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As large-scale laser 3D point clouds data containsmassive and complex data, it faces great challenges in the automatic intelligent processing
and classi�cation of large-scale 3D point clouds. Aiming at the problem that 3D point clouds in complex scenes are self-occluded or
occluded, which could reduce the object classi�cation accuracy, we propose a multidimension feature optimal combination classi�cation
method named MFOC-CliqueNet based on CliqueNet for large-scale laser point clouds. �e optimal combination matrix of multi-
dimension features is constructed by extracting the three-dimensional features and multidirectional two-dimension features of 3D point
cloud. �is is the �rst time that multidimensional optimal combination features are introduced into cyclic convolutional networks
CliqueNet. It is important for large-scale 3Dpoint cloud classi�cation.�e experimental results show that theMFOC-CliqueNet framework
can realize the latest level with fewer parameters. �e experiments on the Large-Scale Scene Point Cloud Oakland dataset show that the
classi�cation accuracy of our method is 98.9%, which is better than other classi�cation algorithms mentioned in this paper.

1. Introduction

�edevelopment and advancement of 3D scanning technology
have signi�cantly improved the measurement e�ciency and
accuracy of 3D laser point cloud data. �e volume of 3D point
cloud data is growing at an unprecedented rate.�is alsomakes
the processing, analysis, and understanding of massive 3D
point cloud data become a new research hotspot in the �eld of
arti�cial intelligence. Its application prospects are very broad
such as photogrammetry, remote sensing, cultural relics pro-
tection, autonomous driving, and robot vision. In the process
of automatic analysis and processing of 3D point cloud data for
large scenes, the point cloud classi�cations are the basic steps,
which have a great impact on subsequent higher level oper-
ations. However, due to the self-shielding or self-shielding
characteristics of point clouds between di�erent 3D objects in
large-scale scenes, the research and application of 3D point
cloud classi�cation are challenging.

In recent years, many researches have done a lot of
research on multiobject classi�cation in large-scale 3D point
cloud data.�eDBSCAN algorithm is used to e�ectively and
accurately segment the outdoor large scene point cloud, and
then classi�ed the point cloud based on the segmentation
result [1]. However, when using DBSCAN algorithm to
cluster ungrounded point clouds, some point clouds are not
continuous due to the obstacles of 3D objects, resulting in
oversegmentation and other phenomena in clustering. To
solve this problem, the author proposes a strategy of large-
scale including small-scale and proximity fusion, but this
method cannot split two closely connected objects, which
will a�ect the point cloud classi�cation results in special
scenes. RangNet++ [2] uses the distance image as the in-
termediate representation; it projects the 3D point cloud
onto the front view and compensates for the information
loss caused by projection by performing a fast, GPU-based
kNN-search postprocessing method. Li et al. [3] distinguish

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 2446212, 11 pages
https://doi.org/10.1155/2022/2446212

mailto:heys@ecut.edu.cn
https://orcid.org/0000-0001-6992-8964
https://orcid.org/0000-0002-6216-7549
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2446212


the shapes of plane, cylinder, space body, and sphere mainly
by using four features of volume, normal vector, principal
direction, and principal curvature. However, these features
are more or less affected by occlusion and noise. Although
the methods proposed in some papers compensate for the
loss of information [3, 4], the 3D shape features they extract
are insufficient to describe a complete 3D object.

'is paper proposes a 3D point cloud classification
architecture based on MFOC-CliqueNet for large scene.
Firstly, three-dimensional nearest neighbor optimization is
performed based on neighborhood space, and the three-
dimensional features of each point are solved based on the
adaptive optimal spherical neighborhood. By analogizing the
three-dimensional feature extraction method, point clouds
are projected onto three two-dimensional planes: XOY,
YOZ, and XOZ, and corresponding two-dimensional fea-
tures are extracted based on two-dimensional adaptive
optimal circle neighborhood. Secondly, the optimal com-
bination feature matrix MFOC is obtained by arranging and
weighting the two-dimensional and three-dimensional
features. Finally, the feature matrix is imported into the
CliqueNet to fully learn the features related to the training
data, so as to further improve the classification efficiency of
large scene point clouds. 'e main contributions of this
paper are as follows:

(1) We propose an optimal combination method of
point cloud multidimensional features. 'e 2D and
3D features of the point cloud are arranged,
weighted, and combined, and the optimal combined
feature matrix MFOC is constructed.

(2) MFOC can better describe the local and contextual
global structure of the point cloud in large scale. And
it can improve the accuracy of cloud multitarget
classification in complex large-scale scenic.

(3) In this paper, CliqueNet, a cyclic convolution net-
work, is apply to the classification of 3D point cloud
data in large scenes for the first time, and we propose
a large-scene 3D point cloud classification archi-
tecture based on MFOC-CliqueNet.

(4) We conducted experiments on the Oakland data set.
And the experimental results show that the method
achieves a good classification accuracy in large-scale
point cloud.

