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Due to the combined in�uence of complex engineering geological conditions and environmental factors from agricultural
mountainous areas, the evolution of slope deformation is complicated and nonlinear. Support vector machine (SVM) technology
could e�ectively solve the technical problems of small sample, high dimension, and nonlinear, so it is applied to data mining of the
measured slope displacement and the prediction and analysis of the slope deformation trend. In order to avoid blindness of
human choice of SVM parameters and to improve the prediction accuracy and generalization ability of the model, an ACO-SVM
model is built by adopting an improved ant colony algorithm (ACO) to optimize parameters in association with the rolling
forecasting method of displacement time series. �e model was applied to two engineering examples. �e research results showed
that the ACO-SVMmodel was correct with high accuracy. �e ACO-SVMmodel had higher accuracy of prediction and stronger
generalization ability than optimizing SVM based on the genetic algorithm or particle swarm optimization.�e forecasting results
were more reasonable. It has certain engineering application values for slope deformation prediction.

1. Introduction

Landslides are one of the most harmful natural disasters in
the world and pose a serious threat to human beings and
society. Monitoring and early warning of the slope dis-
placement is the main technical means to avoid this hazard
[1]. According to the displacement monitoring data, the
future evolution and regular development trend of the slope
will be predicted. It is of great signi�cance to grasp the slope
deformation law for engineering management in the future.
At present, the prediction methods of displacement of time
series mainly include time series analysis, grey system, ar-
ti�cial neural network, support vector machine (SVM), and
various combinations of prediction methods [2]. In all
methods, time series analysis is di�cult to determine the
parameter of an autocorrelation coe�cient r, a partial
correlation coe�cient q, and reasonable identi�cation to the
model. �e grey system is mainly suitable for the time series
of exponentials, and the prediction results often have large
errors for complex nonlinear slope displacement series [3].

An arti�cial neural network is based on the heuristic al-
gorithm, and its disadvantage is that there is no complete
theoretical basis. When the number of samples is limited, it
is di�cult to guarantee the accuracy, while when there are
many learning samples, it is easy to fall into the dimension
disaster, and the generalization ability of the algorithm is not
high. A support vector machine (SVM) based on the
principle of structural risk minimization has strong gen-
eralization ability and e�ectively solves problems such as
small sample, high dimension, and nonlinear. SVM can
realize adaptive decomposition according to the data scale
and obtain the displacement of the trend term, periodic
term, and random term by setting a static component, which
has the advantages of high decomposition precision, strong
robustness, and clear physical meaning.

One of the outstanding problems of SVM is that it is
di�cult to determine the parameters of penalty parameter C
and kernel function c and the accuracy of SVM is directly
related to the ability of model prediction and generalization.
Previous studies have conducted a lot of research on the
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optimization of SVM model parameters, mainly involving
metaheuristic algorithms, such as the simulation of the living
habits of the American monarch butterfly, and the monarch
butterfly optimization (MBO) [4] migration operator biased to
local search. A slime mould algorithm (SMA) [5] was proposed
based on the oscillating predation behavior of slime mould
individuals. Proposed by Al-Attar AliMohamed in 2016, amoth
swarm algorithm (MSA) [6] was designed inspired by the photo
taxis and flight patterns of moths. Hunger games search (HGS)
[6] based on animal hunger-driven activities and behavior was
proposed. *e Runge–Kutta method (RUN) is a high-precision
single-step algorithm widely used in engineering. Kok Meng of
Malaysia proposed the swarm predation algorithm (CPA) [6] in
2020, inspired by how carnivorous plants adapt to harsh en-
vironments such as insect hunting and pollination.*eweighted
mean of vectors algorithm (INFO) is a new intelligent opti-
mization algorithm proposed in 2022, which achieves optimi-
zation through different weighted average rules of vectors.
Harris hawks optimization (HHO) [7] is a swarm optimization
algorithm proposed by Heidari in 2019, which simulates the
predation behavior of Harris hawks. Ant colony optimization
(ACO) is a newmethod to simulate biological evolution and has
the advantages of parallel computing, positive feedback
searching, and good adaptability [8]. *e feature parameter
dimension of parameter data in an SVM model is higher. In
order to avoid “dimension disaster,” overfitting phenomenon,
and improve the classification accuracy and efficiency of the
model, feature selection is necessary. Feature selection is es-
sentially a combinatorial optimization problem, so an ACO
algorithm can be used to reduce dimension.

