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,e swarm intelligence algorithm is a new technology proposed by researchers inspired by the biological behavior of nature, which
has been practically applied in various fields. As a kind of swarm intelligence algorithm, the newly proposed sparrow search
algorithm has attracted extensive attention due to its strong optimization ability. Aiming at the problem that it is easy to fall into
local optimum, this paper proposes an improved sparrow search algorithm (IHSSA) that combines infinitely folded iterative
chaotic mapping (ICMIC) and hybrid reverse learning strategy. In the population initialization stage, the improved ICMIC
strategy is combined to increase the distribution breadth of the population and improve the quality of the initial solution. In the
finder update stage, a reverse learning strategy based on the lens imaging principle is utilized to update the group of discoverers
with high fitness, while the generalized reverse learning strategy is used to update the current global worst solution in the joiner
update stage. To balance exploration and exploitation capabilities, crossover strategy is joined to update scout positions. 14
common test functions are selected for experiments, and theWilcoxon rank sum test method is achieved to verify the effect of the
algorithm, which proves that IHSSA has higher accuracy and better convergence performance to obtain solutions than 9 al-
gorithms such as WOA, GWO, PSO, TLBO, and SSA variants. Finally, the IHSSA algorithm is applied to three constrained
engineering optimization problems, and satisfactory results are held, which proves the effectiveness and feasibility of the
improved algorithm.

1. Introduction

In recent years, new intelligent optimization algorithms
have emerged continuously and have been practically
applied in medical treatment [1, 2], finance [3], pro-
duction scheduling [4], and other fields. Besides, it has
been proved to be remarkably effective. Since the end of
the last century, scholars from all over the world have
been inspired by social behavior [5], trying to simulate
the behavior characteristics of biological populations in
nature, and proposed algorithms such as Ant Colony
Algorithm (ACO) [6, 7], Particle Swarm Optimization
(PSO) [8, 9], Whale Optimization Algorithm (WOA)
[10], Grey Wolf Optimization Algorithm (GWO) [11],
and a series of swarm intelligence optimization algo-
rithms. Most of the modeling process of these algorithms

is based on the characteristics of the biological pop-
ulation, such as foraging [12], reproduction [13], and
hunting [14], which vividly simulate the main behaviors
in social actions. In 2020, Xue J and Shen B jointly
proposed the Sparrow Search Algorithm (SSA) [1] based
on the foraging behavior and backfeeding behavior of
sparrow populations. ,e formula and control parame-
ters of algorithm are not complex and are easier to be
understood and implemented relatively. Experiments
show that SSA’s optimization capability is stronger than
the particle swarm optimization algorithm proposed in
1995 and the grey wolf algorithm proposed in 2014, with
better convergence accuracy, faster convergence speed,
and better stability. However, compared with the existing
swarm intelligence optimization algorithm, the SSA also
has certain shortcomings, such as longer running time,
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and a greater possibility to fall into a local optimal so-
lution due to the excessively fast convergence speed, so
that the global optimization ability is insufficient.

In order to strengthen the optimization effect of the
algorithm and balance the capabilities of exploration and
mining, researchers have proposed a series of improved
methods for the original sparrow search algorithm model to
improve the problem of easily trapping into local optimality.
Of course, these improved methods of the swarm intelli-
gence optimization algorithm have been used in various
research fields, and the application has been realized ex-
tensively. Lv et al. [2] introduced a chaotic sequence to
chaotically perturb some individuals, which fell into the local
optimum, in order for the SSA to be jumped out of the
restriction and continue to search for the global optimum
solution. At the same time, the integrated Cauchy-Gaussian
mutation operator is combined together to avoid the stag-
nation of optimization by changing the position of the elite
sparrow in the search space. Zhu [15] introduced an adaptive
learning factor to solve the problem that the convergence
trend will slow down and the convergence accuracy will be
reduced under a limited number of iterations, which are the
shortcomings of the SSA. At the same time, the ASSA is
applied to the optimization and identification of PEMFC
stack parameters. Mao and Zhang [16] fused the sine cosine
algorithm and the Levy flight strategy on the basic SSA,
performed disturbance mutation at the optimal solution
position, which enhanced the ability of the algorithm to
escape locally, and greatly increased the accuracy of the
solution. Liu et al. [17] and others introduced an improved
sparrow search strategy to apply to the route planning
problem of UAVs, which solved the inefficiency of path
planning in the complex three-dimensional flight process.
Yuan et al. [18] utilized the center of gravity reverse learning
mechanism to initialize the population, which made the
population distribution wider. A learning factor is put
forward in the update part of the discoverer, and the mu-
tation operator is introduced to increase the mutation
processing and reduce the probability of the algorithm
falling into the local optimum. Applying it to Distributed
Maximum Power Point Tracking (DMPPT) provides con-
ditions for the stable operation of the microgrid. Liu et al.
[19] came up with a balanced sparrow search algorithm
(BSSA), and the random walk strategy of Levy flight method
was exerted to appropriately adjust the local search, which
brought the improving efficiency of CNN focus. Besides,
they applied it to the medical field to improve MRI image
diagnosis of the brain robustness and accuracy of tumors. In
order to solve the problem of labeled data classification,
Zhang et al. [20] adopted the method of combining the
improved SSA and the adaptive classifier and introduced the
sine-cosine algorithm and the newly proposed labor co-
operation structure. Great effect of application in the clas-
sification of lung CT images has been demonstrated. Zhang
and Ding [21] designed a random configuration network
based on the chaotic sparrow search algorithm, and, com-
bined with the adaptive control factor of CSSA, it auto-
matically updated the regularization parameters and scale
factors for SCN. ,ereby, the regression performance of

SCN got improved when solving large-scale random con-
figuration problems. Zhu and Yousefi [15] proposed to hold
the adaptive sparrow search algorithm ASSA to optimize the
seven unknown parameters of the proton exchange mem-
brane fuel cell model in the PEMFC stack. ,e ultimate goal
is achieving the best consistency with the empirical voltage
polarization curve of the battery pack. Zhou et al. [22]
successfully applied SSA to wavefront shaping and focusing
by introducing a cross strategy, which solved the problem of
SSA’s lack of performance in high-dimensional optimization
problems. Without a doubt, the improved algorithm pro-
vided a good reference for future wavefront shaping
research.

Up to now, owing to the fact that the sparrow search
algorithm has not been come up with for a long time, re-
searchers are still in the exploratory stage and have not been
able to develop an absolutely excellent algorithm. In order to
further improve the solution accuracy and convergence
efficiency of the sparrow algorithm, this paper continues to
explore paths that can be improved on the basis of the
predecessors and proposes the novel sparrow search algo-
rithm called IHSSA. Improved infinite folding iterative
chaotic mapping and hybrid reverse learning strategy are
combined with it. ,e innovation points can be summarized
as follows:

(1) ,e improved infinite folding iterative chaotic map
(IICMIC) is used to initialize the sparrow pop-
ulation. ,is strengthens the diversity of the initial
population to a certain extent and increases the
breadth of distribution.

(2) A hybrid reverse learning strategy is put forward to
update the position of a specific individual. Taking
into account the effectiveness of reverse learning in
mining new solutions, this paper uses a hybrid re-
verse learning strategy. After the discoverer is
updated, lens reverse learning can be utilized to
update the global optimal solution. After the position
of the joiner is updated, the generalized opposition-
based learning strategy contributes to update the
current worst individual. Besides, considering the
limitation of the boundary, the population can get
more feasible areas as possible so as to maximize the
mining.

(3) ,e horizontal and vertical crossing strategy is in-
troduced to update the position of the guard. ,e
advantage of this strategy is that it can update the
individual sparrows in both the horizonal and ver-
tical angles, while maintaining the solution speed,
and the range of the population can be expanded to a
certain extent.