2. Related Works

'e deep learning algorithm was first applied in two-di-
mensional image processing, and achieving outstanding
performance and mature technology. For example, AlexNet
[4] applied numerous methods to improve model perfor-
mance, such as the first use of ReLU nonlinear activation
function and the first use of dropout and the regularization
of the network through massive data enhancement. VGG-
Net [5] proposed by Oxford University has a smaller con-
volution kernel and deeper level than AlexNet, which further
improves the parameter efficiency. GoogLeNet [6] contains a
very efficient Inception module; it does not use a fully

connected network as VGG-Net does, so the amount of
parameters is very small. 'e significant work of ResNet [7]
is to solve the problem of gradient disappearance during
back propagation, so it can train very deep networks without
adding a classification network in the middle like Goo-
gLeNet. Although ResNet is very efficient, not every layer of
such a deep network is effective, these redundant con-
volutional layers and feature maps will reduce the parameter
efficiency of the model. To this end, Huang et al. [8] pro-
posed DenseNet, the goal of this network is to improve the
efficiency of information flow and gradient flow between
network layers and to improve the efficiency of parameters.
'is structure ensures that each layer can directly access the
gradient from the loss function, so it can train very deep
networks. Although DenseNet has few parameters, the
memory usage is very large. Yang et al. [9] proposed Cli-
queNet, which has achieved good results in the two-di-
mensional image recognition task. Its advantage is that it not
only has the prequel part but also optimizes the feature maps
of the previous level according to the output of the latter
level. 'is architecture is inspired by the cyclic structure and
attention mechanism, that is, the feature maps output by the
convolution can be reused, and the refined feature maps will
pay attention to more important information. Within the
same Clique module, there are forward and reverse con-
nections between any two layers, which also enhances the
information flow in the deep network. It has the advantages
of parameter amount and calculation amount. 'erefore, we
introduce the CliqueNet to perform feature learning on the
2D and 3D features of the large-scene 3D point cloud and
obtain better classification results.

As the advancement of 3D laser scanning technology, the
quality and accuracy of the collected 3D point cloud data
have been greatly improved. 'erefore, a study of the
analysis and processing based on the 3D point cloud data is
significant. Many researchers have begun to apply deep
learning to 3D point cloud data processing. In order to make
3D point cloud data suitable for 2D convolutional neural
networks, 3D point cloud data are usually preprocessed and
then input into the network. At present, the main methods
to solve the problems of unstructured and disordered point
clouds are as follows. (1) Multiview: Representing three-
dimensional objects with pictures from different angles, that
is, converting 3D CNN into 2D CNN technology for clas-
sification and other tasks. 'e most representative study is
MVCNN [10]. 'e author projects 3D objects through
different angles to obtain multiview 2D images to represent
3D objects. However, in the face of complex large-scale scene
tasks, a fixed number of multiview images cannot describe all
the targets in a three-dimensional large scene well. (2)
Volumetric: mainly to solve the problem of disorder of point
cloud, by regularizing the 3D point cloud. 'is method does
improve the performance of point cloud classification, but
due to its large amount of computation and low resolution of
voxel mesh, it takes up a lot of memory and loses local
information, it is still not suitable for complex large scenes.
'ere are some representative studies, such as 3D ShapeNets
[11], the probability distribution of 3D voxel grid binary
variables is used to represent the 3D shape. It learns the joint
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distribution of input and labels by constructing a convo-
lution DBN. VoxNet [12] is proposed by Maturana and
Scherer, which uses semisupervised 3DCNN to process the
occupied 3D voxel grid. (3) Point clouds are processed
directly: this kind of method directly act on the original
point cloud, without any transformation of the original
point cloud, and retain their rich location information.
Charles et al. [13] proposed PointNet, breaking the tradition
for the first time, so that the network can directly handle
point cloud, and the author uses symmetric functions to
avoid the disorder of point cloud. 'e feature extraction
method of PointNet is to extract a global feature for all point
cloud data. Obviously, this is different from the current
popular CNN method of extracting local features layer by
layer. Inspired by CNN, the author proposed PointNet++
[14], which can extract local features at different scales and
obtain deep features through a multilayer network structure.
PointConv [15] can construct a multilayer deep convolu-
tional network on a 3D point cloud, this structure can
achieve the same translation invariance as 2D convolutional
networks, and permutation invariance of point order in
point cloud. 'is type of method has received more and
more attention. However, the type of point cloud data used
in this method is different from the first two methods; the
method is oriented to the 3D point cloud model data, rather
than the point cloud data for the large scene.

3. Methods

We propose a large-scale 3D point cloud classification ar-
chitecture based on MFOC-CliqueNet. We construct mul-
tidimensional feature optimal combination matrix (MFOC)
of the large-scale 3D point cloud, and import CliqueNet
cyclic network to the field of 3D point cloud classification for
large scene for the first time. First, the “Kd-Tree” algorithm is
used to search for 100 nearest neighbors for each point in the
large-scene 3D point cloud data set and obtaining the op-
timal neighborhood adaptive radius based on the method of
minimum Shannon entropy [16]. 'en the 3D eigenvalues
and eigenvectors corresponding to the 3D covariance matrix
of the point cloud are calculated based on the optimal
neighborhood adaptive spherical radius. Meanwhile, the 3D
point cloud was projected to the XOY, YOZ, and XOZ planes
to extract the 2D features. Based on the optimal neigh-
borhood adaptive circle radius, we calculate the 2-dimen-
sional eigenvalues and eigenvectors corresponding to the
point cloud. However, the simple horizontal random
combination of the multidimensional features of the point
cloud is not good. 'erefore, it is necessary to combine 2D
and 3D features according to certain principles to obtain a
multidimensional feature matrix. Here, we propose some
optimal combination principles:

(1) Arranging the 2D projection features diversely to
obtain the optimal arrangement features.

