SBF is explained as follows [22]: It
allocates a bit vector B of m bits, each initialized with zeros
and then chooses k independent hash functions, given as
h1, . . . , hk, each having a range 0, . . . , 1 − m{ }. In order to
add an element s into B, the bits at location h1(s), . . . , hk(s)

in B are made equal to 1, i.e., make
B[h1(s) � · · · � B[hk(s)] � 1.

It is pertinent to mention that some bits could be set to 1
several times in which some added elements might share the
same bits. Based on this, to query whether, for example, s is a
member or not using the BF, the bits at location
h1(s), . . . , hk(s) are verifed. Accordingly, if all of these bits
are one, then s is a member. Otherwise, s is not. However,
there is a probability that all of these bits are one but x is not
a part of set B (mentioned as “false positive”).

A false positive refers to returning “yes” while looking for
an element that is not present in the flter. Nevertheless,
getting a false-negative (returning “no” when querying an
element that is present) is not possible. Te probability that
false positives can arise is given next:

f ≈ 1 − 1 −
1
m

 
kn

 

k

≈ 1 − e

− kn

m⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

k

. (1)

A tradeof exists between m (storage size), k (computation
time), and f (FPR). It could minimize f when k � ln 2 × m/n,
where it becomes fmtn � (1/2)k ≈ (0.6185)m/n. Terefore, as
m increases in proportion to n, f will decrease [23].

3.2. Types of BF. Based on the applications, diferent favors
of BFs have been proposed. An upgradation to the standard
BF is inferred as the Bloomier flter in reference [6]. In
contemplation of subordinate values in the BF with a
subcategory of the elements, the category can be prearranged
with arbitrary functions. Tese functions are widespread
while upholding their fscal use of storage. In addition to

this, dynamic updates are permissible; consequently, the
functions persist unpretentiously. As we mentioned previ-
ously, eighteen BF types had been proposed in the literature
[7]; nevertheless, few types have been used in the network
security area. Tus, eight types that contributed to the
network security feld are discussed.

3.2.1. Standard BF (SBF). Te SBF is explained in Section
3.1. Also, this type is utilized in this paper; more details are
given in Section 5.

3.2.2. Bloomier Filter (BLF). BLF stores the membership
function of the element set S: f � S⟶ [0, 1] as an en-
hancement to the SBF [15]. In particular, it encodes arbitrary
functions to associate values with a subset of the elements.

3.2.3. Compressed BF (ComBF). Since the SBF has three
main factors (i.e. k, m, and n), this type introduced another
factor for the data size that is transmitted over the network
called transmission size z [10]. Te ComBF has a signifcant
bandwidth saving.

3.2.4. Counting BF (CouBF). Te CouBF type is developed
by the authors of reference [24] as an extension of the SBF to
count the occurrence of e-mail messages. Tis type is
upgraded by the authors of reference [23] in order to know
the number of times an e-mail message has been added to the
BF.

3.2.5. Dynamic BF (DBF). Te DBF type addresses the issue
of knowing the size of a static set by creating a dynamic set A

with a dynamic n × m bit matrix. Tat is, an SBF is initially
activated (i.e., n � 1). In case the FPR is increasing, a new
SBF is activated, and the older one becomes the current one
[25].

3.2.6. Generalized BF (GBF). Te GBF type addresses the
issue of lacking the upper bound in the FPR of the SBF by
putting an upper bound on the false positive probability
[26]. Tis type is appropriate for security purposes.

3.2.7. Hierarchical BF (HBF). Tis type has two levels of
probabilistic arrays [27]: a probabilistic array when the
accuracy is low, and another one when the accuracy is high.
Using this type, the performance and scalability of the fle
systems are efciently enhanced.

3.2.8. Space-Code BF (SCBF). Te SCBF type measures per-
fow trafc approximately [28] to answer queries of the form
whether an element x is in a multiset.

Table 1 summarizes these types and their contributions
in the network security domain [8].

Computational Intelligence and Neuroscience 3



4. Big Data

Te term big data is related to a collection of data from
diferent sources in which numerous datasets can be pro-
duced. Hence, a real challenge is observed due to the size and
time of analytical efort in analyzing the data set. Tis
section, therefore, describes the characteristics and indexing
approaches for big data.