,is paper follows a reasonable logical order. ,e first
chapter introduces the research background of intelligent
algorithms in recent years and some contributions made by
researchers to this field. ,e second chapter introduces the
basic sparrow search algorithm SSA. ,e third chapter in-
troduces several improvement points of this paper in se-
quence according to the application order, shows the

2 Computational Intelligence and Neuroscience



proposed new algorithm IHSSA, and attaches the flow chart
of the new algorithm. ,e advantage of the algorithm is
proved by time complexity analysis and Wilcoxon rank sum
test, and the population distribution diagram proves its
contribution to the dispersed population. In the following
chapters, the new algorithm is tested on 14 standard test
functions, the results are statistically tabulated, and a
comparative analysis is made according to the data to verify
the pros and cons of the algorithm. In Chapter 5, we apply
IHSSA to a classical constraint engineering optimization
problem, and the obtained data further proves the feasibility
and effectiveness of the proposed algorithm. Finally, a brief
summary of the work of this paper is made, and the author
and his team have made some plans and prospects for the
next research work.

2. Sparrow Search Algorithm SSA

2.1. Group Predation Behavior of Sparrows. In nature, as one
of the common birds, sparrows live in the environment
where humans live. Generally speaking, the upper body of
the sparrow is brown and black, and the conical mouth is
short and strong. ,ey usually live together in groups with a
clear division of labor. Some sparrows are responsible for
finding food and providing foraging areas and directions for
the entire population, while the remaining sparrows obtain
food based on the food information the former sparrows
provide. In addition, a sparrow in the population will issue
an alarm in time when it realizes that danger is coming, and
the entire population will quickly start backfeeding behavior.

2.2. SSAAlgorithmDescription. ,e proposal of SSA is based
on the characteristics of sparrows’ cleverness and strong
memory, which well simulates the cooperative mechanism
of sparrow populations in daily foraging. We will give new
names to the three types of sparrows mentioned earlier.①
,ose who are responsible for finding food are called dis-
coverers.②,ose who follow the discoverers to obtain food
are called joiners. ③ Some joiners will always monitor the
discoverers and choose the time to compete for food re-
sources in order to increase the rate of food acquisition. ,is
type of joiner is called monitor. ,e discoverer generally
accounts for 10%–20% of the entire population. ,e roles of
the discoverer and the joiner can be exchanged, provided
that the proportion relative to the entire population is
constant.

,e position of each sparrow is held as a solution of the
algorithm. ,e initial positions of the sparrow represented
by a matrix are as follows:

x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

⋮ ⋮ ⋱ ⋮

xn,1 xn,2 · · · xn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Among them, d represents the dimension of the problem
to be optimized, and n represents the number of sparrow

population. And then, the fitness value of all sparrows can be
expressed:

F(x) �

f x1,1 x1,2 · · · x1,d  

f x2,1 x2,2 · · · x2,d  

⋮

f xn,1 xn,2 · · · xn,d  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Among them, the function f represents the fitness
function. ,e discoverer with better fitness will obtain food
earlier in the food search process.

Since the discoverer needs to guide the foraging direc-
tion for the entire population, the discoverer can obtain a
larger food search range. In the iterative process, the location
of the discoverer is updated as follows:

X
t+1
i,j �

X
t
i,j · EXP −

i

α · Maxitem
 , R2 < ST,

X
t
i,j + Q · L, R2 ≥ ST.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Among them, Xt
i,j represents the current position of the

ith sparrow; Maxitem represents the maximum number of
iterations of the algorithm; t is the current iteration number;
α is a uniform number conforming to (0,1]; Q is a random
number that obeys the standard normal distribution; L is a
1 ∗ d matrix with each element being 1; alarm value
R2 ∈ [0, 1]; safety value ST ∈ [0.5, 1]. Once a sparrow in the
population finds a predator or other danger, an alarm signal
will be issued. When the alarm value is more than safety
critical value, the discoverer will lead the population to other
safer areas to forage.

,e formula updated position of the follower is as
follows:

X
t+1
i,j �

Q · EXP
Xworst − X

t
i,j

i
2

⎛⎝ ⎞⎠, i>
n

2
,

X
t+1
b,j + X

t
i,j − X

t+1
b,j



 · A
+

· L, else.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

Among them, Xworst represents the current global
worst position; Xt+1

b,j represents the global optimal value of
the jth dimension at the (t+1)th iteration (that is, the best
position of the discoverer); A represents a 1∗d matrix
whose elements are randomly assigned 1 or -1, A+ Satisfy
A+ � AT(AAT)− 1.

When i> n/2, it indicates that the ith joiner has a low
fitness level and is not able to obtain food. In order to obtain
food and increase energy reserves, one must fly to other
places for foraging; when i≤ n/2, it means that the ith joiner
has held the best position and randomly finds a location to
forage near Xb,j.

,e sparrows responsible for investigation generally
account for 10%–20% of the total, and they always monitor
and remind the entire population to take backfeeding be-
havior when facing danger. ,e position update formula of
the monitors is as follows:
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X
t+1
i,j �

X
t
i,j + β X

t
i,j − X

t
b,j



, f i ≠fg,

X
t
i,j + K

X
t
i,j − X

t
worst,j

fi − fworst(  + ε
, f i � fg.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Among them, K is also a random number, and the range
is [−1, 1]; ε is an infinitesimal constant, and its existence
avoids the situation where the denominator is 0; f i , fg and
fworst represent the current fitness, the global optimal, and
the global worst fitness value of the sparrow, respectively.

3. IHSSA

3.1. Infinitely Folded Iterative Chaotic Map Initialization
Population

3.1.1. ICMIC. ,e swarm intelligence algorithm needs an
initialization strategy to generate an initial population and
provide an initial guess for the subsequent evolution process.
,e difference in the initial distribution state of the sparrow
population will lead the entire subsequent foraging process
to the final result with a large gap. Both the convergence
speed and the optimization accuracy are deeply affected.
,erefore, the importance of the quality of the initial
population can be realized. According to the original SSA,
the population is not guided by prior knowledge; that is, it is
generally randomly generated. In 1975, Li et al. proposed the
concept of “chaos” for the first time in the article “Period
,ree Implies Chaos” and used the word chaos for the first
time [23].

Considering its unpredictability, ergodicity, and pa-
rameter sensitivity, chaotic systems are special. In the field of
parameter optimization, chaotic mapping can be operated to
replace pseudorandom number generators in order to
generate chaotic numbers between 0 and 1. Considering that
chaos can only traverse all the space in a sufficient length of
time, it is feasible to combine chaos into the global optimizer
to improve the search performance of the latter in order to
complete the optimization of the target task in a short time
range [24]. Experiments have proved that the utilization of
chaotic sequences for population initialization will affect the
entire process of the algorithm, and better results than
pseudorandom numbers can often be held. ,e ergodicity of
chaos allows the initial state of the sparrow population to
have better diversity, to avoid premature convergence, that
is, to improve the global optimization accuracy and con-
vergence, which overcomes the shortcomings of traditional
optimization algorithms.

,is paper applies ICMIC map, one of the most classic
chaotic maps (Iterative Chaotic Map with Infinite Collapses)
to initialize the sparrow population. ,e chaotic map was
proposed in 2001 by Di He. Its basic idea is to generate a
chaotic sequence in [0, 1] through the mapping relationship
and then transform the chaotic sequence into the search
space of the population [25]. Its higher Lyapunov exponent
shows stronger chaotic characteristics than other commonly
used continuous chaotic models [26]. Selecting appropriate
parameters can generate a good chaotic model so as to

contribute satisfactory results in practical applications. ,e
uniform distribution test of chaotic systems by Di et al. [26]
proved that the one-dimensional ICMIC presents a noise
phenomenon closer to uniform distribution. Two mathe-
matical expressions for ICMIC mapping are as follows:

Expression one:

xn+1 � sin
a

xn

 ,

−1≤ xn ≤ + 1,

x0 ≠ 0,

a ∈ (0, +∞),

n � 0, 1, 2, . . . .