(2) 'e 2-D and 3-D features are combined with dif-
ferent weights, and the optimal combination features
are obtained according to the specific permutation
weighted combination experiment.

(3) Finally, the optimal combination of the multidi-
mensional features matrix MFOC is integrated into
the CliqueNet to construct the MFOC-CliqueNet to
achieve 3D point cloud classification. 'e MFOC-
CliqueNet architecture is illustrated in Figure 1.

In order to better describe the local structure of the large-
scale 3D point cloud, this paper adopts the two-dimensional
projection feature extraction based on the two-dimensional
nearest circular neighborhood and the three-dimensional
feature extraction based on the three-dimensional nearest
spherical neighborhood, respectively. 'e characteristic
values, characteristics, and geometric features of the matrix
based on 3D covariance matrix are extracted using the 3D
structure tension [17]. 'e 3D point cloud is projected to the
XOY, YOZ, and XOZ planes, and the 2D structure tensor is
used to extract the 2D features of the point cloud.

3.1. AMultidimensional Feature Extraction of the Large-Scale
3D Point Cloud

3.1.1. 2D Feature Extraction. Due to the complexity of
outdoor cloud objects in three-dimensional scenic area, self-
shielding and be shielded of three-dimensional point cloud
data are prone to occur, which affects the accuracy of point
cloud object classification. If the point cloud is only pro-
jected on the XOY plane [18], it cannot well describe the
three-dimensional spatial characteristics of the nonplanar
structure point cloud objects. In response to this situation,
we project the point cloud onto the three 2-dimensional
planes XOY, YOZ, and XOZ to obtain richer point cloud
feature information, as shown in Figure 2:

(1) 'e representation form of any point cloud in the
XOY plane is

x y  � x y z  ×

1 0 0

0 1 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

(2) 'e representation form of any point cloud in the
YOZ plane is

y z  � x y z  ×

0 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

(3) 'e representation form of any point cloud in the
XOZ plane is

x z  � x y z  ×

1 0 0

0 0 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

We use the neighborhoods sought by KD-Tree and the
neighborhood optimization based on minimizing Shannon
entropy to obtain the best adaptive circular neighborhood
rk. And then the two-dimensional structure tensor of each
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point is calculated, and the sum of feature values s2, value
ratio Rλ,2D, and two-dimensional local point density D2 was
extracted. �erefore, in this paper, we extract rk, S2, Rλ,2D,
and D2 from each plane of the XOY, XOZ, and YOZ.

�e given point pk(xk, yk) is the K-th nearest neighbor
of point P, and K is the optimal adaptive circular neigh-
borhood size parameter of point P, then the radius of the
circular neighborhood at point P is

rk �
�����������������
x − xk( )2 + y − yk( )2

√
. (4)

�e two-dimensional local point density [19] is

D2 �
k + 1
πr2k

. (5)

�e characteristic value ratio [20] is

Rλ,2D �
λ2,2D
λ1,2D

. (6)

�e sum of the characteristic values is

S2 � λ1,1D + λ2,2D, (7)

rk is the radius of the optimal adaptive circular neighbor-
hood. λ2,2D and λ1,1D are the eigenvalues corresponding to
the two-dimensional covariance matrix.

We visualized the projection of the three-dimensional
point cloud on the three planes XOY, XOZ, and YOZ.

Comparing the visualizations in the three directions of
XOY, YOZ, and XOZ in Figure 3, you can �nd that the red
area in the middle and the blue and red areas on the right of
the left view (Figure 3(a)) are all obscured in the rear view
(Figure 3(b)). At the same time, the red area on the left side
of Figure 3(b) is also missing in Figure 3(a). �e top view
(Figure 3(c)) is the most severely blocked. �erefore, the
single view cannot fully display the complex 3D objects in
the large scene. If one direction is projected, the relatively
complete 2D feature information of the 3D point cloud data
cannot be extracted. �erefore, in this paper, three-di-
mensional point cloud is projected onto the planes of XOY,
XOZ, and YOZ, respectively.

3.1.2. 3D Feature Extraction. Based on the nearest neighbor
computed by KD-tree, the eigenvalues and eigenvectors
corresponding to the three-dimensional covariance matrix
are computed point by point, and then the following features
are computed by combining the neighborhood optimization
based on the Minimization of Shannon Entropy:

Cλ �
λ3

λ1 + λ2 + λ3
. (8)

Dimensional features are linear, planar, and cluster-like
attributes:

Lλ �
λ1 − λ2
λ1

,

Pλ �
λ2 − λ3
λ1

,

Sλ �
λ3
λ1
.

