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Due to the multiscale characteristics of ship targets in ORSIs (optical remote sensing images), ship target detection in ORSIs based
on depth learning is still facing great challenges. Aiming at the low accuracy of multiscale ship target detection in ORSIs, this paper
proposes a ship target detection algorithm based on multiscale feature enhancement based on YOLO v4. Firstly, an improved
mixed convolution is introduced into the IRes (inverted residual block) to form an MIRes (mixed inverted residual block). �e
MIRes are used to replace the Res (residual block) in the deep CSP module of the backbone network to enhance the multiscale
feature extraction capability of the backbone network. Secondly, for di�erent scale feature maps’ perception �elds, feature
information, and the scale of the detected objects, the multiscale feature enhancement modules—SFEM (small scale feature
enhancement module) andMFEM (middle scale feature enhancementmodule)—are proposed to enhance the feature information
of the middle- and low-level feature maps, respectively, and then the enhanced feature maps are sent to the detection head for
detection. Finally, experiments were implemented on the LEVIR-ship dataset and the NWPUVHR-10 dataset.�e accuracy of the
proposed algorithm in ship target detection reached 79.55% and 90.70%, respectively, which is improved by 3.25% and 3.56%
compared with YOLO v4.

1. Introduction

Target detection is important in military and civilian �elds
and has a wide range of application scenarios. Traditional
target detection algorithms are mostly based on sliding
windows and arti�cial feature extraction. Although it has
achieved good results, there are still a series of de�ciencies.
Firstly, the method based on sliding window has high
running cost and time complexity. Secondly, the robustness
of manually designed features is poor [1–3]. Upon the de-
velopment of deep learning, target detection methods based
on deep learning have gradually replaced traditional
methods. Many representative natural image target detec-
tion algorithms have been proposed and widely used, such as

R-CNN [4], fast R-CNN [5], faster R-CNN [6], SSD [7], and
YOLO [8–10] series.

As an important technology of ocean monitoring, ship
target detection is signi�cant in national security and
maritime transportation safety. With the development of
aerospace technology, ORSIs data are increasing. �erefore,
more and more scholars try to apply the natural image target
detection algorithm to ship detection in ORSIs. However,
unlike natural images, ship detection in ORSIs is more
di§cult. As shown in Figure 1, the large �eld of view and the
small ship target in Figure 1(a) cause a huge di�erence in the
ratio of foreground pixels and background pixels of the ship
target, which increases the di§culty of detection. In
Figure 1(b), the texture and clarity of the shadow-a�ected
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ships are poor in the case of cloud and shadow occlusion.
'e small, medium, and large ships in Figure 1(c) have poor
contrast between the foreground and background due to the
influence of the wave background and wake [11]. 'erefore,
ship target detection in ORSIs still faces great challenges.

In ORSIs, large field of view, low resolution, and complex
background make the detection precision of large, medium,
and small ships generally low.'erefore, how to improve the
detection precision of multiscale ship targets has become a
research hotspot of scholars. Zhou et al. [12] proposed the
MSSDNet (multiscale ship detection network). Firstly,
CSPMRes2 (cross stage partial network with modified
Res2Net) is used as the basic module of the backbone
network for multiscale feature extraction. Secondly, FC-FPN
(feature pyramid network with fusion coefficients) is used
for multiscale feature adaptive fusion. 'e multiscale ship
detection accuracy of this method has reached an advanced
level. However, compared with the baseline network, the
network introduces a large number of parameters and
computation, the reasoning speed is only half of the baseline
network, and the model size is about 1.7 times of the baseline
network. Zhou et al. [13] proposed a ship object detection
method based on feature enhancement. It uses the EIRM
(elastic inception residual module) module to perform
feature enhancement on the low- and middle-level feature
maps. EIRM module extracts the feature information of
multiscale ship targets through scaling strategy and uses
SGPANet for further extraction and fusion of multiscale
features. 'is method only adds a small amount of pa-
rameters relative to the baseline network. Wang et al. [14]
proposed the FSoD-Net (full-scale object detection net-
work). Firstly, a wider backbone network is proposed for
feature extraction. For different scale feature maps, it adopts
different feature extraction modules and regression layers.
'is method has achieved advanced performance in full-
scale target detection in ORSIs.