(6)

Expression two:

xn+1 � sin
απ
xn

 

α ∈ (0, 1).

(7)

In expression one, a is a very important adjustable
parameter. Experiments show that the value of a directly
affects the mapping effect and then affects the pros and cons
of the population. In the second expression, α also plays an
important role as a control parameter.

3.1.2. IICMIC. Based on the expression two in 2.1.1, this
paper proposes an improved infinite fold iterative chaotic
map-IICMIC. ,e mathematical expression is as follows:

xn+1 � sin
αβ
xn

 

β � 3 cos(rand(1)) +
1
2
.

(8)

After a lot of experiments, it is concluded that SSA can
obtain a good chaotic sequence when the value of a is in
the range of (0.6, 1). Combining IICMIC with the original
SSA, the initial population state generated is shown in
Figure 1(a) which shows the population state distribution
after initial SSA initialization, and Figure 1(b) shows the
distribution of sparrow population state after initializa-
tion with IICMIC. It can be seen that the improved ini-
tialization method has greatly improved the diversity of
the population, and it has greatly avoided falling into the
local optimum. ,e value of a is set 0.9 in subsequent
experiments afterwards.

In combination with SSA, we first select initial values
whose number is N with small differences as the initial state
of the population. Taking into account the parameter sen-
sitivity of ICMIC mapping, even if the individual gap is
small, it can be captured. ,ese N initial values can be
mapped to get the same amount of chaotic sequence and
then inversely mapped to the corresponding individual
search space. ,e initial position of the i-th individual after
the change is denoted as Xi

n+1 (i� 1.2, . . ., D).
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3.2. Hybrid Reverse Learning Strategy to Update the Position
of the Discoverer. Opposition-based learning (OBL) is an
intelligent calculation method, which is first proposed by
Tizhoosh in 2005. With the in-depth research of various
algorithms, OBL has been successfully applied to many
intelligent algorithms [27–31]. ,e main idea can be
summarized as follows: calculate a feasible solution and
its reverse solution. ,en, evaluate the pros and cons of
the two, and select the required solution according to
certain conditions. Research shows that the solution
generated by reverse learning is better than the randomly
generated solution, and the probability of reaching the
optimal solution is higher. ,erefore, OBL is a good
method that is greatly suitable for mining new solutions
in unknown fields, which increases the diversity of the
population.

In the discoverer stage, a broad and flexible search
mechanism is the key to guide the entire sparrow population
to search for food and avoid tripping into danger. In order to
better realize the lead role of discoverers, it takes researchers
too much time to explore in these fields, and they put
forward a series of improvement methods gradually.
However, traditional learning strategies have limited ability
to solve problems and can only achieve their goals in certain
dimensions. In response to this problem, based on the
traditional OBL, this paper proposes a hybrid reverse
learning method. Not only the improved lens imaging in-
verse learning mechanism is applied to the update of the
optimal solution in the discoverer stage, but also the gen-
eralized opposition-based learning is performed on the
global worst solution. ,e higher optimization accuracy can
be obtained in this hybrid way so as to avoid premature
convergence.

3.2.1. Reverse Learning Strategy Based on Improved Lens
Principle to Update Optimal Position. ,e reverse learning
strategy based on the lens principle has strong flexibility and
versatility. A strong ability to explore unknown areas and dig

new solutions is another advantage. ,e principles of this
method are as follows:

Supposing that there is an object Pwith a height of h, and
Xp is the projection of P on the X axis. Define aj and bj to be
the upper and lower bounds of the solution in the j-th di-
mension under the current algorithm. ,e midpoint of the
upper and lower bounds is defined as the base pointO, and a
lens with focal length f is placed at this point. ,rough the
lens imaging, an image P′ different from P can be obtained.
,e projection of the imageP′ on theX axis is denoted asXP

′.
XP
′ is the newly generated reverse solution based on this

learning strategy. ,e schematic diagram is shown in
Figure 2.

From Figure 2, we can clearly see thatXp generates a new
image XP

′ under the action of the lens. According to the
properties of similar triangles, we can get the following
formula:

(a + b)/2 − Xp

XP
′ − a + b/2

�
h

h′
. (9)

Let h/h′ � k (k is the scale factor), and the mathematical
expression of the reverse point XP

′ can be written as

XP
′ �

a + b

2
+

a + b

2k
−

Xp

k
. (10)

When k � 1, we can get

XP
′ � a + b − Xp. (11)

,e formula above is the general form of the reverse
learning strategy, and the new individuals generated by this
formula are fixed. Studies have shown that, for high-di-
mensional complex functions, new individuals with a fixed
range have a certain probability of falling into a local op-
timum. In the later stage of the algorithm iteration, the
optimal solution generated is usually very close to the op-
timal solution. In order to deal with the hidden danger, we
can introduce a new operator k∗. Changing the scale factor k
contributes to dynamically variable and new individuals.,e
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Figure 1: Individual distribution. (a) Individual initialization map of SSA. (b) Individual distribution of IHSSA.
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randomness of the solution prevents individuals from losing
vitality and increases the diversity of the population. ,e
mathematical expression of k∗ is as follows (the expression is
implemented to the position of the i-th sparrow individual
on the j-th dimension):

XP
′ �

a
j

+ b
j

2
+

a
j

+ b
j

2k
∗ −

X
j

p,i

k
∗

k
∗

� k + sin π ×
T − t

T
 .

(12)

Among them, t represents the current number of iter-
ations, and T represents the maximum number of iterations.

3.2.2. Generalized Reverse Learning Strategy Updates the
Current Global Worst Position. With the deepening of re-
search, more and more attempts have been made to choose
the optimal solution, but the research on the current global
worst position cannot be ignored. ,e update of the worst
position can bring a better search range and make the
population distribution greater. In order to maximize the
diversity of individuals in the population, not only the best
individuals in the discoverer stage are learned, but also the
worst individuals in the sparrow group are learned in reverse
strategy. Combined with the improved lens learning strategy
in the previous subsection, this subsection adopts the
generalized opposition-based learning (GOBL) strategy to
optimize and update the current global worst position after
each iteration.

,e concept of generalized opposition-based learning is
as follows: let the individual xi � (xi,1, xi,2, . . . , xi,n), and
their dynamic search range in the j-th dimension space is
[aj, bj]. xi

′ is its reverse solution. ,e mathematical ex-
pression of x’

i is

xi
′ � k aj + bj  − xi. (13)

Among them, k is a random number that obeys a
uniform distribution between (0, 1). If the value range of the
reverse solution exceeds the predetermined range, the so-
lution will be randomly generated within the dynamic search
range [aj, bj] according to the following formula:

xi
′ � aj, bj. (14)

,e purpose of reverse learning is to find a new and most
suitable solution. Generalized opposition-based learning
(GOBL) compares the worst solution while finding it and
updates the current global worst solution once. At the same
time, GOBL increases the dynamic update operation of the
boundary than the basic reverse learning, which means the
relatively small search space. ,e GOBL is combined with
the worst joiner update of the sparrow search algorithm.,e
characteristics of reverse learning are fully utilized to explore
more feasible regions while improving the convergence
speed of the algorithm.

3.3.Vertical andHorizontalCross Strategy. ,e optimization
speed of the SSA is very fast, and the solution accuracy is also
strong. As the number of iterations increases, the sparrow
population will gather around the local optimal solution to a
large extent. In order to balance the global search and de-
velopment capabilities of the algorithm and avoid the al-
gorithm from falling into the local optimum, the crossover
optimization algorithm is newly proposed in 2014. It is
inspired by the Confucian golden section principle and the
crossover operation in genetic algorithms. ,e experimental
results demonstrate that, compared with other heuristic
algorithms, the cross-optimization algorithm has excellent
performance on most test functions [32].

