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By analyzing the feasibility of the digital twin technology in the assembly of construction machinery, the assembly process of the
construction manipulator in the engineering environment is discussed. According to the application criteria and modeling
requirements of digital twin, the overall framework of digital twin engineering manipulator assembly modeling and simulation is
constructed from three aspects: model layer, data layer, and application layer. According to the operation task characteristics of
space engineering manipulator, the feasibility of the control method based on joint angular velocity is analyzed, and the task
environment of space engineering manipulator based on Markov model is defined. Aiming at the application of the algorithm in
the control task of the space engineering manipulator, a reward function with the addition of the angular velocity soft bound term
is designed, which improves the strategy optimization process of the algorithm and obtains a better control effect of the en-
gineering manipulator. The motion trajectory of the end of the engineering manipulator is directly given on the simulation
platform, and the expected motion of each joint of the engineering manipulator is calculated through the kinematics of the
engineering manipulator. It can be seen from the simulation results that the controllers designed in this study can achieve ideal
control effects. With the help of Baxter robot platform, the control algorithm designed in this study is applied to the actual
engineering manipulator control, and the effectiveness of the control algorithm is further proved by the actual control effect.

assembly. With the advent of the era of intelligent
manufacturing, the work tasks of the construction manip-

As the most commonly used robot in the industry, the
construction manipulator is mostly controlled by point-to-
point control in the early stage [1]. This control scheme is
suitable for scenarios with low precision requirements. With
the increase of production technology, industrial
manufacturing puts forward higher requirements for the
control accuracy of the construction manipulator, and at the
same time requires the end of the construction manipulator
to track the given reference trajectory motion [2]. On the
other hand, traditional engineering manipulators are gen-
erally made of rigid materials with large volume and mass,
which cannot complete high-precision work tasks, and are
often used for mechanical work such as handling or

ulator have become refined, and industrial production has
put forward higher requirements for the precision of the
construction manipulator [3]. At the same time, the
adaptability of the production line to different work tasks is
also increasing, and the scenarios in which humans and
robots cooperate to complete production tasks are gradually
increasing [4].

In order to improve the control accuracy and ensure the
safety of human-computer interaction, a new type of en-
gineering manipulator system, the flexible engineering
manipulator system, is proposed. Flexible engineering
manipulators are divided into flexible link engineering
manipulators and flexible joint engineering manipulators
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[5]. The flexible link engineering manipulator is that the link
of the engineering manipulator is composed of elastic
materials, and the connecting rod itself has the character-
istics of flexibility; the flexible joint engineering manipulator
is that the connecting rod of the engineering manipulator is
still composed of rigid materials but exists at the joints of the
engineering manipulator. The spring device makes its joint
flexible. This study will take the flexible joint engineering
manipulator as the research object. Compared with the rigid
construction manipulator system, the flexible joint con-
struction manipulator has the advantages of light structure,
high control precision, high load-to-weight ratio, and quick
response. At the same time, due to the elastic brakes installed
at the joints, it has good flexibility [6]. When encountering
obstacles during the movement, its contact force will be
much smaller than that of the rigid engineering robot arm,
so it can effectively protect the operator [7].

To realize the precise control of the engineering ma-
nipulator, it is necessary to model the system accurately and
then carry out state feedback control through modern
control theory [8]. However, in practical applications, the
kinematics and dynamic models of engineering manipula-
tors inevitably have uncertainties, and it is difficult to achieve
accurate modeling. For the problem of uncertain items in the
system, there is usually a scheme to identify the unknown
nonlinearity of the system by using fuzzy logic or neural
network. However, it is a cumbersome process to train the
neural network and adjust the parameters. At the same time,
in actual production, it is very common for the engineering
manipulator to perform the same or similar tasks repeatedly.
How to save the knowledge of neural network identification
system dynamics, realize the learning of system dynamics,
and avoid repeated training of neural network is a research
direction of great theoretical significance. Because of the
limitations of sensor deployment and the influence of ex-
ternal interference, we often cannot obtain all the state
variables of the system. Therefore, it is of great theoretical
and practical value to study the controller design of the
flexible joint engineering manipulator system whose model
contains unknown dynamics and unobtainable state
quantities.