In this paper, the improved ant colony optimization
algorithm is proposed on the basis of existing research, and
support vector machine (SVM) technology is used to op-
timize the prediction model so as to reduce the blindness of
model parameter selection.*is technique is applied to slope
monitoring, displacement training and learning, and rolling
prediction of displacement change time sequences [9]. In
this paper, several commonly used algorithms and the
improved ACO-SVM are applied to slope treatment tech-
nology, and the efficiency of the algorithm is analysed and
compared; in the end, the superiority of the improved ACO-
SVM is verified. *e specific research work includes the
following three aspects: (1) monitoring the changes of
horizontal displacement data of slope of a hydropower
station and determining monitoring parameters; (2) based
on the improved ACO-SVM algorithm model, the slope
stability is analysed; (3) the slope displacement is predicted
and analysed based on the improved algorithm model. *e
improved ACO-SVMmodel has higher prediction accuracy,
stronger generalization ability, and more reasonable pre-
diction results, which has certain engineering application
values in slope deformation prediction.

2. Materials and Methods

2.1. Research Status of Slope Deformation. In recent years,
slope deformation accidents caused by engineering con-
struction, earthquakes, and rainfall have occurred in many
places in China. Many scholars in the world have

performed relevant work. For example, a GM (1, 1) model
was successfully applied to the north slope of a tunnel by
using the grey system model for beneficial exploration
[10]. Combining the relevant scientific knowledge with
traditional grey theory, the unbiased grey fuzzy Markov
prediction model is constructed and applied to the slope
displacement prediction of a mine. *e least-squares
support vector machine and radial basis kernel function
were used to train and predict slope data, and the optimal
model parameters were found by a quantum particle
swarm optimization algorithm [11].*e results show that
the prediction accuracy is improved. Numerical simula-
tion and slope stability analysis were used to evaluate and
predict the high slope stability of tailings. *e Gaussian
kernel function and polynomial kernel function were
combined to construct the mixed kernel function, and the
particle swarm optimization algorithm was applied to find
the best parameters of the least-squares support vector
machine [12]. Finally, the PSO-LSSVM model of the slope
displacement sequence was established, and it was applied
to the left bank slope data of a hydropower station [13].
After the slope stability parameters were determined, the
limit equilibrium method and discrete element numerical
simulation were adopted to analyse the stability and
failure mode of the open-pit mine slope [14, 15]. Con-
sidering six influencing factors of the research object, the
slope stability of an open-pit mine could be judged and
calculated by gene expression. Tan et al. proposed a new
method to measure slope stability, which is to calculate the
permanent displacement of slope by the stiffness reduc-
tion method [16].

It can be seen that there are many factors affecting slope
deformation, and some models have to take many factors
into account in slope prediction, which undoubtedly in-
creases the difficulty of slope deformation prediction [17].

2.2. Support Vector Machine Regression Prediction Model.
SVM is a small sample intelligent learning algorithm pro-
posed by Vapnik based on statistical theory. *is algorithm
uses kernel snapping from transforming the known space to
higher dimensional space through nonlinear mapping so
that the samples of higher dimensional space could be
linearly separable [3].

For the regression problem, let the training sample set be
expressed as {(xi, yi)|xi ∈Rd, I� 1, 2, ..., n}, xi is the d-di-
mensional vector of input, yi is the output value, R is the set
space of all real numbers, and n is the number of samples.
Make nonlinear mapping: Rd⟶H, where is a high-di-
mensional feature mapping and H is a high-dimensional
feature space, and we construct the optimal decision
function in this feature space, the formula is as follows:

y(x) � wφ xi(  + b, (1)