According to the above analysis, aiming at the problem
that it is difficult to detect multiscale ship targets in ORSIs,
this paper proposes a ship target detection method based on
multiscale feature enhancement based on YOLO v4 [15].
Experiments on the LEVIR-ship and NWPU VHR-10

datasets show that the proposed method achieves better
results than YOLO v4. 'e main contributions of this paper
are summarized as follows:

(1) 'e MIRes are proposed and applied to the deep
layers of the backbone network. Firstly, to enhance
the feature extraction ability of the backbone net-
work, the Res in the deep CSP module of the
backbone network is replaced by the IRes. Secondly,
to extract the multiscale feature information of the
ship target, the mixed convolution is improved and
the depthwise separable convolution of the IRes is
replaced by the modified mixed convolution.

(2) Two multiscale feature enhancement modules,
SFEM and MFEM, are proposed for different size
feature maps to enhance the features of low- and
middle-level feature maps, respectively. SFEM and
MFEM act on feature maps of 52× 52 and 26× 26
scales, respectively, and use atrous convolutions with
different dilation rates to enhance the receptive field
of feature maps while extracting information.

(3) Experiments on the LEVIR-ship dataset show that
the proposed method achieves higher accuracy in the
detection of multiscale ships in ORSIs. Simultaneous
ablation experiments demonstrate the benefit of all
partial improvements in this paper. 'e extended
experiments on the NWPU VHR-10 dataset show
that the method in this paper can achieve good
results on different datasets and different categories.

'is paper is organized as follows: Section 2 reviews
some related work. Section 3 introduces the proposed
method in detail. Section 4 is the experimental part, in-
cluding comparative experiments and ablation experiments.
Section 5 gives the conclusion.

2. Related Work

2.1. One-Stage Detection Algorithm Backbone Network.
With the development of convolutional neural network
classification techniques, scholars have proposed deeper

(a) (b) (c)

Figure 1: Display of ship target images in ORSIs. (a) Small-scale ship target. (b) Ship target obscured by clouds. (c) Ship targets against
complex backgrounds.
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networks for classification tasks, such as ResNet50 [16],
Darknet53 [10], and ResNet-101 [16]. 'ese deep networks
have powerful feature extraction capabilities, so they are
widely used in the backbone network of target detection.
Although the deep convolutional neural network has strong
robustness, a large number of convolutions will cause the
loss of small target pixels and the destruction of texture
structure, so its applicability for small target detection is
poor.

Qi et al. [17] used the YOLO v3 framework with auxiliary
networks for object detection.'e auxiliary network is lighter
than the backbone network and has fewer convolutions, so it
can retain more location information. 'e backbone network
and auxiliary network extract features at the same time, and
the location information extracted from the auxiliary network
is transmitted to the backbone network. 'e combination of
the deep semantic information extracted by the backbone
network and the location information extracted by the
auxiliary network greatly improves the detection accuracy of
the network. Qing et al. [18] used the improved RepVgg as the
backbone network for feature extraction. 'e backbone
network uses multibranch structure for feature extraction
during training, and each convolution is followed by a re-
sidual connection to accelerate the convergence of the net-
work. At the same time, considering multiple branches will
increase inference time, so only single-branch structure is
used when inference. 'en, the neck network uses the im-
proved FPN [19] for feature fusion and finally uses four scales
for detection, which achieves good detection results. Xu et al.
[20] used a densely connected network (DenseNet) to en-
hance the feature extraction ability of YOLO v3 backbone
network for poor detection accuracy in ORSIs object detec-
tion.'en, some of the residual blocks in the third and fourth
residual units of the Darknet53 backbone network are
replaced by dense connection blocks. Finally, four detection
heads are used for detection, and the detection accuracy is
significantly improved.

Sandler et al. [21] explored the impact of bottleneck
structure on accuracy and parameters, proposed IRes
(inverted residual block), and built a lightweight MobileNet
V2 network based on the IRes. 'e structure of the IRes
makes the feature extraction part have a wider channel and
can extract richer feature information. Meanwhile, the in-
troduction of depthwise separable convolution makes the
module lightweight. Although depthwise separable convo-
lutions tend to cause the problem of accuracy degradation,
the wider structure makes up for this shortcoming. Tan et al.
[22] discussed the effect of different convolution kernel sizes
on network performance, proposed mixed convolution, and
built MixNet using mixed convolution for natural image
target detection. Different from traditional convolution,
mixed convolution divides the input channels into different
groups, then each group corresponds to a depthwise sepa-
rable convolution with different kernel sizes, and finally
fuses the outputs of each convolution. Mixed convolution
introduces different convolution operations in a single
convolution, so it can extract feature information of different
scales from a single feature map while reducing part of the
amount of computation and parameters.