This study expounds on the main problems existing in
the design stage of the current engineering manipulator
assembly process and analyzes the necessity of introducing
digital twin technology into traditional assembly. By ana-
lyzing the application requirements of digital twin assembly,
the main process of construction manipulator assembly
under the background of digital twin is planned, and the
construction of the construction manipulator assembly
process based on digital twin is completed from the model
layer, data layer, and application layer. This section intro-
duces a deep deterministic policy gradient algorithm for
continuous motion control in the control of space engi-
neering manipulators for the multi-degree-of-freedom
control system of space engineering manipulators. The
method of adding the angular velocity soft bound to the
reward function effectively solves the problem of neural
network divergence. The simulation results show that the
engineering manipulator can be stably controlled at the
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target point. The engineering manipulator controller
designed in this study is tested on the engineering manip-
ulator platform with two degrees of freedom as an example.
Through the engineering manipulator platform, from the
ideal system model and state to the unfavorable application
conditions of the unknown system model and state, it is
proved that the control algorithm proposed in this study can
achieve the ideal control effect. Moreover, the adaptive
control based on the RBF neural network can effectively fit
the unknown model under the condition of unknown
system model and achieve an ideal control effect. Finally, the
Baxter robot arm system is used to verify the two adaptive
neural network control algorithms designed in this study.

2. Related Work

For the control of engineering manipulators, a local line-
arization method is usually used to linearize the nonlinear
part of the dynamics of the engineering manipulator near the
target trajectory [9]. However, due to the strong time-
varying, nonlinear, and strong coupling characteristics of
engineering manipulators, local linearization cannot guar-
antee the global stability of the system. In order to solve this
problem, some scholars have proposed a feedback lineari-
zation method [10]. This method mainly uses differential
geometry and spatial coordinate transformation to make the
input and state or input and output of the nonlinear system
approximately satisfy the linear relationship and then use
mature linearity. The system control method makes the
system satisfy a certain robustness. Related scholars dis-
cussed the problem of robust tracking control of rigid en-
gineering manipulators with uncertain dynamics using
nominal feedback controllers and variable structural com-
pensators [11]. The results show that the method can
eliminate the influence of large system uncertainty and
ensure the asymptotic convergence of the output tracking
error. The researchers further, using a multiloop version of
the small gain set, can obtain robust trajectory tracking
under the assumption that the deviation of the model from
the real system satisfies some norm inequalities [12]. Related
scholars use gap metric analysis to derive the robustness and
performance margins of feedback linearized controllers [13].
Unlike previous stability analyses, it incorporates the case of
outputting nonstructural uncertainties and derives general
stability conditions that can be applied to stable and unstable
systems.

Related scholars use the specific structure of engineering
manipulator dynamics to develop a simple global conver-
gence adaptive controller, design PD feedback part and full
dynamic feedforward compensation part, perform online
estimation of unknown manipulator and payload parame-
ters, this method is simple to calculate, the joint accelera-
tions are not known, and there is no need to estimate the
inverse of the inertia matrix [14]. The researchers designed a
compensatory control rate and a nonlinear filter feedback
term to obtain a globally progressively stable tracking effect
[15]. Related scholars have proposed a robust control
method for n-link engineering manipulators with uncertain
upper bounds [16]. This method does not need to identify all
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the physical parameters of the engineering manipulator but
only needs to estimate several parameters of the upper
bound function. For multilink engineering manipulators,
this method is much less computationally intensive. How-
ever, the discontinuous control amount caused by this
method increases, and it is difficult to suppress disturbance.
Further, related scholars have introduced an estimation rate
of exponential changes such as random parameters and
tracking error, which further enhances the robustness of the
system [17].

Relevant scholars pointed out that the inversion control
algorithm is a control algorithm for high-order complex
nonlinear systems [18]. It combines the design of the
controller with the selection of the Lyapunov function and
divides the high-order system into several low-order sub-
systems in series according to the order of the system. The
inversion control algorithm reverses step by step for each
low-order subsystem in series and finally obtains the output
of the overall controller.

The work of the restricted engineering manipulator is
constrained by the environment, and its position, speed, and
other states need to be restricted, which puts forward high
requirements for the control design of the engineering
manipulator. In recent years, a large number of scholars have
devoted themselves to the control research of nonlinear
systems with constraints and have achieved rich research
results. At present, there are two common methods to solve
the constraint problem, one is the obstacle Lyapunov
function, and the other is the method based on function
transformation [19].