,is paper proposes to integrate the vertical and hori-
zontal crossover strategy into the guard search stage of the
sparrow search algorithm, which expands the range of the
population as much as possible while preserving the speed of
the solution.

3.3.1. Horizontal Crossover Strategy. Horizontal crossover
divides the solving space of multidimensional problem into
half the population of hypercubes. In order to reduce the
blind spots that cannot be reached, the horizontal crossover
also searches the edge of each hypercube with a small
probability. ,is is the guarantee that horizontal search has
strong global search ability.

p

Lens

V

F

u
O

P’

Xp

X’p

f

X

Figure 2: Lens schematic diagram.
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In this paper, two parental vigilant individuals xt
d(i) and

xt
d(j) are crossed horizontally to generate new individuals

MSxt
d(i) and MSxt

d(j).

MSx
t
d(i) � r1 × x

t
d(i) + 1 − r1( 

× x
t
d(j) + c1 × x

t
d(i) − x

t
d(j),

(15)

MSx
t
d(j) � r2 × x

t
d(j) + 1 − r2( 

× x
t
d(i) + c2 × x

t
d(j) − x

t
d(i).

(16)

Among them, r1 and r2 are random numbers in [0, 1]
conforming to a uniform distribution, and c1 and c2 are
random numbers in [−1, 1] conforming to a uniform
distribution.

,e offspring produced by the horizontal crossover
needs to make an elite selection with their parents and retain
the individuals with high adaptability. In this way, the al-
gorithm can continuously converge to the optimal solution,
which can ensure the convergence efficiency without af-
fecting the optimization accuracy.

3.3.2. Vertical Cross Strategy. ,e premature convergence of
most swarm intelligence search algorithms is caused by a
small number of stagnant population dimensions. ,e
original purpose of introducing vertical crossover is to
promote certain dimensions of the population to escape
from the dimensional convergence. Differing from the
horizontal crossover strategy, the vertical crossover is op-
erated on all dimensions of the new individual. Its function is
to avoid premature maturity in the later stage of SSA, which
is similar to the mutation mechanism in genetic algorithm.

Assuming that there is a newborn individual xt
d(k),

which crosses longitudinally in the d1 and d2 dimensions,
the calculation formula is as follows:

MSx
t
d(k) � r × x

t
d(k) +(1 − r) × x

t
d(k). (17)

Among them, MSxt
d(k) is a new individual generated

after vertical crossover, r ∈ [0, 1].
Like the individuals generated by the horizontal cross-

over strategy, the new individuals generated after the vertical
crossover must be selected by elites with their parents. ,e
one with high adaptability is retained as the final individual.
,e advantage of this is that it not only increases the pos-
sibility of seeking the best in breadth, but also chooses
various dimensions and realizes the continuous improve-
ment of the quality of the solution. Even individuals who
have fallen into a local optimum have a chance to jump out.

It is not difficult to see that, after combining with the
horizontal and vertical crossover, it is indeed possible to
balance the exploration and mining capabilities of the al-
gorithm to a certain extent. ,e bottleneck in the horizontal
direction can be shifted from the vertical experiment, and
the vertical gains will be immediately fed back to the hor-
izontal cross. ,en, the information will spread to the entire
population.,e perfect combination of the two is like a layer
of mesh structure that provides maximum help for
optimization.

3.4. FrameWorkof IHSSA. In summary, in order to solve the
problems of the original sparrow search algorithm, such as
fast convergence speed and high accuracy, but easy to
mature early, several improvement measures have been
proposed. ,e improved ICMIC is applied in the initiali-
zation phase, and the hybrid reverse learning strategy is
utilized to update the discoverer and joiner, respectively. At
the same time, the vertical and horizontal crossover strategy
is added in the monitor stage to realize the overall update of
each stage and strive to maximize the optimization. ,e
specific implementation steps are as follows:

Step 1. Initialize the population and its parameters, in-
cluding the population size N, the proportion of discoverers
PD, the proportion of guards SD, the dimension of the
objective function set to D, the upper and lower bounds of
the initial value set to lb and ub, the maximum number of
iterations T, and the alarm threshold ST, solving accuracy ε.

Step 2. Employ IICMIC to initialize the population (8),
generate N D-dimensional vectors Zi, and then inversely
map to the corresponding individual search space. ,e re-
newal of the population ensures the diversity of the sparrow
population.

Step 3. Calculate the fitness fi of each sparrow, select the
current optimal fitness fb and its corresponding position xb,
and the current worst fitness fw and its corresponding
position xw.

Step 4. According to the set ratio PD, randomly select pNum
sparrows with excellent adaptability as discoverers, and the
rest become joiners. Update the position of the discoverers
according to formula (3).

Step 5. According to the population fitness updated by the
discoverer, an improved lens-based reverse learning strategy
(12) is utilized to update the optimal value.

Step 6. Update the position of the joiner according to
formula (4).

Step 7. Employ the generalized opposition-based learning
strategy (13) to update the current global worst value.

Step 8. Randomly generate sNum guards from the pop-
ulation according to the ratio SD, and perform the hori-
zontal crossover (15) and (16) operation.

Step 9. Perform vertical crossover operation according to
formula (17), compare the degree of fitness, and save the
better ones.

Step 10. According to the current state of the sparrow
population, update the optimal position xb, the best fitness
value fb, the worst position xw, and the worst fitness value fw
of the entire population during the entire foraging process.

Computational Intelligence and Neuroscience 7



Step 11. Determine whether the iteration is over. If the
algorithm reaches the maximum number of iterations, or the
solution accuracy reaches the set value, it is determined that
the loop ends, and the optimization result is output. Oth-
erwise, it returns to Step2 to continue the next iteration
operation, and the current iteration number t satisfies
t � t + 1.

Step 12. Output the results of IHSSA.
,e flow chart is shown in Figure 3.

4. Experimental Results and Analysis

4.1. Benchmark Function Test. In order to better verify the
effectiveness of the newly improved algorithm, this paper
selects 14 internationally representative benchmark func-
tions for testing. ,e selected benchmark functions, which
hold the function name, expression, and search interval of
the function, are shown in Table 1. F1–F4 in the table are
unimodal functions, usually only a global optimal value, the
purpose of which is to test the local mining capability of the
function. F5–F7 are multimodal functions which test the
balance between exploration andmining of the function.,e
final selections F8–F14 are all fixed-dimensional functions.
,e theoretical optimal values of the 14 selected test func-
tions are all 0.

All the algorithms mentioned are performed on Win-
dows10 64 bit system, and the processor is Intel(R) Cor-
e(TM) i5-9300H CPU @ 2.40GHz with 16GB RAM. And
the MATLAB R2016b simulation experiment platform is
used for simulation.

4.2. Ablation Experiment. In order to verify the influence of
the three improvement points of the algorithm on the effect
of the entire experiment, an ablation experiment is hereby
carried out. ,e comparison results are analyzed and have
strong persuasion. ,e functions used for verification still
select the 14 functions selected in the previous section, and
the statistical results are divided into 5 angles according to
the type and number of improvement points. ,ese algo-
rithms include the original SSA; the improved ICMIC initial
population combined with the initial SSA is named ISSA-I;
the improved algorithm combined the hybrid reverse
learning strategy with the ISSA-I is named ISSA-II; the
improved algorithm combined the crisscross strategy with
ISSA-I is named ISSA-III; the last one is the IHSSA that
combines all the innovations proposed in this paper. Inte-
grate the data into Table 2 according to the principles above.