(9)

�ree-dimensional local point density is as follows:

D �
k + 1

(4/3)πr3k−NN
. (10)

Projection

3D feature extraction

MFOC construction

CNet

2D feature extraction

2D feature
arrangement

stage-II stage-II

Z0, stage-II Z0, stage-II Z0, stage-II
i=B, C, D

Xt = {rk, D2, S2, Rλ, 2D}

Y = {rk-NN, Cλ, Lλ, Pλ, Bλ, D, Q, Verticality, vil......}
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Figure 1: MFOC-CliqueNet: a large-scene 3D point cloud classi�cation architecture based on optimal combination of multidimensional
features. i�B, C, D in Xi, respectively, represent two-dimensional projection surfaces XOY, YOZ, XOZ; {XD, XC, XB} are the optimal
arrangement and combination of two-dimensional features. �e MFOC represents the optimal combination of multidimensional features.
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Figure 2: Two-dimensional projection planes.
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�e ball radius is

rk−NN �
���������������������������
xk − x( )2 + yk − y( )2 + zk − y( )2

√
. (11)

Nearest neighbor tetrahedron volume Q is

Q �
1
6

pp1
���→× pp2

���→( )•pp3
���→�����
�����

�

x1 − x y1 − y z1 − z

x2 − x y2 − y z2 − z

x3 − x y3 − y z3 − z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(12)

(1) Verticality. Total variance, anisotropy, feature entropy,
and trajectory at this point [21] are as follows:

verticality � 1 − nz
∣∣∣∣
∣∣∣∣,

Oλ �
�����
e1e2e33

√
,

Aλ �
e1 − e3
e1

,

Eλ � −∑
3

i�1
ei ln ei( ),

Tλ �
2
π
arctan λ1 + λ2 + λ3( ).

(13)

Given a three-dimensional point P (x, y, z), K is the
nearest neighbor parameter of the point P, and rK−NN is the
distance from the point P to the K-th point pk(xk, yk, zk) in
its neighborhood. �e verticality can distinguish the ground
point from the nonground point, and nZ is the third
component of the third-dimensional feature vector of the
three-dimensional structure tensor of the current point P.
Oλ, Aλ, Eλ, and Tλ are local three-dimensional shape fea-
tures. e1, e2, and e3 are all normalized feature values. Tλ
describes the invariant characteristics of points. �ere are
also features related to feature vectors: vi1, vi2, and vi3. vi1 is
the maximum distribution direction vector, vi3 is the
maximum distribution direction vector, and vi2 is the di-
rection vector perpendicular to vi1 and vi3, they are all three-

element vectors. Until now, a total of 29 2D and 3D features
has been extracted in this method.

3.2. A Large-Scale 3D Point Cloud Classi�cation Based on
MFOC-CliqueNet. In this paper, CliqueNet is imported into
the 3D point cloud classi�cation of large scenes for the �rst
time, and we propose a large-scene 3D point cloud classi-
�cation framework based on MFOC-CliqueNet. CliqueNet
not only combines the cyclic structure and the attention
mechanism but also updates the optimal combination
matrix (MFOC) of multidimensional features alternately
twice. �en, we can obtain the MFOC with higher feature
quality and pass it to the next block. At the same time, it uses
a multiscale feature strategy to avoid parameters linear
growth, as shown in Figure 4. �e TBlock module contains
two parts: the Transition layer and the Clique Block. Each
Clique Block has output of the Z0 (MFOC) and stage-II (the
second alternately update of the MFOC feature map pa-
rameters). �ese two outputs go through concatenation and
then connect to a Global Pooling as part of the prediction. Z0
represents the input of the �rst Clique Block, and each
subsequent Clique Block input is the result obtained after the
output stage-II of the previous block passes through the
Transition layer. �us, each layer is both the input and
output from the other layers in Clique Block.

Each Clique Block of CliqueNet contains two stages: the
�rst stage is similar to DenseNet [8], which can be regarded
as the initialization process of MFOC; secondly, the input of
each convolution operation includes not only the output

(a) (b)

(c)

Figure 3: Visualization of point cloud projection in the three directions of XOY, YOZ, and XOZ: (a) left view; (b) rear view; (c) top view.
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Z0, stage-II
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Figure 4: TBlock.
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feature map MFOC of all the previous layers also includes
the output feature map MFOC of the subsequent level
(Output after the update of Clique Block module).

For the i-th layer and k-th cycle in the second stage, the
alternately updated expression is

Z
(k)
i � g 

l< i

Wli ∗Z
(k)
l + 

m> i

Wmi ∗Z
(k−1)
m

⎛⎝ ⎞⎠, (14)

where k≥ 2, Wli ∗Zl means that the convolution kernel
performs a convolution operation on the input feature
matrix graph Z, and g is a nonlinear activation function.

In this paper, the obtained feature matrix Z0 is input into
CliqueNet, and passes through 64 convolutional layers of
5× 5 with a stride of 2; then it passes through a pooling layer
of 3× 3 with stride of 2. Each Block is connected by
Transition layer, and the network is trained with 250 epochs.

'e CliqueNet is set as a three-stage network, including
convolution layer, pooling layer and block module. And the
CliqueNet node parameter setting at each stage is shown in
Table 1. In order to adapt the CliqueNet to the multidi-
mensional feature matrix (32× 32×1) of the large-scale 3D
point cloud obtained in this paper, we need to modify the
parameters of the original CliqueNet:

(1) K and T in the original network are too large, which
is easy to cause over fitting. We reduce K and T to 12
and 16.