The method based on function transformation adopts a
class of nonlinear functions to directly transform restricted
objects into equivalent unrestricted objects and then per-
forms control design for the unrestricted objects. This
method does not need to indirectly realize the constraint
effect through the limited error but directly converts the
limited physical quantity, so the control scheme is less
conservative. Related scholars use the method based on
function transformation to transform the tracking error of
the system, so that the tracking error can reach the preset
transient performance [20]. Subsequently, the method was
further extended to solve the constrained tracking control
problem of a class of strict feedback systems by combining
different control techniques such as adaptive control, dy-
namic surface control, and neural network control.

3. Methods

3.1. Analysis of Engineering Manipulator Assembly Process
Design Problems. In the field of construction machinery
product assembly, with the gradual application of intelligent
manufacturing theory and computer-aided process design,
the digitization and visualization of product assembly
process have higher requirements. As an important working
device of large-scale construction machinery, the con-
struction manipulator contains a variety of parts and con-
nectors, with complex structure and various forms, and has
extremely high requirements for design accuracy. The pri-
mary task of the assembly process design work is to meet the

assembly quality of the product and then save the assembly
cost and shorten the assembly cycle as much as possible
through system planning and deployment. As the most
intuitive quality evaluation index of assembly process
documents, assembly accuracy is not only related to the
manufacturing accuracy of parts but also affects the overall
economy of the assembly system. At this stage, most
manufacturing companies still have many problems in the
formulation of assembly process regulations. For the field of
engineering manipulator assembly, it is mainly reflected as
follows:

(1) In the assembly process of the engineering manip-
ulator, the traditional two-dimensional assembly
design method lacks the real-time acquisition and
processing of dynamic data, the synchronization
between the assembly process and the data update is
poor, and there are also many shortcomings in
theoretical methods. Accurate prediction and
judgment of failure phenomena and failure causes
are realized, and the system flexibility and real-time
performance are poor.

(2) The construction manipulator is assembled as a
moving component. Compared with the conven-
tional assembly, the mechanism assembly has the
following characteristics:

(®Affected by the motion characteristics and force
characteristics of the construction manipulator
during operation, a certain deviation will accumulate
between the components, so a certain assembly gap
needs to be reserved at the assembly connection to
avoid affecting the subsequent work stability. @Due
to the influence of the manufacturing accuracy of the
parts during the matching process of the construc-
tion manipulator, there may be a certain deviation in
the actual assembly state; that is, there is a matching
gap. In addition, the parts that cooperate with each
other will generate various deviations and change
directions during the movement process, forming
different deviation transmission paths and making
the accuracy prediction of the mechanism more
difficult.

(3) There is a certain backwardness in the assembly of
traditional engineering robotic arms in terms of
assembly tools and assembly methods, resulting in
an increase in the demand for manpower and ma-
terial resources in the assembly process and poor
economy. At the same time, the automation of as-
sembly equipment is low, resulting in low produc-
tion efficiency and insufficient production capacity.

3.2. Assembly Process of Construction Manipulator in Engi-
neering Environment. With the rapid development of digital
manufacturing technology, all kinds of intelligent equip-
ment and virtual manufacturing technology are gradually
applied to the field of traditional construction machinery
assembly. The traditional manufacturing model has un-
dergone a new transformation, forming a human-machine



interactive collaborative analysis and decision-making in-
tegrated system. As an important new technical means in the
field of intelligent manufacturing, digital twin is mainly used
to realize the interconnection of physical space and digital
space by relying on models, data, and sensors and digitally
define and analyze the characteristics and activities of
physical entities in virtual models. The digital twin model
mainly consists of three parts, including digital space,
physical space, and the correlation mechanism between the
two. Combined with the actual assembly conditions of the
production site and a large amount of data information in
the physical manufacturing process, the dynamics is realized
through the information interface between the two parts.

The role of the basic elements of physical space con-
struction in digital twin assembly is to provide model and
process support for the construction of digital space and
provide mutual feedback with digital space to achieve
program optimization. In the physical space, it is necessary
to clarify the implementation steps of the assembly process
and the tool requirements of the assembly site. Through the
assembly sequence planning and assembly process planning
of the construction robot arm, the actual operation is strictly
carried out according to the assembly requirements, and
other smart labels can be configured to facilitate the re-
cording and follow-up of information in the digital space.