4.1. Big Data Characteristics. Four common features of big
data, namely, volume, variety, velocity, and veracity, are
defned as follows:

(i) Volume: It refers to huge datasets, i.e., terabytes to
exabytes of stored information, in areas such as
social networks

(ii) Variety: Data are shaped from numerous sources,
for example, unstructured, structured, and semi-
structured data

(iii) Velocity: Tis refects the speed of receiving and
sending data

(iv) Veracity:Tis refers to sufciently accurate data, not
spoofed data, or not corrupted data.

4.2. Big Data Indexing Techniques. Te characteristics
mentioned earlier may negatively impact existing indexing
solutions in terms of their solutions becoming inefective.
For this [1], classifed indexing techniques into three cate-
gories, as shown in Figure 1, and concluded that the CAI
technique is the most efective for big data.

5. Experiments

Tis section describes how we built the BF and performed its
evaluation by conducting an experimental study.

5.1. Building the SBF. We frst defne the main class for the
SBF that encloses methods that perform BF-related

Table 1: Summary of BFs types and their contribution to network security.

By type Authentication Firewall Anomaly detection and
privacy-preserving Traceback Node replication

detection
String
match

Email
protection

SYN
fooding
addressing

SBF ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

BLF ∗
ComBF ∗ ∗

CouBF ∗ ∗ ∗ ∗
DBF ∗

GBF ∗

HBF ∗
SCBF ∗

Indexing Techniques

NAI

AI

CAI

Graph-based

Bitmap

Hashing

Sof Computing (SC)

Machine Learning (ML)

Knowledge Representation 
and Reasoning (KRR)

Collaborative ML

Collaborative KRR

Figure 1: Summary of state-of-the-art big data indexing techniques.
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operations, such as hashing, adding, checking, searching,
and other necessary helper functions. In the beginning, a
constructor is built which initializes the BF object to receive
the following:

(i) Te total number of items to store in the SBF (n)

which we use to compute the SBF size m.
(ii) Te false-positive probability (fp prob) value, which

is a preset probability of getting a false positive
(when checking whether an item has been inserted
into the flter or not). Lowering the fp prob value
increases the confdence level in the SBF giving us
fewer false positives if queried for items non-exis-
tent in the SBF.

(iii) An item type, dependent on which particular items
to store in the SBF. It could be user information,
computer information, timestamp information, or
all.

(iv) A hash count value asserts the number of hashing
operations to perform when adding and searching
for items in the SBF.

Inside this constructor, we have instantiated the SBF as a
bit-array, an array-like data structure that compactly stores
bits (0’s and 1’s) or Boolean values. All bits are set to 0 at the
point of instantiation.

5.1.1. SBF Size. To compute the size of the SBF based on and
value, a method is defned as shown in equation (2).

m � −
n log fp prob 

log (2)
2 . (2)

5.1.2. Number of Hash Functions. Te number of hash
functions k, depend on the computed BF size m, and total
number of items to be added n as depicted in equation (3):

k �
m

n
log(2). (3)

5.1.3. Hashing. To generate k hash values, a method is called
for every single BF addition. Given an input value of ar-
bitrary length, such a method outputs k diferent values,
which will always be unique to the input value and smaller or
equal to the SBF size.

5.1.4. Adding. Using the hashing approach described earlier,
we obtain k unique values for an item to be added or stored.
Tereafter, we access bits in locations/indices (corre-
sponding to k unique values) within the bit-array and change
them from 0 to 1.

5.1.5. Searching. Similar to the aforementioned adding
process, the hashing is used to obtain the k unique values for
an item to be looked up, thereafter, access and check, if all
bits in the locations/indices (corresponding to the unique

values) are 1 s. If we fnd any bit as 0, this function returns
false (in other words, the item is absent); otherwise, all
checked bits have to be 1 for the function to return true
(implying the item is present or exists).

5.2. Used Dataset. We used an anonymous dataset in this
research named “User-Computer Authentication Associa-
tions in Time” [9]. Te data contain 708,304,516 authenti-
cation events from an enterprise computer network. Te
events are recorded for nine continuous months, whereby an
event corresponds to successful user authentication to a
particular computer at a certain time.Te data are accessible
both as a single fle and in the form of nine fles, one for each
month. Te number of distinct users is 11,362, whereas
22,284 computers are available to users. Tere are three
attributes, namely, timestamp, user information, and
computer detail. Te timestamps do not represent the actual
time, but start at 1 and represent the ofset.Tis arrangement
makes the data fully anonymous.