2.2. FeatureEnhancementModule. To solve the problem that
multiscale targets are difficult to detect ORSIs, researchers
have applied feature pyramids such as FPN [19] and PANet
[23] for multiscale detection. Zhang et al. [24] found that
there was a problem with the simple fusion of feature
pyramids, so they proposed a multilevel feature pyramid.
Firstly, they used CAFUS (content-aware feature upsam-
pling) instead of upsampling to solve the fusion problem of
feature maps of different scales. 'en, FEM (feature en-
hancementmodule) is proposed to enhance the fused feature
map. Wang et al. [25] proposed SE-SSD (spatial enhanced
single shot multi box detector). Firstly, the spatial infor-
mation is enhanced by increasing the number of image
channels. Secondly, the output of the backbone network is
modified, and a pooling operation is removed. Finally, a
context feature enhancement module is designed to act on
the middle and low layer feature maps to enhance the re-
ceptive field of the middle and low layer feature maps. Wang
et al. [26] proposed an improved YOLO v3 algorithm for
multiscale object detection. Dense connection blocks are
used instead of residual units in Darknet53 to enhance the
feature extraction capability of the backbone network. 'e
feature enhancement module is proposed to act on the
middle- and low-level feature maps to enhance the location
information contained in the shallow feature maps. Finally,
the FPN is improved.'is method significantly improves the
detection accuracy of small targets in ORSIs.

Liu et al. [27] proposed a lightweight RFB inspired by the
human receptive field. RFB mainly includes two parts:
multibranch structure and atrous convolution [28]. Each
branch structure contains convolution kernels of different
sizes and atrous convolutions with different expansion rates.
'e original RFB structure mainly consists of three
branches, each of which contains a convolution kernel of
1× 1, 3× 3, and 5× 5, corresponding to dilated convolutions
with expansion rates of 1, 3, and 5, respectively. 'e con-
volution kernels of different sizes can better simulate the
receptive field and extract feature information, which is
significantly better than the convolution kernel of fixed size.
Atrous convolution can capture feature information in
larger regions without increasing parameters.

Although the above methods have achieved good de-
tection accuracy, Chen et al. [29] pointed out that the key to
the feature fusion pyramid is to divide and conquer, so it
only uses a single-layer feature map for detection. However,
single-layer feature maps have poor detection accuracy for
small objects. 'erefore, this paper retains PANet for
multiscale feature map fusion and then uses different
modules for feature enhancement of different scale feature
maps to improve the accuracy of multiscale ship detection.

3. Methodology

In this section, the algorithm proposed in this paper is
introduced in detail through four sections: Section 3.1;
overall network structure; Section 3.2;backbone with MIRes;
Section 3.3;PANet with multiscale feature enhancement; and
Section 3.4;LOSS function.

Computational Intelligence and Neuroscience 3



3.1.OverallNetwork Structure. 'e overall network structure
of the algorithm in this paper is shown in Figure 2. 'e
network mainly consists of four parts: the CSP Darknet53
backbone network is used for feature extraction, the PANet
neck network is used for feature fusion, MSFE is used for
multiscale feature enhancement, and the YOLO Head is used
for detection. 'e backbone network contains five CSP
modules (C1–C5). C1–C4 contain different numbers of re-
sidual blocks (1,2,8,8), and C5 contains four MIRes. Among
them, the 13×13 and 26× 26 feature maps extracted by the
third and fourth CSPmodules are directly used as the input of
PANet. 'e feature map of size 52× 52 extracted by the fifth
CSP module first passes through the SPP module and then is
input into PANet for feature fusion. PANet fuses featuremaps
of different scales through upsampling and downsampling.

After the feature maps are fused by PANet, the 13×13 and
26× 26 scale feature maps are sent to the detection head
together with the 52× 52 scale feature maps through the
multiscale feature enhancement modules—SFEM and
MFEM—for detection. Algorithm 1 describes the basis idea of
multiscale feature enhanced ship target detection.

Figure 3 is the structure of the SPP module. In the SPP
module, the input feature map first goes through three
different sizes of max pooling layers (5, 9, 13), and then the
output of each pooling layer is fused with the input feature
map.'e SPPmodule was proposed for input image resizing
[30]. In this paper, it is mainly used to increase the reception
range of backbone features and separate context features.