(2) Because 3D large-scale point cloud does not need to
deal with the three RGB color channels in the color
image, we set channel equals 1.

(3) Considering the size of the MFOC, we reduce the
convolution kernel size of the original CliqueNet, for
example, from 7× 7 to 5× 5.

4. Results

4.1. Datasets. 'e framework proposed is tested on the
public Oakland 3D point cloud data set [22]in this paper.
'e data set is the most widely used, acquired by Mobile
Laser Scanner, with marked point cloud data, which is saved
in text format. 'ree real value coordinates are written in
each line.'e data set represents the urban environment and
captured by a mobile platform equipped with a side SICK
LMS laser scanner.'e data set is divided into training set X,
verification set V, and test set Y. Each 3D point is assigned
one of five semantic categories, namely wire, pole/trunk,
facade, ground, and vegetation. 'e number of samples in
each category is shown in Table 2.

4.2. Network Training Details. In this paper, the initial
learning rate of the network is 0.001, the total number of
training rounds is initially set to 300 epochs, and it adopt a
gradual decrease in learning rate. When the number of
training rounds is equal to 150 epochs, the learning rate
becomes 0.1 of the initial learning rates. 'e number of
rounds is equal to 225 epochs, and the learning rate becomes
0.01 of the initial learning rates. We use the momentum

optimization method with a decay rate of 0.9 to train the
MFOC-CliqueNet framework. 'e MFOC-CliqueNet
framework in this paper takes about 5 hours to train on the
GTX 2060 GPU using TensorFlow.

As shown in Figure 5(a), the initial learning rate is 0.03
(orange line) and the initial learning rate is 0.01 (green line),
their test accuracy rates fluctuate greatly and are extremely
unstable in the first 150 epochs, even training tests after 150
epochs, the accuracy of the initial learning rate of 0.001 (blue
line) has been consistently higher than the previous two. For
the choice of optimizer, it can be seen from Figure 5(b) that
the performance of the SGD optimizer has the worst ac-
curacy, while the Momentum optimizer performs best, and
after several training rounds, its accuracy has been stable at
more than 90%.

4.3. Multidimensional Features Arrangement. 'ree-dime-
nsional point clouds are projected onto the XOY, YOZ, and
XOZ planes in X, Y, and Z directions, respectively. Four two-
dimensional features, rk, D2, S2, and R(λ,2D), are obtained for
each plane. In the process of point cloud projection, the
result of feature extraction will be affected by occlusion or
self-occlusion between objects. 'erefore, in this paper, the
two-dimensional features extracted from the projected
surface are tested in different directions to test the optimal
multidimensional feature arrangement.

Initially, the weighted combination ratio of multidi-
mensional features defaults to 3D : 2D� 1 :1, which means
the arrangement of two-dimensional features is added to the
original three-dimensional features. Suppose XOY�B,
YOZ�C, XOZ�D, there are six different arrangements
[BCD, BDC, CBD, CDB, DBC, DCB]. 'e six arrangements
were tested experimentally.

Comparing its experimental results (as shown in Ta-
ble 3), the overall classification accuracy (OA) of the first

Table 1: MFOC-CliqueNet network design.

Layer S
Convolution Conv (5× 5), 64, stride 2
Pooling Max pool (3× 3), stride 2
Block 1 36× 5 36× 5 36× 5 40× 6
Transition: conv (1× 1), avg pool (2× 2)
Block 2 64× 6 80× 6 80× 5 80× 6
Transition: conv (1× 1), avg pool (2× 2)
Block 3 100× 6 120× 6 150× 6 160× 6
Transition: conv (1× 1), avg pool (2× 2)
Block 4 80× 6 100× 6 120× 6 160× 6

Table 2: Number of samples per class for the Oakland 3D point
cloud data set.

Category Training data Test data
Vegetation 14441 257953
Wire 2571 3469
Pole 1086 7648
Ground 14121 930946
Facade 4713 109954
Sum 36932 1309970
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three categories is not signi�cantly di�erent, which are all
above 97%. However, compared the classi�cation accuracy
of each category, the classi�cation e�ciency of the DCB
sorting is higher than that of other sorting. (Although the
classi�cation accuracy of the two types of “poles and veg-
etation” arranged by DCB was lower than that of other
sequences, there was little di�erence in the comparison
accuracy between them.) �e comparison accuracy of the
other two categories, “wire and facade,” ranked �rst in DCB,
with a large di�erence. �erefore, we take the

X � [(rk, D2, R(λ,2D), S2)xoz, (rk, D2, R(λ,2D), S2)yoz, (rk,
D2, R(λ,2D), S2)xoy] as the best arrangement of multidimen-
sional features.

4.4. Weighted Combination of Multidimensional Features.
On the basis of the previous section, we have obtained the
best arrangement and combination of two-dimensional and
three-dimensional features. �e best arrangement based on
two-dimensional characteristics is

X � rk, D2, R(λ,2D), S2( )
xoz
, rk, D2, R(λ,2D), S2( )

yoz
,[

rk, D2, R(λ,2D), S2( )
xoy
].