As a real mapping of physical space, digital space has
roughly the same composition and structure as physical
space. Virtual production lines, machining layouts, and
assembly processes can be completed in third-party mod-
eling and simulation software, including models of geom-
etry, behavior, and rules, and related simulation,
optimization, and analysis activities. The data information in
the digital space is generally connected to the service plat-
form through multiple external interfaces, forming a mul-
tifaceted and multidomain application of data integration
and fusion. Figure 1 shows the overall idea of digital twin
assembly process control.

After reasonable collection and processing, the assembly
process planning of the digital space is guided through the
information interface. The engineering manipulator assembly
based on digital twin mainly realizes the continuous iteration
and optimization of assembly model design and assembly
process parameters in the process of modeling and simulation.

Through dynamic data acquisition and modeling and
simulation of the assembly process, the quality and accuracy
of the model are affected. The assembly process parameters
are analyzed, and continuous optimization feedback is
carried out according to the condition update until the
design requirements are met.

Through the research on the digital twin technology
composition and digital twin assembly process, the digital
twin-based engineering manipulator assembly process
planning method is described in detail. In the process of
engineering manipulator assembly simulation, digital twin
technology is used to visualize the process flow of the as-
sembly site, evaluate the pros and cons of the scheme, an-
alyze whether it is reasonable, and realize the precise control
of the whole process from the design of the assembly model
of the engineering manipulator to the assembly production.
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3.3. General Framework of Digital Twin Engineering Robotic
Arm Assembly. By summarizing the assembly process
problems of the construction manipulator and the assembly
process under the digital twin technology, combined with
the preparation process of the assembly process of a certain
type of construction manipulator, according to the assembly
process design method, the assembly process design process
of the construction manipulator in the engineering envi-
ronment is based on its characteristics and characteristics.
The composition is divided into three main parts:

(1) Data Layer. We analyze the design size information,
assembly process information, and dimensional
tolerance information of the engineering robot arm
and provide basic data support for the construction
of the engineering robot arm assembly model and
the control of the assembly process. Through data
acquisition methods such as human-computer in-
teraction, hardware acquisition terminals, and sen-
sors, the assembly resources included in the assembly
process of the construction robot arm are equipped
with intelligent cores such as electronic labels and
barcodes, and the data in the assembly production
process of the construction robot arm are collected to
realize the assembly information.

(2) Model Layer. When facing the assembly process of
the engineering manipulator, it is necessary to fully
consider the multilevel information model in the
engineering environment and the needs of the
physical assembly site. Starting from the three-di-
mensional model of the engineering manipulator,
according to its assembly characteristics and tech-
nical requirements, the assembly level and assembly
sequence of the product are determined, so as to
obtain an accurate assembly model. By acquiring
detailed assembly knowledge such as products,
tooling equipment, process knowledge, and logistics,
3D modeling of the assembly production line is
performed based on the digital simulation platform
to realize the mapping and connection from the
physical space to the digital space from the engi-
neering manipulator body to the entire production
and assembly process.

(3) Application Layer. The design, assembly, and ap-
plication of the engineering robot arm are a complete
life cycle, and an intelligent virtual environment is
built in combination with digital twin technology.
Through simulation, the specific working conditions
of the assembly process are analyzed and fed back to
the staff in real time, so as to realize the control and
optimization of production capacity and production
bottlenecks. The overall framework of the system is
shown in Figure 2.

Because in the actual assembly process, the final as-
sembly quality of the product will be affected by some
unpredictable actual factors. In order to ensure the dynamic
unity of the digital twin and the physical entity, it is nec-
essary to build a digital twin model with all the elements of



Computational Intelligence and Neuroscience 5

Real-time

Engineering Robot Collection of

Assembly Process

—= [—=

Arm Design Model

Parameters

Dynamic Data

Fusion Wb
Vm“a.l Processing Assembly
production d
. epartment process
line
Visible Measurable
Digital
\’1sual. monitoring of Space Product accuracy and
phys.lcal workshop performance
operation and product prediction

quality status

Next Step

True Real-time
Assembly Proc'ess Collection Mapping Implement Perception and
Process Execution Modeling
Effective closed-loop Online optimization
optimization feedback control of process
mechanism parameters
Physical
Space
Adjustable Controllable
Diverse Many Dlve.rslﬁ-
fields cation