It can be seen from Table 2 that, in the process of im-
provement, the indicators of 8 functions have no obvious
changes in the data. Among them, each index of the 7
functions, F1, F5, F6, F7, F9, F11, F12, and F13, reaches the
optimal value of 0 in the SSA. ,e value obtained by the
improved algorithm still keeps the optimal state. With the
increase of improvement points, in the five functions of F2,
F3, F4, F10, and F14, the optimization effect becomes more
significant. Except for the best optimization of ISSA-III in
F14, the other four functions are all the best optimization

values of IHSSA and even get progress of many orders of
magnitude. In F8, although there is no improvement in the
two data of average and standard deviation, the optimal
value has reached an improvement of 7 orders of magnitude.
Overall, the IHSSA that combines all the innovation points
proposed in this article has the best effect. Each innovation
point has played a certain role in each step of the algorithm;
especially combining IICMIC with population initialization
has brought obvious results.

4.3. Population Diversity Analysis. Population diversity is
one of the important performance indexes to measure the
pros and cons of an algorithm, which can reflect whether the
algorithm falls into a local optimum to a certain extent. In
this paper, the population distribution map in the early stage
of the iteration (the number of iterations is 10) was selected
as a reference. ,e unimodal function F1 and multimodal
function F8 proposed in the above table were selected as the
research objects to show the advantages and disadvantages
of IHSSA and the original SSA, as shown in Figures 4(a) and

Start

Parameters initiation

Initialize population accordinf to IICMIC

Calculate the fitness value of each sparrow.Record 
the best and worst values and corresponding 

positions 

Select some of the sparrows with better fitness as 
the discoverers, Update discoverers by Eq. (3)

Update followers by Eq. (4)

Update discoverers according to the Lens reverse 
learning strategy (Eq.(12))

Horizontal crossover strategy by Eq. (15-16)
Vertical cross strategy by Eq. (17)

Update the entire population, Record the best 
position xb, Record optimal fitness fb, the worst 

position xw and the worst fitness fw

Until meet the 
termination condition ?

Output results

End

YES

NO

t=t+1

Update the current global worst value according to 
generalized opposition-based learning

(Eq.(13-14))

Figure 3: IHSSA flow chart.
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4(b), respectively, representing the individual distribution of
SSA and IHSSA on F1, and Figures 4(c) and 4(d), respec-
tively, represent the individual distribution of SSA and
IHSSA on F8. ,e theoretical optimal value of F1 is 0, and
the theoretical optimal value for F8 is 420.

As can be seen from Figure 4, in the early stage of the
algorithm iteration, the distribution in Figure 4(a) is linear,
while the IHSSA in Figure 4(b) is more widely distributed.
Compared with the poor aggregation state of SSA in
Figure 4(c), the distribution shown in Figure 4(d) is closer to
the theoretical optimal value and presents a wider

distribution field. It can be seen that the improved IHSSA in
this paper increases the diversity of the population to a
certain extent and reduces the invalid search of individuals.

4.4. Comparison with Other Optimization Algorithms. 14
standard test functions proposed in the previous section are
utilized to test the performance of the improved IHSSA.
Nine intelligent optimization algorithms, including particle
swarm optimization (PSO), whale optimization algorithm
(WOA), grey wolf optimization algorithm (GWO), teaching

Table 2: Algorithm parameters

Algorithm Parameters
GWO amax � 2, amin � 0
PSO c1 � c2 � 1.49445
SSA PD� 0.2, ST� 0.6, SD� 0.2
CSSA PD� 0.2, ST� 0.8, SD� 0.2
LSSA PD� 0.2, SD� 0.2
GSSA PD� 0.3, ST� 0.6, SD� 0.7
YSSA PD� 0.2, SD� 0.2
IHSSA PD� 0.2, SD� 0.2

-3
2

-2

-1

20

0

1

1

0

2

-2 -1
-2

-4 -3

(a)

-1
2

-0.5

0

1.51

0.5

1

1

0.5

1.5

0 0
-0.5-1 -1

(b)

-600
200

-400

0 600

-200

400

0

-200 200

200

0-400 -200-600 -400

(c)

-500
500

500

0

0

500

0

-500 -500

(d)

Figure 4: Population distribution map. (a) SSA. (b) IHSSA. (c) SSA. (d) IHSSA.
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and learning algorithm (TLBO), Sparrow Search Algorithm
(SSA), Chaos Sparrow Optimization Algorithm (CSSA)
proposed by Lv et al. [2], LSSA improved by Zhu DL [33],
GSSA improved by Chen G, and YSSA proposed by Yan
et al. [34], are chosen for comparison. In order to ensure the
objectivity of the experiment and the fairness of comparison,
the population size and maximum iteration number of each
algorithm are 100 and 500, respectively.,e other parameter
settings of the 8 algorithms are shown in Table 3. Consid-
ering the importance of parameter values in experimental
results, the feasibility proved by a large number of experi-
ments is the only source of value, so the data in the table are
from the parameter values set by the author when each
algorithm was first proposed. In order to avoid the con-
tingency of the algorithm results, each test function is run 30
times separately. And the average value, standard deviation
and optimal value of the experiment are calculated, re-
spectively. Meanwhile, the average running time of each
algorithm for optimizing in each function was recorded as a
reference for improving performance.,e experimental data
are shown in Table 4.

It can be seen from Table 4 that, compared with the
other three SSA algorithms, the same results are achieved
in 7 functions; even the 6 functions F1, F5, F7, F9, F11,
and F13 have found the optimal solution 0. ,ere are
obvious improvements in the remaining 7 functions, and
the average value of optimization in F2, F3, and F4 has
been improved by multiple orders of magnitude. Com-
pared with the WOA, GWO, and TLBO algorithms, the
optimal solution 0 is found in F5, F9, and F7, respectively,
and the results in the other functions are better. Com-
pared with the PSO algorithm, the five functions of F4,
F11, F12, F13, and F14 have a significant improvement,
which is particularly prominent in F4. In addition,
compared with the basic SSA, the optimal values found in
the three functions are improved significantly. Compared
with the other two improved SSA algorithms, the results
are better in the three functions of F4, F10, and F14.

In F8, apart from the GSSA, the performance of several
SSA algorithms is not as good as WOA, especially in the
average value. Overall, the IHSSA proposed in this paper has
the best performance among the 14 functions, while the PSO
has the worst performance. Figure 5 shows the convergence
curves of 8 algorithms for 10 functions. It can be seen that,
among the five functions of F1, F2, F3, F6, and F12, IHSSA
has the fastest convergence speed and higher convergence
accuracy. In F4, F10, and F14, although IHSSA has the same
convergence speed as other SSA variants, it is obviously able
to obtain a better solution. For F8, WOA showed a high
advantage, and GSSA shows superior optimization ability
than other SSA variants. However, compared with SSA and
LSSA, IHSSA performs better in convergence accuracy, but
compared with GSSA, CSSA, and ISSA, the accuracy is still
far from the theoretical optimal value. In terms of running
time, the variant of SSA consumes more time than the
original SSA. However, among several variants, LSSA and
IHSSA have relatively shorter running times, and higher
efficiency in the optimization process of 7 functions,
respectively.

In general, IHSSA has the fastest convergence speed and
better convergence accuracy; that is, the quality of the al-
gorithm’s optimal solution is better.