(15)

Here, XOY, YOZ, and XOZ represent three two-dimensional
projection surfaces, and the three-dimensional features of
the point clouds are arranged as follows:

Y � Lλ, Nx,Ny,Nz, Pλ, Sλ,Mx,My,Mz, Oλ,[

Aλ, Eλ, Tλ, Cλ, D, Q, V].
(16)

�e multidimensional feature weighted combination
feature matrix is

Z �W1[Y] +W2[X], (17)

where Wi is the weight.
Since the two-dimensional and three-dimensional fea-

tures have di�erent e�ects on target classi�cation, the best
classi�cation accuracy will not be obtained by simply
combining the two-dimensional and three-dimensional
features in a 1 :1 scale. �is paper combines the two-di-
mensional and three-dimensional characteristics of point
clouds with the optimal arrangement of di�erent weights to
study the validity of point cloud classi�cation accuracy [23].
�e experiment shows in Table 4, the 2D features extracted
on the 2D projection, and the optimal arrangement DCB
obtained from the above section is used for weighted
combination of multidimensional features. It can be seen
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Figure 5: Comparison of di�erent settings: (a) comparison of di�erent initial learning rate. �e initial learning rate of 1e− 3 is more
conducive to the improvement of classi�cation accuracy. (b) Comparison of di�erent optimizer; optimizer moment is better than optimizer
stochastic gradient descent (SGD) and adaptive moment estimation (adam).

Table 3: Classi�cation results of di�erent arrangements (%).

Order
Class

Pole Vegetation Wire Ground Facade OA
DCB 0.127 0.723 0.608 0.946 0.719 0.977
CBD 0.012 0.821 0.351 0.883 0.190 0.973
CDB 0.088 0.880 0.555 0.983 0.418 0.975
DBC 0.135 0.796 0.422 0.980 0.426 0.959
BDC 0.022 0.833 0.206 0.765 0.340 0.958
BCD 0.043 0.843 0.305 0.938 0.167 0.947
�e bold values indicate that the classi�cation accuracy is the highest in the same category.
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from Table 4 that the overall classification accuracy of each
weighted combination has little difference, with the maxi-
mum value of 98.22% and the minimum value of 96.90%.
Comparing the classification accuracy of the second, fourth,
and fifth categories of the first three different weight
combinations, it can be concluded that the lower the three-
dimensional feature ratio, the lower the classification
accuracy.

For the first and third categories, when the combined
weight of multidimensional features is 3D : 2D� 0.9 : 0.1, the
classification accuracy is the lowest, but the overall classifi-
cation accuracy is higher than otherweight combinations.'e
experimental results show that the three-dimensional feature
is more important than the two-dimensional feature for point
cloud classification in large scenes. 'is paper chooses the
weight 3D : 2D� 0.9 : 0.1 to combine multidimensional fea-
tures to further improve the classification accuracy.

4.5. Scaling of Multidimensional Features. 'e feature
combination matrix Z can be divided into three parts
according to the value of the weight w. First, if w � 1 then it
means that the multidimensional features size remains
unchanged. Second, if the weight w< 1 or w> 1 then the

features of different dimensions are scaled; and the per-
formance of effective features may be increased by scaling
different features. It may also increase the size range between
features which is disadvantaged to the fast convergence of
gradient descent and thus affects the final classification
accuracy. Combining with the multidimensional features
matrix designed in our paper, the experiment shows that
scaling features of different dimensions with different weight
values will affect the classification accuracy of point cloud as
shown in Table 5.

Comparing Tables 4 and 5, we reduce and normalize the
multidimensional features. 'e experimental results show
that this classification result is better than other amplifi-
cation weight values. For example, the ratio of 3D : 2D� 0.9 :
0.1 can obtain the best classification accuracy. 'rough
properly scaling and normalization of multidimensional
features, the data feature range can be standardized, so that
the gradient descent process converges faster.

In summary, the two-dimensional features matrix is the
optimal arrangement of X � XD, XC, XB  for multidi-
mensional feature weighted combination, and the optimal
feature combination matrix Z (MFOC) is obtained as the
input of CliqueNet:

Z �

09∗ Lλ, Nx, Ny, Nz, Pλ, Sλ, Mx, My, Mz, Oλ, Aλ, Eλ, Tλ, Cλ, D, Q, V 

01∗ rk, D2, R(λ,2D), S2 
xoz

, 0.1∗ rk, D2, R(λ,2D), S2 
yoz

, 0.1∗ rk, D2, R(λ,2D), S2 
xoy



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (18)

In the large-scale 3D point cloud classification archi-
tecture of MFOC-CliqueNet designed in this paper, the
optimal combination matrix Z0 (MFOC) of multidimen-
sional features of different label categories is visually dis-
played for observation, as shown in Figure 6.

4.6. Number of Training Epochs. An epoch refers to the
process of sending all the data set sent to the network to
complete a forward calculation and back propagation. As the
number of epochs increases, the number of weight update
iterations in the neural network will also increase. However, if

Table 5: Feature amplification results (%).

3D : 2D
Class

Pole Vegetation Wire Ground Facade OA
1 : 2 0.047 0.717 0.403 0.985 0.628 0.9518
2 :1 0.008 0.924 0.185 0.882 0.128 0.9664
1 :1 0.127 0.723 0.608 0.946 0.719 0.9748
0.9 : 0.1 0.028 0.965 0.190 0.979 0.716 0.9822

Table 4: Weighted combination results of multidimensional features (%).