In the formula, w is the weight vector in anH space and b
is the offset term. *e fitting error and the insensitive
function ε are considered, and the relaxation factors and are
introduced to minimize the objective function (2) of the
error.
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In formula (2), C is the penalty parameter and (C> 0) is
the sample penalty beyond ε. *e constraint condition of
formula (2) is as follows:
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Aiming at the convex quadratic optimization problem,
the Lagrange function is introduced for partial differentia-
tion so as to obtain the dual form of the optimization target
and the maximization function.
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In formula (5), α and α∗ are Lagrange multipliers. In the
dual problem, the optimization of the objective function
only involves the inner product operation between training
samples (xi,yj), so the inner product operation is actually
carried out in higher dimensions. *is operation can be
realized by using the functions in the original space.
According to functional theory, as long as a kernel function
K(xi,yj) satisfies the Mercer condition, it will correspond to
the inner product of the spatial transformation. SVM
constructed by different kernel functions is different
[18].*e key point of SVM classification lies in the con-
struction and selection of kernel functions. Appropriate
kernel functions can effectively solve the problem of di-
mension disasters in a high-dimensional space and reduce
the complexity of calculation in a high-dimensional space.
*ere are four kernel functions commonly used in SVM:
linear kernel function, polynomial kernel function, RBF
kernel function, and sigmoid kernel function. When the
ACO-SVM model is used, the accuracy of parameter se-
lection and the classification time are taken as the effective
indexes to evaluate the parameter model. In order to make
the results more close to its real performance, a grid opti-
mization method and cross validation of ten-fold are
adopted. It can be found from Figure 1 that the ACO-SVM
model has the highest efficiency when an RBF kernel
function is adopted, and no matter which kernel function is
adopted, its accuracy is improved compared with SVM
classification directly. Specifically, when linear, polynomial,
RBF, and sigmoid kernel functions are adopted, accuracy
increases by 1.6%, 3.34%, 2.5%, and 2.5%, respectively. As

can be seen from Table 1, in terms of selection efficiency, no
matter which kernel function is used, the classification ef-
ficiency of the ACO-SVM model is significantly improved
compared with that of direct selection, indicating that the
ACO-SVM selection model is very effective for slope dis-
placement prediction. Its expression is as follows:

K xi,yj  � exp −c xi − yj

�����

�����
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 . (6)

*en, formula (4) can be converted to the following
formula, which is expressed as follows:

W α, α∗(  � −
1
2



n

i,j�1
αi − α∗i(  αj − α∗j K xi∙xj 

+ 
n

i�1
αi − α∗i( yi − 

n

i�1
αi − α∗i( ε,

(7)

w � 
n
i�1(αi − α∗i )φ(xi), and solving the convex quadratic

programming problem to nonlinear mapping is represented
by the following formula:

y(x) � 
n

i�1
αi − α∗i( K xi∙xj  + b. (8)

From (5) and (6), it can be seen that the parameters in
penalty functions C and K(xi∙xj) kernel functions in
support vector machines have great influence on the gen-
eralization ability and calculation efficiency of the algorithm.
Generally, it is blind and inefficient to determine two pa-
rameters manually. Based on the situation, the paper uses the
ant colony algorithm (ACO) to search for parameters to find
the optimal support vector machine parameters [14].

2.3. Continuous Domain’s Ant Colony Algorithm. *e ant
colony algorithm (ACO) is a new intelligent optimization
algorithm proposed by Italian scholar Dorigo in the early
1990s [19]. *e algorithm was first used to solve the dis-
creteness optimization problem. *e optimization of sup-
port vector machine parameters is to solve the problem of
continuous domains. In this paper, the ant colony algorithm
is improved by optimizing parameters of continuous do-
main model, and the model parameters of the continuous
domain are optimized. *e key factors of the ant colony
algorithm are the movement rule and pheromone update.
*e ant colony searches for positive feedback of volatile
accumulation of pheromone and selects the optimal path
[20].

Suppose the objective function of the continuous field is
as follows:

min Q � f(x), x � x1, x2, · · · , xD( ,

x
1
b ≤ xb ≤x

u
b ; b � 1, 2, · · · , D.

⎧⎨

⎩ (9)

In the formula, xu/b and x1/b are the upper and lower
limits of the independent variable xb and D is the number
of independent variables. *e search optimization steps for
formula (9) by using the ant colony algorithm are as
follows:
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(1) Ant colony initialization. *e ant colony size is set as
N, the number of cycles is K, and the ant colony is
randomly distributed in the optimization space [21].
As the starting point for each ant to search, the
continuous domain is discretized into a number of
intervals, and the length matrix of each variable
quantum interval is expressed as formula:

Len(b) �
x
1
b − x

u
b

N
(10)

According to the current location situation of ants
and different types of optimization goals, we make
sure the initial pheromone concentration vector Τ(i)

of the ant i is as follows:

Τ(i) � exp −f xi( ( . (11)

In formula (11), xi � xi/1, xi/2, · · · , xi/j, · · · , xi/D,

i � 1, 2, · · · , N, N is the initial position of the ant i.
From formula (10), it can be known that the target
function value f(xi) is smaller, and more phero-
mones are left by the position xi of the ant i.