Figure 4 shows the CSP module structure. In the CSP
structure, the input feature map is sent to two branches of

Input Backbone

CSP Res × 1

CSP Res × 2

CSP Res × 3

CSP Res × 8

CSP Res × 4

C1

C2

C3

C4

C5

Upsampling Output

Downsampling

MFE Multi-scale feature enhancement

PANet

P3 N3

N4P4

P5 N5SPP

MFE
YOLO Head

SFEM

MFEM

13×13

26×26

52×52

Figure 2: Overall network structure diagram.

Input: T � T1 · · · Tn ,T is the da taset images
Begin: T1 · · · Tn � 416 × 416 , resize input image to 416 × 416.

C � C1 · · · CX , 1≤x≤ 5.C is the output characteristic diagram of each stage of the backbone network.
forCX in C do:
ifx≤ 2
continue.

end
else if:2<x≤ 4
PANet←Cx. Send the middle and low-level feature map extracted from the backbone network into PANet for feature fusion.

end
else:

Cx � SPP(Cx), PANet←Cx. After the C5 feature map passes through the SPP module, it is sent to PANet for feature fusion.
end

Ps � SFEM(Ps),Pm � MFEM(Pm). Feature enhancement of middle and low-level feature maps Ps and Pm after PANet fusion.
end
Output: detect(Ps, Pm, Pl).'e enhanced middle and low-level feature map Ps and Pm and high-level feature map Pl are input into
the detection head for detection, and finally the detection results are output.

ALGORITHM 1: Multiscale feature enhanced ship target detection.
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different depths, and the branch containing Res×N is re-
sponsible for feature extraction, and then directly fused with
another branch. 'e CSP module can improve the accuracy
of the model while reducing weight.

3.2. Backbone with MIRes. 'e amount of feature infor-
mation is closely related to the accuracy of object detection,
and the C5 feature map of the CSP Darknet53 backbone
network contains generous contextual feature information
[31]. 'erefore, this paper considers to enrich the feature
information of C5 by improving the feature extraction ca-
pability of the fifth CSP module to improve the accuracy of
multiscale ship target detection. At present, many re-
searchers improve the feature extraction ability of the net-
work by increasing the depth, but the increase of the depth is
always accompanied by a surge in the amount of compu-
tation. 'erefore, in order not to increase the redundant
computation, this paper considers increasing the width of
the network instead of the depth.

'e wider network structure of the IRes enables it to
have strong feature extraction capabilities, and the presence
of depthwise separable convolutions makes it lightweight
enough. However, for multiscale ship detection, it still lacks
the ability to extract multiscale features. 'erefore, this
paper proposes MIRes, which introduces an improved
mixed convolution into the IRes. 'e MIRes are used to
replace the Res in the fifth CSP module, which greatly
improves the multiscale feature extraction capability of the
backbone network with a small increase in the amounts of
parameters and computation.

'eMIRes structure is shown in Figure 5, where MC is a
mixed convolution and c is the channels number. MIRes
adopts the IRes structure, and the number of network
channels is expanded by 6 times compared with Res.
Channel extended mixed convolution is used for multiscale
feature extraction. Table 1 shows the network architecture
and parameters of Res and MIRes.

For the same input, we can use a simple formula to show
the difference in the output feature maps of mixed convo-
lution and depthwise separable convolution. In this case, the
input feature map size h (height) and w (width) are
equivalent and the output feature map size is the same.
Assuming that a depthwise separable convolution
isW(k,k,c,m), Y(h,w,c∙m) is the output tensor. 'en, each output

feature map can be represented by the following formula (1).
Different from the depthwise separable convolution, if the
mixed convolution input channels are divided into g groups,
the number of input and output channels is equal. Similarly,
the convolution kernels are also divided into g groups.'en,
the output for the t-th group can be expressed in formula (2).
'e total output of the mixed convolution can be repre-
sented in formula (3).1
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In formula (1), k × k is the size of the convolution kernel,
c is the input channel, and m is the channel multiplier. In
formula (2) 〈X(h,w,c1)

, · · · X(h,w,cg)
〉 is the mixed convolution

channel of group g, and 〈 W(k1,k1 ,c1,m)
, · · · W(kg ,kg ,cg ,m)

〉 is the
depthwise separable convolution channel of group g. In
formula (3), z0 � z1, + · · · + zg � m∙c。