Te researchers in reference [9] used this dataset to
generate authentication graphs and studied the size of the
largest connected components. Tey further discussed that
their models could be employed to limit or even remove
highly connected computers and users. Te justifcation
provided by them is that the computers which are used by a
relatively large number of people need additional security.

5.3. Evaluating the SBF. Having implemented the SBF in
Section 5.1, the next step is to evaluate the SBF and examine
its ability to perform SBF-related operations. Each particular
item (user, computer, or timestamp) stored in the flter and
representing the element to fnd within the dataset (de-
scribed next) needs to be specifed.

5.3.1. Default Process. Te default implementation of eval-
uating the BF is determining the number of items that are
going to be added to/stored in the flter, a false positive
probability, and a particular item which can either be a user,
computer, timestamp, or all of them (dataset properties).
Te prompt responses are used to instantiate BF to perform
its operations, such as creating a list of items to add and
search for in the SBF, adding items to the SBF, and searching
for items in the SBF.

5.3.2. Evaluating SBF Properties. Te memory, adding time,
searching time, and false-positive rate versus false proba-
bility are explained in the following:

(1) Memory and Number of Items. Tis is an evaluation of
how the memory (SBF size) m varies with an increasing
number of items (n) to store in the SBF. Tis involves it-
erating through a range of diferent n values, i.e., diferent
numbers of items to store, and for each iteration, the SBF is
instantiated with a default false positive probability value
and a default item (user, computer, timestamp). Given the
number of items n and false-positive probability, SBF size is
accordingly computed as shown in Section 5.1.1. Each
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computed BF size is stored in a dictionary along with the
corresponding n value, which is later converted to a CSV fle.
We additionally compute the rate at which the SBF size
changes from one n value to another, given the entire list of
computed BF sizes.

(2) Adding (Saving) Time. Adding time is an evaluation of
the time it takes to add or store items. Tis time varies with
an increasing number of items (n) to store in the SBF. Given
the items, we iterate through a range of diferent values that
are multiples of 40 (a hyperparameter that is randomly
chosen and subject to change). For each, a list of items to
store is created, and n diferent items are added to the SBF as
described in Section 5.1.4. A dictionary is flled with various
n values and the time taken to add all items (which is
computed as the time at the end of the item addition minus
the time stored before the addition operation is called). Tis
time is computed for each iteration. Te dictionary is later
converted to a CSV fle with the number of added items and
the corresponding flling time.

(3) Searching Time. Te searching time is the time it takes
to look up items in the SBF. Tis time varies with an
increasing number of items to search in the SBF. Tis
begins by flling the SBF with items. It then iterates
through a range of values that are multiples of 40 (can be
any other alternative). For each iteration, a list of items is
created to search as a combined list of items. A dictionary
is then flled with each list and the time taken to search all
items, which is computed as the time at the end of the
search of the item minus the time stored before the
search operation is called. Tis dictionary is later con-
verted to a CSV fle with the number of searched items
and the corresponding searching time.

(4) False Positive Rate and False Probability. Tis evaluates
how varying the false positive probability afects the FPR
while searching the SBF. Te process of searching time is
repeated with a range of false-positive probability values
in the range of 0 to 1. For each of these probabilities, we
store the average FP count while searching items. Each
time the check function incorrectly indicates the existence
of an item, the FP count is incremented by 1. As such, X

diferent FP counts are obtained for X corresponding
groups/lists of items searched, and therefore the average
FP count is computed. Te FP rate is obtained as the
percentage of the total-searched items that the average FP
count is. A dictionary is flled with each tested FP
probability value and the computed average FP counts.
Tis dictionary is later converted to a CSV fle with the
number of searched items and the corresponding
searching time.

(5) Hash Functions with Filling and Searching Time. Tis
experiment evaluates how increasing the number of hash
functions varies with the time it takes to add in items and
look up items in the SBF. It varies with an increasing
number of items to search in the SBF. Using a fxed
number of items to add to the SBF and a fxed item type

such as a user, the process is to iterate through a range of
hash count values, in which case the SBF is instantiated
with the two fxed values and the hash count value at
hand. During each iteration, two lists are created, the frst
including items to add to the SBF, whereas the second
includes out-of-sample list items. Te SBF is flled with
all items in the frst list and subsequently searched for
items in the second list and 25% of the items in the frst.
Te time each operation takes is recorded for each hash
count value, and all these are stored in a dictionary,
which is later converted into a CSV fle.