(2) Movement rules of ant colony: When all ants
complete searching, they will start the next searching
according to the corresponding movement rules. In
the paper, the dynamic global selection factor and the
dynamic volatile factor are introduced to improve
the global searching ability [22].
*e basic rules of searching: After the ant colony
completes a cycle, one ant will find the optimal
solution of the cycle, namely, the head ant, and its
position is x leader. *e other ants in the next cycle
will use the head ant position as the target for

transfer searching, which is called global search. *e
leader with the optimal solution is randomly
searched in the neighbourhood to obtain a better
solution, which is called local searching [23]. *e
transfer probability of the ant i at the position
xi(i� 1, 2, . . ., N, i≠ leader) to the position xleader of
the head ant is P(i):

P(i) �
exp (T(leader) − T(i)

exp (T(leader))
. (12)

In formula (12), τ(leader) is a t pheromone con-
centration of the first ant’s location and τ(i) is a
pheromone concentration of the location of the ant i.
In the global searching, the selection factor of the
dynamic global P0 is introduced into the step size
transferred from the ant i to the optimal solution
position xleader. *e specific expression is

xi �
(1 − λ)xi + λxleaderP(i)<P0,

xi + ran d(−1, 1) × LenP(i)≥P0.
 (13)

*e local searching is a random searching in the
xleader neighborhood of the ant leader. Let the new
search location be xtemp. If xtemp is better than xleader,
we replace xleader with xtemp. Otherwise, we keep the
original location. In order to obtain the optimal
solution of later fine searching, the step size is in-
troduced to update a parameter w, so the searching
step size decreases with the increase of iteration
times.
Specifically, it is expressed as follows:

xleader �
xtemp , T(leader)<T(temp),

xleader, else.
 (14)

In formula (14), τ(temp) is a pheromone concen-
tration of the ant location xtemp.

xtemp �
xleader + w × step, ran d(1)< 0.5,

xleader − w × step, else,
 (15)
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Figure 1: Comparison of model selection accuracy with four different kernel functions.

Table 1: Comparison of model classification efficiency using four
different kernel functions.

Classification model
Time (s)

Linear Polynomial RBF Sigmoid
SVM 183.39 148.22 170.48 159.21
ACO-SVM 7.37 7.6 7.17 7.01
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In formula (15), step� 0.1× rand(D, N, K) is the local
search step size, and the w step size updating rule is
as follows:

w � wmax − wmax − wmin( 
k

K
. (16)

In formula (16), wmax an dwmin are the initial setting
values, generally wmin ∈(0.2, 0.8) and wmax ∈(1.2,
1.4); k is an iteration number of the current ant
colony; K is the maximum iteration number of the
ant colony.

(3) Pheromone updating rules. In the completion of
global searching and local searching, ants will update
the pheromone τ(i) of the location of the ant i. *e
pheromone updating rules can be expressed as
follows:

T(i) � (1 − ρ)T(i) + ΔT(i). (17)

In formula (17), ΔT(i) is a pheromone increment
and ΔT(i) � exp (−f(xi)). ρ is a pheromone vola-
tilization factor (ρ ∈(0,1)) and, and the dynamic
change is first small and then large with the number
of iterations. *e reason is to expand the global
searching capability in the early stage and accelerate
the convergence rate in the later stage.