Predict

Meet the Design

S —

Requirements

Online Assembly

Process Simulation

Policy
Decision

Digital Twin
Process Model

S —

Construction

Figure 1: Digital twin assembly process control process diagram.

the physical entity space and realize the data and infor-
mation exchange between the two. The constructed digital
twin model meets the following technical requirements:

(1) Single Mapping. The virtual entity structure in the
digital twin space needs to be in one-to-one corre-
spondence with the physical product, and the geo-
metric feature information (such as shape, size, and
tolerance) and manufacturing process information
contained in the physical entity must be in accurate
representation in the digital twin.

(2) Dynamics. As an effective judgment model for
physical entities, the product digital twin is required
to reflect the current state of the system in real time
during the entire process of production and as-
sembly, so it is necessary to ensure the dynamic unity
of the two.

(3) Predictability. The process execution process of the
whole life cycle of product manufacturing can be
established by building a virtual simulation envi-
ronment, the possible design defects and perfor-
mance defects can be predicted through the detected
real-time data, and the parameters can be adjusted in
time.

On the basis of the above framework, they obtain
manufacturing resource data such as equipment, products,
processes, and logistics and use 3D design tools to establish a
digital virtual assembly production line.

3.4. Adaptive Biological Neural Network Learning Method for
Discrete Action Output. The Q-learning algorithm is a
widely used reinforcement learning algorithm that can be
used to optimize strategies in solving Markov decision
processes. Taking action g, for the current state s, will not
only affect the immediate reward r, but also affect the reward
obtained in the future and obtain the Q-value corresponding
to the state s, and the action at

L+ y + L+ Y

Ty Tes1

Q(spa,) =
4 ' (1)
+1+Z?=1V1+”_+1+Z?=1V1.
475} Tiyi

Among them, the discount function indicates that the
current action will weaken the series of rewards obtained in
the future as the time step increases.
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FIGURE 2: The overall framework of the digital twin engineering robotic arm assembly.

The state for time ¢+ 1 is obtained as follows:

) ) Y max Q(St+1’at+1)
n 1 n i S, a a
1+, +1+Zi:1)’ Qs t)”

— Qi (St’ at)' (4)

Q(St41>Ape1) = o, (s ay) ' Q(sp-ay)
Tl T2
2
Lasn o Lasn o 2 The Q-table implements a mapping strategy from the
T Yiot ¥ P YiiY ) state s to the optimal action. When the number of states of
Tt43 Tr1i the environment is large, the storage space required by the Q

table will become large. Neural networks can fit large
nonlinear functions and have generalization capabilities.
Instead of bulky Q tables, neural networks can be used to fit
1+Y0 9y N 1+Y0 9y 3) mapping functions frorr} states to actions. .

’ . Taking the space engineering manipulator with 6 degrees
of freedom as an example, if the motion of each joint is

In the Q-learning algorithm, the corresponding update  simply discrete into 3 actions of “forward rotation, reverse
equation is as follows: rotation, and stop,” the combination of actions generated by

The Bellman iteration equation for the state-action value
function can be obtained as follows:

Q(Spat) = Q(Stﬂ’ “t+1) -

t Tep1+i
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all 6 joints is 36 =729. If a finer control is to be obtained, a
correspondingly finer discrete action is required, and the
number of actions generated will be greater. As a result, the
adaptive biological neural network cannot be directly ap-
plied to the continuous motion control of the space engi-
neering manipulator.

Deterministic strategy neural network can express de-
terministic control strategy, the input layer of neural net-
work is state s, and the output is deterministic optimal
action.

The deterministic policy gradient neural network does
not need to calculate the action value corresponding to each
action, so it does not need to discretize the action, so it can
output the continuous control action of the multi-degree-of-
freedom spatial engineering manipulator.

The deterministic policy gradient neural network adjusts
the parameters of the neural network according to the policy
optimization gradient. However, it is difficult to obtain the
gradient direction of the policy optimization parameter
update, which makes the training of the deterministic policy
gradient neural network difficult to achieve.