4.5.WilcoxonRankSumTest. Derrac et al. proposed that, for
the performance evaluation of improved intelligent opti-
mization algorithms, data comparison only based on av-
erage, standard, and optimal values is not convincing
enough. One of the necessary conditions, the quality of the
statistical test results, also proves whether the algorithm has
been significantly improved or not. In order to judge that the
results of the improved IHSSA in this paper are significantly
different from the results of other algorithms, the Wilcoxon
statistical test was performed at a significance level of 5%
[23]. ,e test principle is briefly described as follows: when
P< 0.05, it is considered that there is a significant difference
between the two algorithms. When P< 0.05, it indicates that
the performance of the two algorithms is equivalent, and the
difference is not obvious. In this article, the partial value of
P> 0.05 is expressed as N/A. Table 5 shows the P value
calculated in theWilcoxon rank sum test of IHSSA and other
algorithms among the 14 selected benchmark functions. ,e
results show that P< 0.05 accounts for the main component.
,e IHSSA has a greater improvement over the SSA algo-
rithm, and its superiority is also statistically significant,
which proves that the improved algorithm has a higher
convergence accuracy.

4.6.TimeComplexityAnalysis. Time complexity is one of the
important indicators for judging the performance of the
algorithm and calculating the running cost. Analyze whether
the improved IHSSA increases the time complexity from
both the macro- and microperspectives. On the one hand,
from a macroperspective, supposing that the maximum
number of iterations of the algorithm isM, the dimension is
D, and the population size is P, then, according to the time
complexity calculation formula of the intelligent optimi-
zation algorithm, the time complexity of SSA is
O1 � P × M × D. For the improved IHSSA, although the
number of cycles has been increased, the structure of the
algorithm has not changed. ,erefore, the time complexity
O2 of the IHSSA can be calculated as O2 � P × M × D.
Obviously, O1 � O2, and the time complexity has not in-
creased in the macroscopic view. On the other hand, from a
microperspective, the time complexity of IHSSA has in-
creased to a certain extent. Assuming that the proportions
of discoverers and joiners are A and B, respectively, then,
the time complexity of lens-based reverse learning O3
and generalized opposition-based learning O4 is
O3 � A × P × M × D, O4 � M, respectively. ,e increase in
time complexity of the alert phase of the vertical and hor-
izontal cross strategy update is O5 � B × P × M × D. ,e
initialization phase of IICMIC does not increase the time
complexity. In summary, from a microscopic point of view,
the time complexity of the improved algorithm has increased
by Ot � O3 + O4 + O5 � (A + B) × P × M × D + M, but the
increase in each step did not cause orders of magnitude. ,e
total time complexity is still P × M × D.
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Table 3: Ablation experiment.

Function Index SSA ISSA-I ISSA-II ISSA-III IHSSA

F1
Avg 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F2
Avg 4.9592E-290 0 1.1301E-287 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F3
Avg 2.9952E-193 1.0566E-230 5.119E-163 1E-233 0
Std 0 0 0 0 0
Best 0 0 4.7959E-165 0 0

F4
Avg 1.3694E-05 8.13949E-06 2.59124E-05 4E-07 2E-07
Std 3.77399E-05 2.05064E-05 5.66546E-05 2E-06 8E-07
Best 1.36288E-09 1.88962E-10 2.45252E-10 7E-12 0

F5
Avg 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F6
Avg 8.88178E-16 8.88178E-16 8.88178E-16 9E-16 9E-16
Std 0 0 0 0 0
Best 8.88178E-16 8.88178E-16 8.88178E-16 9E-16 9E-16

F7
Avg 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F8
Avg 3958.182107 3972.12115 2628.086289 4674.8 3377.4
Std 712.2420957 527.205402 1002.927817 770.11 1620.5
Best 2389.812363 3085.587428 0.014612768 3396.7 0.0008

F9
Avg 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F10
Avg 4.82652E-08 3.93007E-08 1.53723E-08 6E-08 2E-08
Std 1.02745E-07 8.62134E-08 3.49383E-08 2E-07 5E-08
Best 2.87751E-13 2.76833E-14 2.82932E-20 2E-13 4E-15

F11
Avg 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F12
Avg 0 0 0 1E-188 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F13
Avg 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F14
Avg 5.14521E-10 8.78436E-10 1.26547E-09 1E-11 2E-10
Std 1.83095E-09 4.04952E-09 2.0902E-09 5E-11 8E-10
Best 2.07524E-20 3.3079E-14 3.0117E-11 2E-15 2E-14

Table 4: Comparisons of IHSSA and other seven algorithms for 14 test functions.

Function Algorithm Avg Std Best Run time

F1

WOA 6.47271E-97 2.45955E-96 1.4869E-104 0.00114
GWO 9.58408E-41 1.61375E-40 1.85345E-42 0.001135
PSO 4.51174E-11 6.25117E-11 1.31715E-12 0.003173933
TLBO 2.29067E-85 1.79774E-85 2.6797E-86 0.0051
SSA 0 0 0 0.001907
CSSA 0 0 0 0.002318533
LSSA 0 0 0 0.002167
GSSA 3.826E-123 1.4763E-122 0 0.003030333
YSSA 0 0 0 0.0024253
IHSSA 0 0 0 0.00231
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Table 4: Continued.

Function Algorithm Avg Std Best Run time

F2

WOA 14907.66827 7290.613484 5245.501087 0.000753
GWO 2.01843E-11 4.84067E-11 2.37886E-15 0.001054
PSO 6.159248452 3.416561147 2.274329699 0.003053
TLBO 1.49173E-15 1.26326E-15 1.28014E-16 0.005033
SSA 4.9592E-290 0 0 0.001873
CSSA 0 0 0 0.001958
LSSA 0 0 0 0.002093
GSSA 1.03442E-88 1.13315E-87 0 0.002994
YSSA 0 0 0 0.00206
IHSSA 0 0 0 0.001953

F3

WOA 34.68527033 29.6668357 4.83669E-05 0.000001
GWO 2.5165E-10 2.80518E-10 3.92494E-11 0.000071
PSO 0.210838877 0.155290345 0.057831908 0.002197
TLBO 2.30203E-34 1.48485E-34 3.57945E-35 0.004141
SSA 2.9952E-193 0 0 0.000924
CSSA 0 0 0 0.00118
LSSA 0 0 0 0.001134
GSSA 4.87917E-90 2.20121E-89 0 0.002007
YSSA 0 0 0 0.001297
IHSSA 0 0 0 0.001171

F4

WOA 28.72457614 0.198079568 27.98805166 0.000752
GWO 1.62822E+35 6.51934E+35 38250907192 0.001087
PSO 3.24434E+87 4.65939E+86 2.29319E+87 0.002976
TLBO 420.4775663 1327.016075 21.95591078 0.004966
SSA 1.3694E-05 3.77399E-05 1.36288E-09 0.001724
CSSA 6.06157E-06 1.48998E-05 1.03023E-08 0.001897
LSSA 5.93493E-06 1.14239E-05 0 0.001974
GSSA 5.11701E-07 5.04167E-07 1.6666E-14 0.002881
YSSA 1.50157E-05 3.02452E-05 2.37868E-09 0.002006
IHSSA 2.40169E-07 8.20733E-07 0 0.001887

F5

WOA 0 0 0 0.000587
GWO 1.581667461 2.939452422 0 0.001086
PSO 45.60347387 12.12604405 24.87396229 0.003016
TLBO 6.383023506 4.955050004 0 0.005033
SSA 0 0 0 0.001767
CSSA 0 0 0 0.001891
LSSA 0 0 0 0.001917
GSSA 0 0 0 0.0028
YSSA 0 0 0 0.002885
IHSSA 0 0 0 0.00188

F6

WOA 5.15143E-15 2.16807E-15 8.88178E-16 0.000032
GWO 2.6823E-14 3.63147E-15 1.86517E-14 0.000032
PSO 0.343589201 0.596942294 1.24699E-06 0.002345
TLBO 0.031044156 0.170035847 4.44089E-15 0.004333
SSA 8.88178E-16 0 8.88178E-16 0.001045
CSSA 8.88178E-16 0 8.88178E-16 0.001243
LSSA 8.88178E-16 0 8.88178E-16 0.001302
GSSA 8.88178E-16 1.00293E-31 8.88178E-16 0.002071
YSSA 8.88178E-16 1.00293E-31 8.88178E-16 0.001365
IHSSA 8.88178E-16 0 8.88178E-16 0.001232

F7

WOA 0.00420253 0.012960719 0 0.000702
GWO 0.001780922 0.004128695 0 0.000986
PSO 0.017048805 0.019184635 6.22012E-11 0.002873
TLBO 0 0 0 0.004866
SSA 0 0 0 0.001613
CSSA 0 0 0 0.001893
LSSA 0 0 0 0.001803
GSSA 0 0 0 0.002723
YSSA 0 0 0 0.001993
IHSSA 0 0 0 0.001885
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Table 4: Continued.