2.4. Slope Displacement Prediction. *e comprehensive
prediction model of the slope displacement needs to
consider emphatically:(1) how to choose the influencing
factors of the slope displacement and the corresponding
relationship between them and the slope displacement; (2)
how to realize the time series decomposition of the slope
displacement and whether the decomposition quantity has
physical significance; (3) construction of an efficient and
reliable slope displacement prediction model [24]. *e
combination of three methods can effectively improve the
accuracy of slope displacement prediction. In order to
obtain the random term of the slope displacement, the
commonly used methods include empirical mode de-
composition (EMD), ensemble empirical mode decom-
position (EEMD), and wavelet analysis. However, their
decomposition components are usually more than five, and
the physical meaning represented by each component is
difficult to understand [25]. To solve the above problems,
SVM is used to extract the displacement component of
slope random terms. SVM can achieve adaptive decom-
position according to the data scale and obtain the dis-
placement of the trend term, periodic term, and random
term by setting the modal component, which has the ad-
vantages of high decomposition accuracy, strong robust-
ness, and clear physical meaning. *erefore, SVM can be
combined with time sequence analysis to achieve effective
extraction of a random term displacement. In this process,
the optimal decomposition parameters can be further
determined by introducing an ACO algorithm. *e double
exponential smoothing (DES) method was used to predict
the trend term displacement [26]. As a special weighted

moving average method, DES is more suitable for the
prediction of time series with a certain trend. Its charac-
teristic is that the weight of the latest data is higher than
that of early data, and the factor of this weight decreases
exponentially with aging of data, taking into account the
timeliness of landslide displacement data.

*e abovementioned ant colony algorithm is used to
optimize the parameter searching in the kernel functions of
penalty functions C and K(xi, xj) in the support vector
machine [27]. First, the objective function is determined as
follows:

minf(C, c) �

�����������
1
n



n

i�1
zi − zi( ,



C ∈ Cmin, Cmax , c � cmin, cmax .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

In formula (18), zi is the measured displacement of its
sample and zi is a predictive value for samples. In formula
(8), n is the total number of training samples. Due to the
monitoring displacement, {x1, x2,. . ., xn} is a time series, and
its phase space is reconstructed to find the i+ p time dis-
placement sequence value and the sequence value (xi, xi+1
...xi+p−1) at the previous p months, namely, xi+p=g(xi,
xi+1,xi+p−1). p is the number of historical steps, and g is the
nonlinear mapping function. According to SVM theory, the
nonlinear relation of displacement time series can be de-
scribed as follows:

z xm+n(  � 

n−p

i�1
αi − α∗i(  − K xm+n, xi+p  + b. (19)

In formula (19), z(xm+n) represents the predicted dis-
placement at time m+ n; xm+n represents the measured
displacement time series value x at p moments before time
m+ n xm+n � (xm+n−p, xm+n−p+1, . . ., xm+n−1); xi+p represents
the measured displacement time series value xi+p � (xi, xi+1,
. . ., xi+p−1) at pmoments before the (i+ p) moment. It should
be noted that the predicted value is used as the training and
learning sample of the next prediction. After all, the pre-
dicted value is not measured and has a certain range of
application. In the actual engineering process, the prediction
model can be updated in real time with the acquisition of the
monitoring value [16]. In the algorithm model, ACO op-
timizes the parameters in SVM. *e main idea is to search
for the smallest set of parameters by defining a set of pa-
rameters (C, c) in the domain as the position vector of ants
so that the predicted value can be closer to the monitored
value. *e specific steps are as follows:

An ACO-SVM prediction model was built based on the
deep learning toolbox framework of MATLAB2020a soft-
ware and completed on the computer with Intel Core
I5–9400F CPU and 16G RAM.

(1) According to the monitored displacement data, the
historical step size p and the predicted step sizem are
normalized, learning samples and test samples are
established, and the dataset is normalized by min-
max.

Computational Intelligence and Neuroscience 5



(2) We set the initialization of the system, including ant
colony size N, cycle iteration times K, the value range
of the parameter C and c to be optimized, the number
of steps, and the location of the ant. Each position
value corresponds to a set of parameters (C, c).

(3) *e optimization support vector machine (SVM)
learning prediction model is established based on the
theory in Section 2 of this paper, and the corre-
sponding objective function of each ant individual is
calculated, as shown in formula (18). Global
searching and local searching are conducted, and
pheromones are updated to determine the optimal
solution.

(4) First, we determine the appropriate number of it-
erations through multiple iterations and then judge
whether the value of the objective function meets the
conditions. If the conditions are met, the optimi-
zation is finished, and the optimal parameters C and
c are output. Otherwise, we return to step (3).

(5) *e optimized parameters C and c are used to es-
tablish a support vector machine (SVM) prediction
model to carry out rolling prediction of displacement
time series and fulfil engineering prediction
requirements.