3.5. Deep Deterministic Policy Gradient Algorithm Design.
This study will use the deep deterministic policy gradient
algorithm to learn and optimize the control strategy of the
space robot arm. The DDPG algorithm is based on the actor-
critic training system and can be adapted to the continuous
control of multi-degree-of-freedom spatial engineering
manipulators. The actor part uses a deterministic policy
gradient neural network to output the continuous control
action of the multi-degree-of-freedom engineering manip-
ulator. The critic part uses an adaptive biological neural
network to fit the action Q-value function.

The process of training the critical neural network is as
follows: the critical action value function network is used
to fit the action value function. The input of the neural
network is the state s, at time t and the action a,, and the
output is the fitting value of the neural network. The target
value uses the Bellman iteration equation Q. Therefore,
the sum of squares of the difference between the target
value and the fitted value is the loss value. The process of
fitting the action value function by the network is to
update the parameter C of the network to reduce the loss
value L.

By adding a soft bound on the angular velocity to the
reward function, the reward function is of the following
form:

d
Y, max (0, vb/|vi|) '

r =

(5)

4. Results and Analysis

4.1. Control Algorithm Simulation Platform Verification.
The control system continuously obtains the parameters of
the controlled object, the state of the system, the tracking

error, and other information, compares it with the expected
state and performance, and obtains the estimated value of
the uncertain parameter according to the preset estimation
rate. The estimated value is used as part of the controller, and
the controller is then corrected so that the system achieves
the desired tracking performance.

In this section, the controller will be simulated and
verified on the engineering manipulator simulation
platform. The derivative term of the expected trajectory
involved in the simulation is described by the finite dif-
ference method. The specific form of the finite difference
method to describe the derivative of a function is as
follows:

f(x) + f (Ax - x;)

f(xi) = Axligo A
= lim f(x,- + Ax) _f(xi)
Ax — 0 Ax >
Flx) = lim 2 (x; + Ax) = 2f (9Zx+2 Ax)f (x;) + f (+)

(6)

First, the control effect of the controller based on the
system model is tested. The motion effect diagram of the
engineering manipulator is shown in Figure 3. It can be seen
from these figures that the model-based controller can ef-
fectively control the motion of the engineering manipulator
and can make its end track the given trajectory well, es-
pecially from the detailed diagram of the trajectory tracking
of the end of the motion of the engineering manipulator. The
actual motion trajectory of the end of the engineering
manipulator is almost completely fitted with the expected
trajectory.

The controller can control the engineering manipulator
to move on the YOZ plane and make its execution end track
the given desired motion trajectory. The trajectory of the end
of the construction manipulator is tracked in detail, the
actual trajectory of the end of the construction manipulator
is not completely fitted with the expected trajectory, and
there is a slight error. The error may come from the esti-
mation error of the actual system model by the neural
network and the choice of control parameters. In general, the
controller can also achieve good control results when the
system model is unknown.

The controller can control the construction manipulator
to move on the YOZ plane and make the end of the con-
struction manipulator track the given desired trajectory. The
actual trajectory of the end of the engineering manipulator is
not completely fitted with the expected trajectory, and there
is a slight error. The error may originate from the estimation
error of the actual system model by the neural network, the
estimation error of the system velocity term by the state
observer, and the selection of control parameters. But in
general, when the system model is unknown and the system
state quantity is unmeasurable, the controller can achieve a
good control effect.
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Figure 3: 3D diagram of the motion of the construction
manipulator.

The control adjusts the network parameters in real time
during the control process, and the parameters are kept
within a certain range.

From the above test results of the three controllers, it can
be seen that under ideal conditions, the model-based con-
troller can achieve the best control effect, followed by the
control effect of the adaptive neural network controller when
the model is unknown. Finally, when the system model is
unknown and the state quantity is unmeasurable, the control
effect of the adaptive neural network controller with the state
observer is adopted. In practical applications, if the system
model and state are known, the model-based controller can
be applied. However, in the actual system, the model is often
not accurately determined, and the system state is not
necessarily completely measurable, so the above two
adaptive controllers have more practical application
significance.

4.2. Verification of Control Algorithm Virtual Experiment
Platform. In order to further illustrate and verify the ef-
fectiveness of the engineering manipulator control algo-
rithm designed in this study, the designed controller is
applied to the actual engineering manipulator system. Due
to the complexity of the construction of the actual arm
system and the progress of the project, the arm system of
SRU3 has not been built yet and cannot be used for ex-
perimental verification of the control algorithm. Therefore,
this study will borrow the existing Baxter robot as the
experimental verification platform for the control
algorithm.