6. Results

Te results of testing the false positive and the memory and
time consumption are presented in this section.

6.1. Testing the False Positive. Figure 2 shows the graph for
false-positive rate (FPR) vs. false probability for the
implemented SBF. A steady increase in the FPR is observed
as the false probability increases from 0.027 to 0.206.
Similarly, a rapid increase (155.68%) in FPR could be seen as
the false probability increases beyond 0.360. However, no
change in FPR is observed as the false probability becomes
greater than or equal to 0.385. Tis graph shows that the
lower the false probability, the lower would be the FPR.
Furthermore, a lower value of FPR is required in all types of
experiments related to the BF.

6.2. Testing the Consumption ofMemory. Figure 3 provides a
complete analysis graph of the memory requirements as the
number of items is increased from 13 to 961,223. Conse-
quently, BF size increases from 81 to 5,993,440. Te memory
represents the size of the BF, and an overall increase in
memory requirements is observed in the graph. Neverthe-
less, the rate of change varies as the number of items in-
creases. A considerably greater BF size (4,773,269 for
765,533 items) is required as the number of items increases
beyond 576,462. A 32.8% increase in memory is required as
the number of items is increased from 576,462 to 765,553.
On the other hand, the required memory does not increase
at a greater rate as the items are increased from 140,785 to
234,505.

6.3. Testing the Consumption of Time. Figure 4 illustrates the
efect of increasing the number of items on time required by
the BF. One can observe that as the number of items in-
creases from 1000 to 200,000, the time required by the BF
increases. Nevertheless, the increase is not linear, and the
rate of change in time is not uniform, e.g., the rate of increase
is lower when the number of items is varied from 50,000 to
100,000, as compared to the change in items from 1,000 to
50,000 or from 100,000 to 150,000. In the latter case, as the
number of items increases from 100,000 to 150,000, an
increase of 75% in time is observed. On the other hand, only
a 27.77% increase in time is seen as the number of items
increased from 150,000 to 200,000. Tus, 33.21 seconds are
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required while dealing with 200,000 items instead of just
0.238 seconds for 1000 items.

Figure 5 shows the impact of modifying the number of
items on time required for searching in a BF. In general,
the time required for searching for an item in a BF is
directly proportional to the number of items. However, a
diferent rate of change is observed as the number of items
increases from 1000 to 45,000 as compared to the increase

from 61,000 to 93,000. An increase of 39.57% in time is
seen as the number of items increased from 61,000 to
93,000. While 5.482 seconds are required for searching
1,000 items, 25.235 seconds (more than four times) were
needed to search 93,000 items in the BF. Comparing
Figure 5 with Figure 4, one can observe that the time for
searching is more than the time required for adding items
in the BF.
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Figure 2: False positive rate vs. false probability for BF.
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Figure 3: Change in memory requirements as the number of items increases.
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7. Reducing the Number of False Positives:
Check Bits’ Approach

Due to the observed increase of the FP rate in our previous
experiments, we have proposed an approach in order to
reduce it. In particular, the proposed algorithm for reducing
false positives in the BF is based on two check bits. Te input
element to the BF, which can be in numerical or textual
form, is converted to the binary form. Ten, all the bits are
summed up to come up with a number in decimal form.
Later, the number is again converted to the binary form.Te
next step is to determine the two check bits. For this purpose,
we fnd the middle bit of the binary equivalent of decimal
representation and take one bit located fve places to the left
and another one from fve places right of the middle bit.
With initial experimental evaluation, we found that the fve-
position displacement for taking the two bits produced
improved results compared to other possibilities.

For the proof of concept, we conducted a preliminary set
of experiments. Te obtained results are presented in Ta-
ble 2. We tested our approach based on check bits with
various BF sizes, varying from 25 to 100.Te number of hash

functions and the checked items is kept fxed as 2 and 350,
respectively. When the size of the BF is 25, the number of FP
without any additional check bits is 256. However, by adding
just two check bits, the FP was reduced to just 71. Tis
represents a 72.27% reduction in the FP rate. Similarly, as the
BF size is increased to 50, the FP rate without using any
check bits is 272. In this case, the number of FP while
employing check bits is just 74. Tis scenario shows an
81.62% reduction in the FP rate. Lastly, as the size of the BF
increases further to 100, the FP rate was observed to be 288
while ignoring any check bits. Nevertheless, the FP rate with
check bits was reduced to 84. Te reduction in the FP rate
amounts to 70.83%.