*e process of optimization ACO-SVM for prediction of
the slope displacement is shown in Figure 2.

2.5. Model Evaluation Index. *e coefficient of determina-
tion (R2) and the root mean square error (RMSE) are often
used to evaluate the performance of slope displacement
prediction models. *erefore, the performance of the pre-
diction model is analysed based on these indicators, which
are defined as follows:

R
2

� 1 −


N
t�1 yt − yt( 

2


N
t�1 yt − yt( 

2 , (20)

RMSE �

��������������

1
N



N

t�1
yt − yt( 

2
.




(21)

In formula (20) and (21), t denotes the time, N denotes
the predicted time, ytdenotes the actual observed value of
the landslide displacement, yt denotes the predicted value of
the landslide displacement in our model, and yt denotes the
average of the observed values of the displacement in the
predicted time. *e value range of RMSE is [0,∞], and the
smaller the value , the stronger the model fitting ability. *e
value of R2 is usually [0, 1], and the larger the value, the
better the surface model fitting degree. When the value of
RMSE is smaller and the value of R2 is larger, the prediction
effect of the model is better.

3. Algorithm Application

3.1. Shallow Deformation Prediction of the Left Bank Slope of
the Hydropower Station. In the paper, the improved ant
colony algorithm is used to optimize the support vector

machine (ACO-SVM) to predict the displacement of the
monitoring displacement sequence of the slope in reference
10. Monitoring data are the orifice displacement of the M4-7
multipoint displacement meter (elevation 1886m) of the left
bank cable crane platform slope at the exposed part of f42-9
fault[10].

*e learning samples are shown in Table 2 to verify the
accuracy of the ACO-SVM prediction model.

In this paper, the improved ACO algorithm is used for
feature selection and combined with the SVM data model,
and comparative simulation experiments are carried out. In
the experimental steps, the history of the selected feature set
is set to 10, the prediction step is set to 1, the maximum
number of iterations is set to 100, and the classification error
rate is taken as the adaptive value of the fitness function. *e
performance of the feature selection algorithm is evaluated
by the support vector machine (SVM) classifier (mesh op-
timizationmethod is used to calculate the optimal parameter
values) and the adaptive values obtained by cross-validation.
*e lower the adaptive value, the better the performance of
the feature selection algorithm. *e relation between the
ACO iteration number and adaptive value is shown in

Normalization processing according to the detection data

Start

Input historical and predicted steps

Output learning samples and test samples

Output the optional solution 
Output (c.r)

Initialization value of c, r, N, K

Less than or equal to the 
numbers of iterations

Update pheromone

Establish ACO-SVM prediciton model

Rolling prediction of displacement time series

End

YesNo

Figure 2: Flowchart of ACO-SVM optimization for prediction of
the slope displacement.
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Figure 3. *e optimal result is 0.025, and the earliest algebra
value of the optimal result is 39. In order to reduce the
computational overhead without significantly reducing the
optimization effect, it is appropriate to set the maximum
iteration number to 50. By calculating the evaluation indexes
R2 and RMSE of the SVM data model, the prediction result
of the periodic displacement can be obtained. With the
increase of the training set data, the prediction accuracy of
the model is also improved. For periodic datasets, ACO-
SVM can achieve the best effect for random datasets. *e
model parameters (C, c) obtained by the ACO optimization
method proposed in this paper are 20.305 and 2.514, re-
spectively. *e prediction results of the ACO-SVM model
are shown in Table 3. Compared with the prediction results
of the improved SVM (hybrid kernel least-squares support
vector machine) in literature [14], the accuracy of the ACO-
SVM prediction is better than that of the improved SVM
except for a few points. *e maximum relative error of the
ACO-SVM prediction is 2.23%, less than 3.19% of the
improved SVM, which proves the correctness of the ACO-
SVM prediction model proposed in the paper.