The Baxter robot is designed with good safety and
flexibility, which can facilitate application development and
research, and can be flexibly used to deploy industrial
production lines and scientific research in universities. The
Baxter robot is a robot with two multi-degree-of-freedom
structural arms. Each arm is a redundant structure with
seven degrees of freedom, and its multiple degrees of
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freedom greatly improve the flexibility of the arm, which can
better simulate the structure of the human arm, and can
complete complex operation tasks.

For the convenience of description, the degrees of
freedom of each joint of the arm are named. The joints of
the arm are driven by a series of elastic drivers, which are
different from the direct drive joints. This design can make
the engineering manipulator have a certain flexibility and
sensing ability. In the process of interacting with people, it
can better ensure the safety of personnel. Among the seven
joint degrees of freedom, the four joint degrees of free-
dom, SO, S1, S2, and EO, are mainly used to adjust the
trajectory of the end of the arm movement. The three joint
degrees of freedom of W0, W1, and W2 are mainly used to
adjust the arm after reaching the desired trajectory.
Compared with the designed SRU3 engineering manip-
ulator system, the three degrees of freedom of S0, S1, and
S2 can be compared to the three degrees of freedom of the
shoulder joint of the SRU3 engineering manipulator.
SRU3 is the two degrees of freedom of the wrist joint, and
W3 is the redundant degree of freedom. S1 and EO have the
same axis of rotation, and the combined motion of the two
joints is on the same plane, which makes it easier to see the
motion effect.

The control system as a whole is divided into two parts,
the development workstation and the robot main body. The
development workstation is the user’s computer, which is
used to write and solve the robot control algorithm; there is
an independent computer on the robot body, which is used
to schedule robot tasks and generate control commands for
the embedded controller on the robot. The mechanism
executes the control instructions given by the user. The
development workstation and the main robot computer are
connected through Ethernet to control the robot.

Baxter is a robot platform developed based on the robot
operating system. ROS is an open source system software
with certain generality. It relies on the Linux operating
system to manage computer resources and provides func-
tions such as underlying driver management, task man-
agement and scheduling, and process communication
scheduling for robots in the process of robot development.
Based on the ROS system, it is convenient to use its interface
for the secondary development of the robot. The computer
system environment on the Baxter robot is
“Gentoo + ROS + SDK,” which runs the ROS master inde-
pendently to manage the robot’s control tasks, robot status,
and underlying hardware drivers and provides communi-
cation and development interfaces. Therefore, any computer
capable of running ROS can connect to Baxter through the
ROS network interface to operate and develop it. Baxter’s
SDK provides users with an interface to access underlying
hardware such as robot motors and sensors through ROS.
The computer system environment of the development
workstation is “Ubuntul4.04 + ROS + SDK,” and the control
algorithm of the robot can be developed and implemented
on the user’s computer.

The joint trajectory tracking angular velocity of the
action process of the model-based controller is shown in



Computational Intelligence and Neuroscience

13 4
[ ]
12 - Il
211 . . r
3 I I I |
° 104 X . j\ ,
£ g no9 Iy |
5 J" /.I'\ ,' . $
S 8l . { .
B i /\/ \l\ /\’ \ &‘ | pe Il
< 71 A '
6 ¥ \- o/ ° e \.,-n/ v \-
5 T
0 5 10 15 20 25 30
Time (s)

Actual angular velocity
—e— Tracking angular velocity

FIGURE 4: Angular velocity tracking renderings.

Figure 4. From the tracking effect diagram of the system
output tracking the preset trajectory, it can be seen that the
model-based controller can almost perfectly track the de-
sired trajectory, and the tracking error is in the range of 0.01.
The control input of the system is bounded and stable in the
neighborhood of a certain value.

4.3. Experimental Results and Analysis. In this experiment,
the S1 and EO joints of the Baxter robot arm were selected as
the controlled objects to verify the effectiveness of the
controller. Considering the actual application conditions, it
is impossible to establish an accurate system model. In this
experiment, only the adaptive neural network controller
based on state observation will be experimentally verified.
Since the adaptive neural network controller does not need
an exact system model or precise system parameters in the
application process, it is possible to test the effect of the
controller by directly inputting the desired trajectory for the
joint without paying attention to the system parameters.