Comparing three scenarios, the second scenario presents
the maximum reduction in the FP rate. Te results of the
three experiments for the proof of concept of reducing the
false positives are also represented in Figure 6. In Figure 6,
the orange bars represent the false positives without check
bits. Te green bars show the false positives using the check
bits, and thus, a reduction of the false positives. Khan et al.
[29] studied the impact of changing the number and position
of check bits on the number of false positives. Furthermore,
they also found that an increase in the bloom flter size, in
general, reduces the false positives.

8. Discussion

Te obtained results show an impressive performance level
and success rate for applying the SBF in overcoming the
efciency lacking in the space-and-time of indexing and
analyzing big data.

Specifcally, it is observed in Figure 3 that SBF size in-
creases as a reaction to the increased number of items. Tis
reaction, however, varies as the number of items is increased.
Tat is, the SBF size of 4,773,269 is required for 765,533
items, while 961,223 items need 5,993,440 SBF size. Re-
markably, when the items are increased from 140,785 to
234,505, the SBF size is stable (i.e., not increased). Moreover,
although there was an impact on the time consumption due
to the increase in the number of items, this increase is not
linear, and the rate of change in time is not uniform, as
shown in Figure 4.

Similarly, Figure 5 shows the increase in searching time
as the number of items increased. Te growth in time is
steady but not linear. While comparing Figure 4 with Fig-
ure 5, one can quickly note that more time is required, in
general, for searching as compared to the time needed for
adding items in the BF. Whereas only 14.98 seconds are
required to add 100,000 items in the BF, 25.2 seconds are
necessary to search for an item in a BF having 93,000 items.

Figure 2 shows a steady increase in the FPR, as the false
probability increases from 0.027 to 0.206. Tis increase,
however, is not observed while the false probability becomes
greater than or equal to 0.385. Furthermore, since our paper
focuses on big data security analytics, the FPR is diferent.
Tat is, for example, in the intrusion detection system, the
FPR refers to a normal activity that mistakenly is identifed
as attack behavior, while the false-negative rate (FNR) refers
to an attack activity that is identifed as a normal activity.
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Accordingly, the possible correlation between the FPR in the
SBF and the FPR in the cyber security domain is that an
attack activity is found, while it truly does not exist in the
system. Although the FPR does not infuence the security
level generally, the results would be more accurate when
reducing the FPR. For this, we proposed a novel FPR re-
duction approach in which the check bits are exploited. Te
results of evaluating this approach appear very interesting.
Nonetheless, a comprehensive experiment with a larger
dataset will be conducted as one of our future works.

It is noteworthy that the Cuckoo flter, like the BF, is a
space-efcient probabilistic data structure. However, the
main diference between the Cuckoo flter and the BF is that
the Cuckoo flter can delete existing items, while the BF
cannot. A work by the authors of reference [30] demon-
strated a comparison between the Cuckoo flter and the BF
in terms of FPRs. Te results of this study showed that the
Cuckoo flter provides better practical performance, under
certain circumstances, but ultimately, it can serve as an
alternative in scenarios where a BF would normally be used.

To meet the rate of data growth, managing big data
appears a challenge. Nevertheless, the SBF type demon-
strates the ability to cater to this growth efectively because to
its dynamic feature for size.

9. Conclusion and Future Work

Tis paper evaluates the performance of a memory-and-time
efcient probabilistic approach empirically for big data se-
curity analytics. Tat is, the standard bloom flter technique
(SBF) is selected and implemented due to its contributions to

the network security feld using a large dataset. To evaluate
the proposed approach, an experimental study is conducted.
Te results showed an interesting performance in terms of
overcoming the efectiveness in the space and time of
indexing and analyzing big data. Although the false positive
with SBF has a conspicuous rate, this would not impact the
system’s security level. To address the increase of the false-
positive rate, a novel false-positive rate reduction method is
introduced and implemented. Te initial results of evalu-
ating this method were promising.

A possible future work is to evaluate the proposed false
positive rate reduction method employing a larger dataset.
Furthermore, a comparison could also be made between the
Cuckoo flter and the BF in terms of memory and time
consumption.
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