3D : 2D
Class

Pole Vegetation Wire Ground Facade OA
0.9 : 0.1 0.028 0.965 0.190 0.979 0.716 0.9822
0.8 : 0.2 0.032 0.902 0.299 0.962 0.475 0.9762
0.7 : 0.3 0.083 0.837 0.555 0.935 0.474 0.9744
0.6 : 0.4 0.039 0.812 0.407 0.971 0.594 0.9801
0.4 : 0.6 0.025 0.803 0.232 0.913 0.853 0.9724
0.3 : 0.7 0.135 0.677 0.299 0.982 0.842 0.9783
0.2 : 0.8 0.023 0.777 0.678 0.981 0.615 0.9750
0.1 : 0.9 0.076 0.519 0.276 0.977 0.907 0.9690
'e bold values mean optimal overall classification results after weighted combination of multidimensional features of point cloud.
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there are too many epochs, it is prone to over-fitting. Con-
versely, too few training rounds will cause convergence to be
too slow and not optimal state. 'erefore, in order to make
the MFOC-CliqueNet, in this paper achieve a good fitting
state, the number of epochs is very important. Here, this paper
makes an experimental comparison of different epoch
numbers to get an efficient classification for large-scale 3D
point cloud. 'e experimental results are shown in Table 6.

As can be seen from the above table, with the training
epoch increases from 160, 200, and 250 to train the MFOC-
CliqueNet network in this paper, the accuracy of each type of
point cloud classification and the overall training accuracy
are also improved accordingly.

4.7. Comparison of Results and Discussion. At present, many
researchers at home and abroad have carried out large-scale
point cloud classification research based on the Oakland

point cloud dataset. 'erefore, the method in this paper
compares the classification accuracy with other methods
based on this data set, as shown in Table 7. 'e experimental
results show that the proposed method achieves an overall
classification accuracy of 98.9% in Oakland point cloud
dataset. Compared with our previous works [18], the overall
classification accuracy is improved by 4.05%. And compared
with papers [25–29], the overall classification accuracy has
increased by 7.14%, 5.27%, 4.12%, 3.3%, 1.8%, and 1.21%,
respectively. Figure 7 shows the contrast effect of three-
dimensional point cloud visualization in a large scene,
Figure 7(a) is the visualization of the real-world data set, and
Figure7(b) is the visualization of the classification results of
the algorithm in this paper. In this paper, all point clouds in a
large scene are projected in three directions: XOY, YOZ, and
XOZ, and the overall classification accuracy is significantly
better than other methods. For pole classification, XOY
direction projection will affect the information feature

(a) (b) (c) (d) (e)

Figure 6: MFOC of different label categories (input Z0 of the first clique block): (a) pole; (b) vegetation; (c) wire; (d) ground; (e) facade.

Table 6: Feature amplification results (%).

Epoch
Class

Pole Vegetation Wire Ground Facade OA
160 0.154 0.958 0.523 0.989 0.568 0.9798
200 0.028 0.965 0.190 0.979 0.716 0.9822
250 0.160 0.898 0.591 0.995 0.946 0.9880

Table 7: Methods comparison accuracy (%).

Class
Method

Pole Vegetation Wire Ground Facade OA
M3N [23] 28.7 97.4 12.5 98.2 90.8 91.66
Literature [24] 22.3 90.7 5.3 99.6 87.6 93.53
Literature [25] 70.11 80.55 93.08 98.22 70.95 94.68
FDM [18] 68.42 80.68 92.93 98.37 71.13 94.75
CRFoptN [26] 59.7 92.0 10.7 99.9 94.6 95.5
MRF [27] 68.0 95.5 51.3 98.4 92.9 97.0
CCM [28] 82.67 97.83 30.26 99.17 90.33 97.59
Our method 16.0 89.8 59.1 99.5 94.6 98.9
Bold values highlight the advantages of our method and other literature methods in classification accuracy comparison.

(a) (b)

Figure 7: Visualization of classification results from ground truth and our MFOC-CliqueNet: (a) real-world labels of test data subsets and
(b) point cloud classification results using our MFOC-CliqueNet.
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extraction, resulting in poor classification efficiency of this
category. At the same time, for wire classification, it is also
affected by the XOZ direction projection, and making the
classification efficiency not optimal. However, for the other
three categories of objects, due to the projection in different
directions, the self-occlusion and occluded of the 3D point
cloud data itself are minimized, and more complete feature
information of these point can be obtained, thereby im-
proving the classification accuracy of these categories.

In the next work, we will improve the MFOC-CliqueNet
further. Aiming at the situation that the geometric char-
acteristics of some object categories in the 3D scene cloud
data are close, such as pole and wire, we will improve the
feature extraction efficiency of these two types of objects.
Not only to improve the classification accuracy but also to
enhance the robustness and generalization of MFOC-
CliqueNet.