ORSIs have a large field of view, and most ship targets
have small foreground pixels. Large kernel convolution can
easily cause the loss of target pixels and bring a lot of
computation. 'erefore, we have improved the kernel size
of the mixed convolution and changed the way the number
of channels is divided. Figure 6 shows the proposed mixed
convolution structure. Firstly, we removed the 9× 9 con-
volution to avoid the problem of information loss during
the convolution process. Secondly, a 1× 1 convolution is
added, which further reduces the amount of computation
and parameters on the basis of retaining more detailed
feature information. Finally, we abandon the equal dis-
tribution and choose the exponential distribution for
channel partitioning of convolutions with different kernel
sizes. 'e latter retains more low-latitude feature infor-
mation while realizing multiscale feature extraction.
Compared with the method of using equal division between
channels in natural images, the performance of exponential
division in ORSIs is higher. 'e exponential channel di-
vision method is shown as follows:

Cx �
2− x

, 0<x< i − 1,

2− x+1
, x � i,

 (4)

where i is the number of convolution kernels and Cx is the
number of channels of the x-th convolution. According to
the parameters in Table 1 and formula (3), the output feature
map of the proposed mixed convolution can be expressed by
the following formula:

SPP

Input

MaxpoolMaxpoolMaxpool

Concat

Figure 3: SPP module structure diagram.
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Y13,13,3072 � Concat Y
1
1,1,1536,

Y
2
3,3,768,

Y
3
5,5,384,

Y
4
7,7,384 . (5)

MIRes has a wider network structure and introduces
mixed convolution, so the multiscale feature extraction
capability of the network is greatly improved At the
expense of a small amounts of parameters (Parameter
9M) and computation (BFLOPS 0.759 G), MIRes greatly
enhance the multiscale feature extraction capability of
the backbone network, and the detection accuracy
of multiscale ship targets is significantly improved
(2.45%).

3.3. PANet with Multiscale Feature Enhancement. PANet is
the mainstream solution for multiscale target detection. It is
based on a rule: shallow feature maps (C3) contain higher
resolution and more location information, and deep feature
maps (C5) have larger receptive field and more semantic
information [32]. 'e shallow receptive field is smaller, and
its location information is more beneficial to target locali-
zation. 'e deep receptive field is larger, which contains
more semantic information, which is beneficial to the
classification of objects. Take Figure 7 as an example. 'e
shallow network (C3) contains more local information, that
is, fine-grained information, and the receptive field at this

CSP CBM CBM

CBM

CBMConcat

Res×N

Figure 4: CSP module structure diagram.

c

c

c

1 × 1Cov

3 × 3Cov

(a)

c

c

6c

6c

MC

1 × 1Cov

1 × 1Cov

(b)

Figure 5: Comparison of (a) Res and (b) MIRes.

Table 1: Res and MIRes network architecture and parameters.

Res MIRes
Input 13×13× 512 13×13× 512

Operation 1 × 1Conv × 512
3 × 3Conv × 512 

1 × 1Conv × 3072
1 × 1Dwise × 1536
3 × 3Dwise × 768
5 × 5Dwise × 384
7 × 7Dwise × 384

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 × 1Conv × 512

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Output 13×13× 512 13×13× 512
13×13× 512 represents the width, height, and number of channels of the feature map.
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time is relatively small. 'erefore, the local information of
the feature map obtained by the shallow network is relatively
rich, the resolution of the feature map at this level is rela-
tively high, and the receptive field of a single pixel is rela-
tively small, which can capture more location information.
As the number of downsampling or convolution increases,
the deep feature (C5) gradually increases the receptive field
and the overlapping area between the receptive fields. 'e
information represented by the pixels at this time is the
information of a region, and the feature information ob-
tained is the feature information between this region or
adjacent regions, which is relatively not fine-grained and low
in resolution, but rich in semantic information [33, 34]. 'e
feature information extracted by MIRes first passes through
the SPP module and then is input into PANet for fusion. In
PANet, the deep feature map is fused with the upper layer
feature map in a ratio of 1 to 1 after upsampling, so that the
deep semantic information is transferred to the shallow
feature map. 'e feature map of the shallow layer is fused
with the feature map of the next layer in a ratio of 1 after
downsampling, so that the position information of the
shallow layer is transmitted to the deep layer. 'is fusion
mode can improve the accuracy of multiscale target de-
tection, but for small- and medium-sized ship targets, this
simple fusion strategy may not be able to adapt to the

multiscale characteristics of ship targets in remote sensing
images. 'erefore, this paper further improves the accuracy
of multiscale ship target detection by enhancing the feature
information of the middle- and low-level feature maps.