Function Algorithm Avg Std Best Run time

F8

WOA 749.0614488 1053.51792 0.142228645 0.001887
GWO 5984.325616 512.034691 5075.836656 0.001087
PSO 5822.761982 781.2113436 3040.698318 0.002733
TLBO 5050.58229 1189.147899 3306.384094 0.004777
SSA 3958.182107 712.2420957 2389.812363 0.001487
CSSA 1619.35044 977.2374638 217.1401425 0.001995
LSSA 4878.962977 846.4505234 3517.371964 0.001683
GSSA 678.1120161 1382.220669 0.000381827 0.002487
YSSA 2178.636278 2045.618662 0.000381827 0.002057
IHSSA 3377.438965 1620.549772 0.000815262 0.001987

F9

WOA 1.2342E-117 5.3288E-117 2.672E-142 0.000885
GWO 0 0 0 0.001102
PSO 7.15959E-48 2.6399E-47 6.0523E-53 0.002666
TLBO 6.1741E-183 0 1.5723E-188 0.004666
SSA 0 0 0 0.001424
CSSA 0 0 0 0.001911
LSSA 0 0 0 0.001614
GSSA 0 0 0 0.002457
YSSA 0 0 0 0.002011
IHSSA 0 0 0 0.001902

F10

WOA 0.754881452 1.386931349 0.001459345 0.000757
GWO 0.600742635 1.39373905 2.53554E-05 0.000965
PSO 0.000892468 0.000922365 1.42838E-06 0.002883
TLBO 3.78444E-06 9.24279E-06 3.07036E-08 0.004883
SSA 4.82652E-08 1.02745E-07 2.87751E-13 0.001633
CSSA 6.06071E-08 1.74794E-07 4.9792E-14 0.001969
LSSA 1.87914E-06 3.82252E-06 0 0.001777
GSSA 9.6035E-07 1.483E-06 2.07901E-28 0.002665
YSSA 5.06037E-08 9.41366E-08 2.87751E-13 0.002075
IHSSA 1.78222E-08 5.32296E-08 3.72464E-15 0.001965

F11

WOA 6.5603E-78 3.17192E-77 9.75895E-90 0.00132
GWO 6.77957E-66 2.37196E-65 2.19507E-70 0.000106
PSO 1.0187E+26 2.21398E+25 4.6921E+25 0.002255
TLBO 4.82046E-85 5.52867E-85 1.68795E-86 0.004233
SSA 0 0 0 0.000977
CSSA 0 0 0 0.001212
LSSA 0 0 0 0.001273
GSSA 0 0 0 0.002087
YSSA 0 0 0 0.001338
IHSSA 0 0 0 0.001206

F12

WOA 6.6988E+16 9.54778E+16 39646.29751 0.000265
GWO 2.61392E+15 3.73552E+15 1.47252E+14 0.000282
PSO 2.38287E+43 1.23114E+43 4.17747E+42 0.002377
TLBO 9.02546E+14 4.72246E+14 2.97075E+14 0.004306
SSA 0 0 0 0.000983
CSSA 0 0 0 0.001293
LSSA 0 0 0 0.001166
GSSA 0 0 0 0.001983
YSSA 0 0 0 0.001412
IHSSA 0 0 0 0.001282

F13

WOA 0.7 0 0 0.001367
GWO 0.8 2.006884702 0 0.000958
PSO 1.22453E+20 2.91996E+19 5.79476E+19 0.003133
TLBO 4.87463304 0.988415075 2.761251106 0.005187
SSA 0 0 0 0.001922
CSSA 0 0 0 0.002064
LSSA 0 0 0 0.002097
GSSA 0 0 0 0.002965
YSSA 0 0 0 0.002185
IHSSA 0 0 0 0.002057
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Table 4: Continued.

Function Algorithm Avg Std Best Run time

F14

WOA 591670353.7 3240707887 1.967264854 0.000187
GWO 5.22374E+34 1.32705E+35 5.04003E+32 0.000466
PSO 1.94575E+60 2.11926E+59 1.42718E+60 0.002175
TLBO 0.320134144 0.127010931 0.093171452 0.00516
SSA 5.14521E-10 1.83095E-09 2.07524E-20 0.000983
CSSA 3.47974E-10 7.18343E-10 9.49837E-14 0.001377
LSSA 1.00461E-06 2.21303E-06 1.49976E-32 0.001183
GSSA 1.45943E-07 2.58657E-07 7.98889E-19 0.002022
YSSA 2.20337E-07 6.82432E-07 1.49976E-32 0.001485
IHSSA 1.96838E-10 7.70225E-10 2.39969E-14 0.001365
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Figure 5: Continued.
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Figure 5: Continued.
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From the above on, regardless of the macroscopic or
microscopic point of view, the time complexity has not
changed, which undoubtedly proves the feasibility of the
algorithm improvement.

5. Application in Constrained Engineering
Optimization Problem

5.1. I-Shaped Beam. ,e design optimization problem of
I-beam is one of the classic engineering optimization
problems. ,e goal is to minimize the vertical deflection by
optimizing the width of the leg x1, the height of the waist x2

and the two thicknesses (x3, x4). ,e objective function and
constraint conditions of this optimization problem are as
follows:

Minimize:

f(x) �
5000

x3 x2 − 2x4( 
3/12 + x1x

3
4/6 + 2x1x4 x2 − x4( /2( 

2.

(18)

Subject to:

g(x) � 2x1x3 + x3 x2 − 2x4( ≤ 0. (19)
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Figure 5: Convergence curves of eight algorithms for ten representatives test functions. Note. (a) corresponds to F1, (b) corresponds to F2,
(c) corresponds to F3, (d) corresponds to F4, (e) corresponds to F6, (f ) corresponds to F8, (g) corresponds to F9, (h) corresponds to F10, (i)
corresponds to F12, and (j) corresponds to F14. ,e image optimization results of the four functions F5, F7, F11, and F13 have greater
advantages and reach the optimal value after a short number of iterations. Since the convergence effect is too good, considering the overall
beauty of the image, it will not be displayed.

Table 5: p value and Wilcoxon rank.

Function WOA GWO1 PSO1 TLBO SSA CSSA LSSA GSSA YSSA
F1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 N/A N/A 0.049941793 N/A 0.006518796
F2 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.333710696 N/A N/A 4.79E-08 N/A
F3 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.002788006 N/A N/A 1.93E-10 N/A
F4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.53E-08 9.26E-09 0.0239 9.13E-04 7.49E-08
F5 N/A 2.15E-06 1.21E-12 1.93E-10 N/A N/A N/A N/A N/A
F6 2.53E-11 5.67E-13 1.21E-12 3.50E-13 N/A N/A N/A N/A N/A
F7 0.081522972 0.021577192 1.21E-12 N/A N/A N/A N/A N/A N/A
F8 1.49E-06 5.57E-10 4.18E-09 4.12E-06 0.02920541 3.09E-06 1.61E-06 6.51E-07 0.1259
F9 1.21E-12 N/A 1.21E-12 1.21E-12 N/A N/A N/A N/A N/A
F10 3.02E-11 3.02E-11 3.02E-11 1.46E-10 0.222572896 0.620403721 0.003475701 0.0199 0.0271
F11 1.21E-12 1.21E-12 1.21E-12 1.21E-12 N/A N/A N/A N/A N/A
F12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 N/A N/A N/A N/A N/A
F13 0.0815 0.0028 1.21E-12 1.21E-12 N/A N/A N/A N/A N/A
F14 3.02E-11 3.02E-11 3.02E-11 3.02E-11 N/A N/A 0.049941793 N/A 0.006518796
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Variable range:

10≤ x1 ≤ 50,

10≤ x2 ≤ 80,

0.9≤ x3 ≤ 5,

0.9≤ x4 ≤ 5.