3.2. Prediction Grey Model for the Slope Displacement in the
Hydropower Station. *e first-level hydropower project of
HuaGuangTan is located in the middle and lower reaches of the
Juxi River, Lin’an city, Zhejiang province.*e first-level plant is
located on the right bank of Juxi, and the overall flow direction
of the nearby rivers is 120°∼130°.*e slope behind the plant was
fully developed, and the gully direction is 40°∼50°, which is
nearly orthogonal to the Juxi River. *e upper and lower
reaches of the workshop have a cutting depth of 50∼70m,
forming a long and narrow ridge facing the air and spreading in
the northeast direction. *e surface of the slope body is qua-
ternary colluvial deposit, the middle part is the broken rock
body with strong unloading action, and the lower part is fresh
Jurassic fused tuff. During the heavy rainfall from May to June
2018, subsidence and external bulge occurred in 250 raceways of
the plant area, and multiple tensile cracks were found in the
middle and upper part of the slope body during a subsequent
supplementary survey. In order to grasp the law and devel-
opment trend of slope deformation, a safety monitoring system
for slope deformation was established. In the established slope
surface observation system, a total of 14 surface displacement
observation points are arranged, and the number of displace-
ment observation points is 1# to 14# according to elevation.

In the paper, the horizontal displacement data of
measuring point 7# on the direction of the main slide are
selected to predict and analyse the slope deformation.
*rough trial calculation, the optimal historical step p is 4,
the predicted step m is 1, the ant colony size is 200, the total
number of iterations is 50, and the optimal objective
function value is f< 1× 10−6. 30 displacement timing series
monitored from themeasuring point 7#, 2019-01-20 to 2019-
08-11 (as shown in Table 4) were constructed into 26
training samples, and the next 10 displacement timing series
were predicted with a time interval. *e new prediction
value was added to the training sample, the first training
sample was deleted and the number of samples was kept
unchanged, then the next prediction was performed, and so
on.

Using ACO-SVM model research on the monitoring
data in Table 3 for training and prediction analysis, at the
same time in order to compare the accuracy of the models
respectively, the traditional SVM, GA to optimize SVM and
PSO to optimize SVM to forecast the monitoring data
analysis and comparison of model parameter optimization
(C, c) is shown in Table 5, and the corresponding prediction
results are shown in Table 6.

According to Table 5, it can be seen that most of the
prediction results of the ACO-SVM model are better than

Table 2: Training data of multipoint extensometer M4-7.

ID Measured value (mm) ID Measured value (mm) ID Measured value (mm)
1 7.65 11 10.55 21 12.21
2 8.04 12 10.70 22 12.26
3 8.28 13 10.83 23 12.18
4 8.66 14 10.83 24 12.53
5 9.04 15 11.34 25 12.56
6 9.38 16 11.20 26 12.70
7 9.93 17 11.44 27 12.72
8 10.04 18 11.35 28 12.85
9 10.15 19 11.59 29 12.88
10 10.34 20 11.71 30 13.11
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Figure 3: Performance evaluation of the ACO feature selection
algorithm.
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those of the other three prediction models in Figure 4, with
higher prediction accuracy, the maximum relative error is
2.31%, which is smaller than the maximum relative error of
the other three models. *e average relative error rate of the
ACO-SVM algorithm is 1.19%, which is obviously lower
than that of the other three algorithms in Figure 5. *e
traditional SVM model has high short-term prediction ac-
curacy but weak generalization ability and large prediction
error. *e improved ACO-SVM model overcomes the
problems of generalization ability and prediction error. *e
generalization ability of the three SVM models using the

optimization algorithm is better than that of the traditional
SVM model.

By comparing the predicted value of the ACO-SVM
model with the measured value in Figure 6, it can be seen
from the change law that the slope displacement changes
little at the later stage, the deformation trend is gentle, and
the displacement tends to converge, which proves that the
slope is relatively stable. *e measured value of the slope
displacement at the later stage also verifies that the dis-
placement tends to converge, so the predicted result meets
the actual demand of the project.

Table 4: Horizontal resultant displacement of monitoring point 7#.

Date Measured values (mm) Date Measured values (mm) Date Measured values (mm)
2019-01-20 10.06 2019-03-31 14.01 2019-06-09 16.27
2019-01-27 10.34 2019-04-07 13.83 2019-06-16 16.52
2019-02-03 10.62 2019-04-14 15.42 2019-06-23 16.28
2019-02-10 10.90 2019-04-21 15.75 2019-06-30 16.63
2019-02-17 11.73 2019-04-28 15.53 2019-07-07 17.50
2019-02-24 12.55 2019-05-05 16.01 2019-07-14 18.18
2019-03-03 13.38 2019-05-12 16.33 2019-07-21 18.24
2019-03-10 13.74 2019-05-19 16.65 2019-07-28 18.21
2019-03-17 13.78 2019-05-26 15.70 2019-08-04 17.68
2019-03-24 14.20 2019-06-02 16.27 2019-08-11 18.22

Table 5: Optimal parameters of different prediction models.