'e receptive field mechanism of RFB can significantly
enhance the receptive field and feature information of
feature maps. However, there are still problems when RFB is
directly applied to ship target detection in ORSIs. 'e large
convolution cores and large expansion rates in RFBs may
cause target miss and misdetection for small- and medium-
sized ships. 'erefore, for the appeal problems, this paper
proposes multiscale feature enhancement modules: SFEM
and MFEM. For low-level feature maps, SFEM introduces a
multibranch structure and uses ordinary convolution and
atrous convolution with an expansion rate of 1 for feature
extraction. For the midlevel feature maps, feature en-
hancement is performed using MFEM containing atrous
convolutions with large expansion rates. Considering the
parameters of the network at the same time, different from
other deep feature enhancement modules, we abandon the
deeper network structure and use a wider network for
multiscale feature extraction. Finally, considering that the
input and output of the SFEM and MFEM modules do not
involve channel transformation, the 1× 1 convolution used
to adjust the dimension.

For the low-level feature map, it is mainly responsible for
the detection of small-scale ship targets. For small targets,
too large receptive field will introduce a large amount of
background, resulting in the decline of detection accuracy.
'erefore, in this paper, the atrous convolution with a large
expansion rate is replaced by an ordinary 3× 3 convolution,
and only ordinary convolution and atrous convolution with
an expansion rate of 1 are used to extract features. At the
same time, the 5× 5 large kernel convolution branch is
removed and a 3× 3 convolution branch is added. Figure 8
shows the structure of SFEM. R represents the dilation rate
of the atrous convolution, and shortcut represents the re-
sidual connection.'e input feature map goes through four-
branch structure for feature extraction. Each branch con-
tains the same input, and the feature information extracted
by each branch is fused and added to the input feature map.
Compared with the RFB module, SFEM can enhance the
shallow position information while reducing the introduc-
tion of noise, effectively improving the accuracy of ship
detection.

For the midlevel feature map, it needs appropriate re-
ceptive field for the detection of medium-scale ship targets.
'erefore, we use a combination of standard convolution
and atrous convolution to extract features. Its structure is
similar to SFEM. On the basis of retaining the multi-
branch structure, atrous convolution is used to enhance
the receptive field and capture a wider range of feature
information. Figure 9 shows the structure of MFEM. R is
the dilation rate of atrous convolution, and shortcut is the
residual connection. MFEM retains the network structure
of SFEM and the atrous convolution with large expansion
rate in RFB, which can enhance the receptive field of the
effective area while maintaining the size of the feature
map.

ship

Is that a ship?

Detailed textures

C5

C4

C3

Figure 7: Example diagram of semantic information. 'e shallow
feature maps are usually some corners and so on. 'e middle layer
is part of the object. 'e deep layer is usually a whole object with
rich semantic information.

Input Tensor

Output Tensor

7×7 5×5 3×3 1×1

Figure 6: 'e proposed mixed convolutional structure diagram.
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SFEM andMFEM can enhance the feature description of
multiscale ship targets and improve the accuracy of ship
detection. At the same time, it can achieve better results than
some more advanced enhancement modules such as RFB
and EIRM [13]. In Section 4, a series of comparative ex-
periments are implemented to verify the effectiveness of the
module.

3.4. Loss Function. 'e feature map after feature enhance-
ment is predicted at the detection head.'e three prediction
scales of the algorithm in this paper are
13 × 13, 26 × 26, an d 52 × 52. During prediction, the feature
map is divided into S × S grids, and each grid will contain
multiple prediction boxes. 'e final result is obtained by
calculating the joint intersection of IOU [35] and then fil-
tering with nonmaximum suppression (NMS). In this paper,
the CIOU [36] loss function is used to calculate the
bounding box regression loss, and the loss functions such as
GIOU [37], DIOU, and IOU are compared.

'e IOU loss function is usually used to calculate the
bounding box regression loss, the intersection-over-union
(IOU). Assuming that the predicted box is defined asBpre and
the ground-truth box is defined asBgt, the IoU loss function
(7) is as follows:

IOU �
Bpre ∩Bgt





Bpre ∪Bgt




, (6)

LIOU � 1 −
Bpre ∩Bgt





Bpre ∪Bgt




. (7)

However, as shown in Figure 10, there are still problems
with the IOU loss function. Firstly, when Bpre and Bgtdo not
intersect, IOU�0. Secondly, when the twoBpre are not the
same, the two IOUs are equal.