5. Conclusions

In the study of large-scene 3D point clouds, we introduce a
new network structure MFOC-CliqueNet, based on the
optimal combination of multidimensional features, which
constructs the optimal combination matrix of multidi-
mensional features by extracting the 3D features of 3D point
cloud and the 2D features of multiple projection directions.
CliqueNet is introduced into 3D point cloud data processing
for the first time. It used a fixed number of parameters to
obtain deeper representation space and combined with
cyclic feedback to achieve the attention mechanism. It gets
the MFOC with higher feature quality and passes it to the
next Block by performing twice parameter cycle alternately
update processing. At the same time, the multiscale feature
strategy is adopted to effectively avoid the linear growth of
parameters. 'e experiments show that we proposed
MFOC-CliqueNet can reach the best level with fewer pa-
rameters, especially the total classification accuracy on the
Oakland 3D large-scale point cloud data set reaches 98.9%.
Different from the previous network, the proposed MFOC-
CliqueNet provides the potential of the model development
for other computer vision tasks in the future, especially for
the application of increasing 3D data, such as semantic
segmentation and salient objects detection of video, point
cloud, remote sensing data [29].

Data Availability

'e data are included in the following link: http://www.cs.
cmu.edu/∼vmr/datasets/oakland_3d/cvpr09/doc/

Conflicts of Interest

'e authors declare no conflicts of interest.

Authors’ Contributions

All authors contributed to the study conception and design.
Material preparation, data collection, and analysis were
performed by Xiaonan Li, Zhiyong Zhang, and Yueshun He.
'e first draft of the manuscript was written by Lei Wang,

and all authors commented on previous versions of the
manuscript. All authors read and approved the final
manuscript.

Acknowledgments

'is work was supported by the National Natural Science
Foundation of China (Grant no. 41872243). 'is research
was also funded by the Foundation of Jiangxi Engineering
Technology Research Center of Nuclear Geoscience Data
Science and System (Grant no. JETRCNGDSS201902).

References

[1] G. Tong, X. Du, Y. Li, C. Huairong, and Z. Qingchun, “3D
point cloud classification of outdoor large scene based on slice
sampling and centroid distance histogram features,” . China
laser, vol. 045, no. 010, pp. 150–158, 2018.

[2] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++:
fast and accurate LiDAR semantic segmentation,” IEEE/RSJ
Intl.∼Conf.∼on Intelligent Robots and Systems (IROS)., 2019.

[3] H. Li, X. Liu, X. Zhang, and D. Yan, “Semi automatic three-
dimensional point cloud classification based on probability
mixing of local shape features [J],” Journal of Zhejiang Uni-
versity: Science Edition, vol. 44, no. 1, pp. 1–9, 2017.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet
classification with deep convolutional neural networks[J],”
Advances in Neural Information Processing Systems, vol. 25,
no. 2, 2012.

[5] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” Computer
Science, 2014.

[6] C. Szegedy, W. Liu, Y. Jia et al., “Going Deeper with Con-
volutions,” in Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, June
2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, June 2016.

[8] G. Huang, Z. Liu, V. D. M. Laurens, and K. Q. Weinberger,
“Densely Connected Convolutional Networks,” in Proceed-
ings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, July 2017.

[9] Y. Yang, Z. Zhong, T. Shen, and Z. Lin, “Convolutional Neural
Networks with Alternately Updated Clique,” in roceedings of
the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, June 2018.

[10] H. Su, S. Maji, E. Kalogerakis, and E. L. Miller, “Multi-view
Convolutional Neural Networks for 3D Shape Recognition,”
2015, http://arxiv.org/abs/1505.00880.

[11] Z. Wu, S. Song, A. Khosla et al., “3D ShapeNets: a deep
representation for volumetric shapes,” in Proceedings of the
2015 IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp. 1912–1920, Boston, MA, USA, June2015.

[12] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional
Neural Network for Real-Time Object Recognition,” in
Proceedings of the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 922–928, Hamburg,
July2015.

[13] C. R. Qi, H. Su, M. o. Kaichun, J. Leonidas, and G. Pointnet,
“Deep learning on point sets for 3d classification and seg-
mentation,” in Proceedings of the Ee IEEE Conference on

10 Computational Intelligence and Neuroscience

http://www.cs.cmu.edu/%7Evmr/datasets/oakland_3d/cvpr09/doc/
http://www.cs.cmu.edu/%7Evmr/datasets/oakland_3d/cvpr09/doc/
http://arxiv.org/abs/1505.00880


Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, July 2017.

[14] C. R. Qi, Li Yi, H. Su, J. Leonidas, and Guibas, “Pointnet++:
Deep Hierarchical Feature Learning on point Sets in a Metric
Space,” 2017, http://arxiv.org/abs/1706.02413.

[15] W. Wu, Z. Qi, and F. Li, “PointConv: Deep Convolutional
Networks on 3D point Clouds,” http://arxiv.org/pdf/1811.
07246.

[16] W. Martin, B. Jutzi, and C. Mallet, “Semantic 3D Scene In-
terpretation: a framework combining optimal neighborhood
size selection with relevant features,” ISPRS Annals of the
Photogrammetry Remote Sensing and Spatial Information
Science, pp. 181–188, 2014.

[17] A. E. Johnson and M. Hebert, “Using spin images for efficient
object recognition in cluttered 3d scenes,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 21, no. 5,
pp. 433–449, 1999.

[18] L. Wang, W. Meng, R. Xi et al., “3D point cloud analysis and
classification in large-scale scene based on deep learning,”
IEEE Access, vol. 7, pp. 55649–55658, 2019.
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