Model name C c

SVM 128.00 0.001
GA-SVM 99.30 0.005
PSO-SVM 100.00 0.010
ACO-SVM 44.68 2.990

Table 6: Comparison of prediction results among different models for monitoring point 7#.

Date Measured value (mm)
Predictive value (mm) Relative error (%)%

SVM GA-SVM PSO-SVM ACO-SVM SVM GA-SVM PSO-SVM ACO-SVM
2019-08-18 18.10 18.09 18.43 18.51 18.36 0.06 1.86 2.26 1.46
2019-08-25 18.00 18.03 18.49 18.59 18.41 0.17 2.76 3.30 2.29
2019-09-01 18.30 18.01 18.58 18.66 18.50 1.56 1.53 2.00 1.08
2019-09-08 18.45 18.03 18.72 18.82 18.61 2.30 1.42 1.96 0.85
2019-09-15 18.84 18.01 18.83 18.96 18.71 4.39 0.04 0.64 0.71
2019-09-22 18.79 18.00 18.93 19.08 18.79 4.19 0.76 1.53 0.01
2019-09-29 18.45 18.00 19.03 19.18 18.88 2.46 3.14 3.96 2.31
2019-10-06 18.89 17.99 19.12 19.29 18.96 4.76 1.24 2.09 0.36
2019-10-13 18.85 17.98 19.21 19.39 19.03 4.61 1.91 2.82 0.96
2019-10-20 18.76 17.98 19.3 19.48 19.11 4.19 2.84 3.8 1.82

Table 3: Comparison of prediction results among different models for extensometer M4-7.

ID Measured value/mm
Predicted value (mm) Relative error (%)

SVM Improved SVM ACO-SVM SVM Improved SVM ACO-SVM
31 12.83 13.27 13.02 13.01 3.40 1.45 1.41
32 13.01 13.30 13.05 13.00 2.20 0.55 0.57
33 12.76 13.27 12.99 12.91 4.03 1.79 1.17
34 12.86 13.30 13.06 12.99 3.42 1.56 1.02
35 13.14 12.50 12.72 12.74 4.91 3.19 2.23
36 13.13 12.66 12.96 12.94 3.62 1.40 1.47
37 13.01 13.28 13.01 12.92 2.09 0.73 0.72
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4. Conclusions

It is of great significance for engineering construction and
safe operation to predict the future deformation trend of the
slope based on displacement monitoring data. In view of the
influence of model parameters (C, c) of the support vector
machine (SVM) on prediction accuracy and generalization
ability, in order to avoid the blindness of artificial parameter
selection, the paper proposed the improved ant colony al-
gorithm to optimize SVM, search for optimal parameters,
and apply the model to deformation prediction of slope
engineering examples. It is found that the ACO-SVMmodel
is able to predict the slope deformation and meet the de-
mand of engineering prediction.

In the prediction of shallow deformation of the left bank
slope of a first-stage hydropower station, the accuracy of the
ACO-SVM model and the hybrid kernel least-squares SVM
model is similar, which is more accurate than the traditional
SVM model, indicating the accuracy of the ACO-SVM
model.

*e ACO-SVM model has higher prediction accuracy
and stronger generalization ability than the genetic algo-
rithm and particle swarm optimization to optimize SVM
prediction results.

*e comparison between the predicted value of the
improved ACO-SVM model and the measured value shows
that according to its variation law, the slope displacement
changes little in the late stage, the deformation trend is
gentle, and the displacement tends to converge, which
proves that the slope is relatively stable. *e measured value
of the slope displacement in the later period also verifies that
the displacement tends to converge, so the predicted results
meet the actual engineering needs.

*e ACO-SVM also has some shortcomings. For ex-
ample, the searching time of this algorithm is longer than
that of other optimization algorithms, which is a process of
balancing accuracy and time consumption in optimization
problems, which needs further research.
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