(20)

5.2. Tree-Bar Truss Design Problem. ,e design problem of
three-bar truss is another classic problem in engineering case
studies. In order to minimize the weight constrained by
stress, deflection, and buckling, it is necessary to evaluate the
optimal cross-sectional area and adjust the two long rods A1
and A2 (x1, x2). ,e specific mathematical formulas for
adjustment are as follows:

Minimize:

f(x) � 2
�
2

√
x1 + x2(  × l. (21)

Subject to:

g1(x) �

�
2

√
x1 + x2�

2
√

x
2
1 + x1x2

P − σ ≤ 0,

g2(x) �
x2�

2
√

x
2
1 + x1x2

P − σ ≤ 0,

g3(x) �
1

�
2

√
x2 + x1

P − σ ≤ 0,

l � 100cm,

P �
2kN

cm
3
,

σ �
2kN

cm
3 .

(22)

Variable range:

0≤ x1, x2 ≤ 1. (23)

5.3. Cantilever Beam. ,e application is a structural engi-
neering design problem. ,e component part of the can-
tilever arm is five hollow bricks, and the purpose of the
project is to increase the rigidity. Increasing the cross-sec-
tional height of the brickwork is more conducive to im-
proving the rigidity. If the section height increases, in order
to reduce the mass or maintain the same quality, the section
width must be reduced. ,erefore, the size of the cross
section (height or width) is the optimal parameter for this
experiment. ,e modeling expression of this case is as
follows:

Minimize:

f(x) � 0.0624 x1 + x2 + x3 + x4 + x5( . (24)

Table 6: Best results for the optimal design of I-shaped beam problem.

Algorithm
Variables Constraint

x1 x2 x3 x4 g1(X) g2(X) f(X)
IARSM 79.99 48.42 0.9 2.4 0.0869999 −1.52454 0.0131
CS 80 50 0.9 2.3216 −0.012005 −1.57002 0.01307
GWO 80 50 0.9 2.3217 −0.009059 −1.570071 0.0131
EMGO-FCR 80 50 0.9 2.32 −0.176 −1.567179 0.0131
SOS 80 50 0.9 2.3217 −0.000222 −1.570224 0.01307
AEFA-C 79.9671 49.99 0.9 2.3164 −0.560371 −1.559518 0.0131
SSA 79.99992 49.99982 0.9 2.321795732 −0.00058001 −1.570210836 0.013074174
IHSSA 80 50 0.9 2.32179226 −2.06E−08 −1.570228475 0.013074119

Table 7: Best results of the three-bar truss design problem.

Algorithm
Variables Constraint

x1 x2 g1(X) g2(X) g3(X) f(X)
GA 0.788915 0.407569 9.64E-07 −1.464873605 −0.53512542 263.8958857
PSO 0.788669 0.408265 4.8650E-07 −1.464082376 −0.535917137 263.8958434
ICA 0.788625 0.408389 8.42E-07 −1.463941244 −0.536057913 263.8958452
CS 0.78867 0.40902 −2.90E-04 −0.26853 −0.73176 263.9716
WCA 0.788651 0.408316 0.00E+00 −1.464024 −0.535975 263.895843
GWO 0.788648 0.408325 3.34E-08 −1.464014397 −0.535985569 263.8960063
ALO 0.788663 0.408283 −5.32E-12 −1.464062005 −0.53593799 263.8958434
MFO 0.788245 0.409467 7.71E-12 −1.462717072 −0.537282927 263.8959796
WSA 0.788683 0.408276 3.00E-10 −1.46407036 −0.53587454 263.8958434
SSA 0.788628 0.408381 5.43E-07 −1.463950108 −0.536049349 263.8957734
IHSSA 0.788674 0.408251 5.13E-09 −1.464098378 −0.535901617 263.8958427

18 Computational Intelligence and Neuroscience



Subject to:

g(x) �
61
x
3
1

+
37
x
3
2

+
19
x
3
3

+
7
x
3
4

+
1
x
3
5

− 1≤ 0. (25)

Variable range:

0.01≤xi ≤ 100, i � 1, . . . , 5. (26)

,ree classic constrained engineering optimization
problems, I-beam optimization problems, three-bar truss
design problems, and cantilever beam problems, are rep-
resentative in verifying the feasibility of the algorithm. ,e
parameters and constraints of the three engineering prob-
lems are integrated in Tables 6–8, respectively. In decades of
research [14, 35–41], to some extent, generations of re-
searchers have designed many kinds of optimizers to solve
these three nonlinear problems. ,e statistical results of
these optimization methods (including the IHSSA proposed
in this paper) are shown in Tables 6–8, respectively, and the
optimal solutions obtained are denoted as f(X). It can be seen
from Tables 7 and 8 that the IHSSA algorithm can be used in
engineering optimization problems and has better perfor-
mance than the original SSA algorithm. Compared with
other optimizers shown in [27], the overall result is also
slightly superior.

6. Conclusion

Based on the basic sparrow search algorithm, this paper
proposes an improved sparrow search algorithm (IHSSA) that
integrates infinite folding iterative chaotic mapping and
hybrid reverse learning strategy so as to deal with short-
comings. Firstly, an improved infinite fold iterative chaotic
map (IICMIC) is introduced in the initial population stage to
increase the search range of the population. ,en, in order to
update the position of the global optimal value and the
current worst, a hybrid reverse learning strategy is proposed
to be applied after the update of the discoverer and the update
of the follower, respectively. ,e introduction of the hybrid
reverse learning strategy increases the quality of under-
standing and avoids falling into the global optimum.
Moreover, combining the vertical and horizontal crossover
strategy into the monitor stage contributes to maximizing the
exploration and mining capabilities of the balance algorithm.
In general, the proposal of IHSSA makes the optimization
accuracy better, the development ability becomes stronger,
and the algorithm’s global search ability gets enhanced.

Overall, the comparison results of the solutions obtained
by the 14 standard test functions also prove that the new

algorithm is generally better than several well-known heu-
ristic algorithms such as WOA, GWO, TLBO, PSO, the
newly proposed SSA, and its excellent variants. IHSSA has
strong stability and robustness. In terms of running time, the
optimization process of the seven functions takes the least
amount of time, showing high computational efficiency. In
addition, the high quality of convergence accuracy is proven
in theWilcoxon rank sum test. It is proven that the update of
the algorithm does not bring an order of magnitude increase
in time complexity, which indicates that it is a good oper-
ation. Moreover, the application of the improved algorithm
in three constrained engineering optimization problems has
demonstrated its great feasibility and effect, which is better
than other optimizers. ,is undoubtedly makes the research
more meaningful. However, IHSSA research is still in its
infancy.

In the follow-up research, in order to obtain better
accuracy and convergence speed, we will continue to try to
improve the sparrow search algorithm and other swarm
intelligence algorithms. In addition, the improved algorithm
and innovative points are applied to engineering optimi-
zation problems to solve practical problems, so as to broaden
the application field of the algorithm and further verify the
feasibility and effectiveness of the algorithm.
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