Figure 5 shows the acceleration tracking effect of
adaptive neural network control. It can be seen from the
figure that the adaptive neural network controller designed
in this study can control the engineering manipulator to
track the trajectory after setting the appropriate control
parameters. The actual tracking error is shown in Figure 6. It
can be seen from the figure that the tracking error range is
kept within 0.01.

Figure 7 shows the output torque of the controller. It can
be seen that the adaptive neural network controller designed
in this study can achieve a better control effect in the actual
engineering manipulator system control.

When the system state model is unknown and the system
state is unmeasurable, appropriate control parameters are
selected. The adaptive neural network controller based on
state observation designed in this study can also control the
engineering manipulator for trajectory tracking. The actual
tracking error situation is shown in Figure 8. The absolute
value of the maximum tracking error does not exceed 0.02/
rad, and the conversion to angle value is also around 1.

The adaptive neural network controller designed in this
study can also realize the desired trajectory tracking control

7.0 4
6.5 4
6.0 4 e | I
5.5 4

\ \
5.0 ./ 1 .I\ v, /X . |
JArn Ly A
0 5 10 Tinlli(s) 20 25 30

acceleration

4.5 4
4.0 4

actual acceleration
—e— track acceleration

FIGUure 5: Adaptive neural network controls acceleration tracking
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FIGURE 6: Adaptive neural network control trajectory tracking
error.

of the engineering manipulator in the actual engineering
manipulator system control.

Since too much information about the precise system
model is not required, the above controller has good ap-
plicability and can be used to solve control problems of
varijous similar engineering manipulator systems.

Comparing the tracking errors of the two controllers, it
can be seen that the controller has a better control effect
when the system state is measurable.

But at the same time, when the system model is unknown
and the system state is unmeasurable, the adaptive neural
network control strategy based on state observation can also
provide an effective control scheme.

The above experimental results show that under the action
of the two controllers, the trajectory tracking of the engi-
neering manipulator has a certain error. The source of the
error may have the following reasons: the controller has many
parameters, which may not guarantee that the adjusted
control parameters are optimal; at the same time, Baxter’s arm
joints are all flexible joints, and there will be certain changes in
the movement process. The flexible vibration may also have a
certain impact on the control accuracy.
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5. Conclusion

In this study, a modeling and simulation framework of
engineering manipulator assembly based on digital twin is
designed. On the basis of summarizing the research status of
digital twin and construction machinery assembly, the
shortcomings of traditional construction machinery as-
sembly are analyzed. According to the core concept, ap-
plication criteria, and model requirements of digital twin, a
design process and method of engineering manipulator
assembly process based on digital twin are proposed. By
studying the modeling requirements of the model layer, data
layer, and application layer, the general idea of the digital
twin assembly process management and control is put
forward, and the assembly modeling and simulation
framework of the engineering robot arm in the engineering
environment is established. The kinematic control frame-
work of the space engineering manipulator is designed, and
the control input of the space engineering manipulator is the

desired angular velocity of the joint. Since the control at the
kinematic level is not affected by the dynamic parameters of
the engineering manipulator, the dynamic parameter dif-
ference between the simulation platform and the real
physical system has no effect on the transfer of the control
strategy. Therefore, the simulation platform can be used to
control a large number of engineering manipulators and
collect data samples, and these data samples are used to train
the deep policy neural network; after the neural network is
trained, it can be directly transferred to the control of the real
engineering manipulator system. It can achieve the same
control effect as the simulation platform, thus avoiding the
equipment wear and tear problem caused by relying on the
real physical system to generate training data. This study
designs a model-based control algorithm and an adaptive
control algorithm for the engineering manipulator, con-
sidering the control requirements when the system model is
known and the model is unknown. The adaptive method in
the adaptive control adopts the radial basis function neural
network and uses the fitting performance of the neural
network to fit the engineering manipulator system. At the
same time, the two situations of completely known and
unknown system state are considered separately to solve the
control under various environmental conditions in practical
applications. The Lyapunov stability principle and MATLAB
simulation are used to analyze and verify the effectiveness of
the controller and system stability. Finally, before the
construction of the engineering manipulator platform has
been completed, the two adaptive neural network controllers
designed in this study are experimentally verified with the
help of the Baxter robot arm system, which provides further
proof of the effectiveness of the algorithm.
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