To solve the problem of IOU�0 when the predicted
frame and the real frame do not intersect, GIOU introduces
the minimum bounding box based on the predicted frame
and the real frame. Assuming that the predicted frame is
Bpre, the real frame isBgt, and Ac is the minimum bounding
box, GIOU can be expressed by

GIOU � IOU −
Ac − Bpre ∩Bgt





Ac




. (8)

However, when the predicted box and the ground-truth
box input contain relationship, GIOU will degenerate into
IOU, which still has the problem of equal IOU. DIOU is
based on IOU and GIOU, taking into account the distance
between the ground-truth box and the predicted box, and
can guide the direction movement of the prediction box
when the two do not intersect. 'e DIOU loss function
formula is as follows:

DIOU � IOU −
ρ2 b, bgt 

c
2 . (9)

In formula (9), b and bgt are the center points of the
prediction madness and the real box, respective-
ly,ρrepresents the Euclidean distance between the two
center points, and c is the diagonal length of the minimum
bounding box between the real box and the prediction box.
'e DIOU parameters are shown in Figure 11. According
to Figure 9, it can be seen that when the target box
completely includes the prediction box, GIOU will com-
pletely degenerate into IOU. 'erefore, GIOU cannot
converge well in advanced algorithms, thus affecting the
detection accuracy. And, DIOU adds a penalty

Input

Output

3×3 3×3 3×33×3, R = 1

3×3, R = 3 3×3, R = 5 shortcut

Figure 9: MFEM structure diagram.

Bgt

Bpre

Bpre Bpre

Bgt Bgt

LIOU = 0.75
LGIOU = 0.75
LDIOU = 0.81

LIOU = 0.75
LGIOU = 0.75
LDIOU = 0.77

LIOU = 0.75
LGIOU = 0.75
LDIOU = 0.75

Figure 10: Loss function limits. Green is the predicted box. Blue is
the true box.
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Figure 8: SFEM structure diagram.
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termρ2(b, bgt)/c2on the basis of GIOU. It can minimize the
normalized distance between the center points of the two
bounding boxes, while the diagonal is unchanged, so that it
converges faster than GIOU.

'ree important factors for bounding box regression loss
are overlap area, center point distance, and aspect ratio.
DIOU ignores the key factor of aspect ratio. CIOU considers
the aspect ratio of the predicted box and the ground-truth
box, which can be well adapted to the aspect ratio charac-
teristics of the ship target. 'e CIOU formula is as follows:

CIOU �
ρ2 b, bgt 

c
2 + αυ,

α �
υ

(1 − IOU) + υ
,

υ �
4
π2

tan− 1w
gt

hgt
− tan− 1w

h
 

2

.

(10)

In the above formulas,αis a positive parameter. υmeans
consistency of aspect ratio.wgt and hgt are the width and
height of the real box, and w and h are the width and height
of the predicted box.

4. Experiments and Results

To verify the proposed method, a series of experimental
comparisons are implemented in this section. In Sections
4.1, 4.2, and 4.3, the dataset, experimental details, and
evaluation indicators are introduced. In Section 4.4, a
comparative experiment is implemented to compare with
other algorithms and the baseline network. Section 4.5 is the
ablation experiment. Section 4.6 is an extended experiment.

4.1. Dataset. 'e LEVIR dataset contains a large number of
background images (that is, images that do not contain
objects), so we segment the LEVIR dataset to form the
LEVIR-ship dataset. 'e LEVIR-ship dataset only retains
images containing ship targets for ablation experiments and
comparative experiments to verify the superiority of the
proposed algorithm in multiscale ship target detection. 'e
NWPU VHR-10 dataset has various categories, the target

scale changes greatly, and the target distribution is relatively
concentrated, which is very challenging. 'erefore, we
conduct extended experiments on the NWPU VHR-10
dataset to verify the applicability and scalability of the
proposed algorithm for different datasets and different
targets. We will give a detailed introduction to the LEVIR-
ship and NWPU VHR-10 datasets, respectively.

'e LEVIR [38] dataset contains a total of 21,952
images with a resolution of 600× 800 pixels. 'ere are three
categories: aircrafts, ships, and storage tanks. We separate
out the ship categories and remove images that do not
contain objects to form the LEVIR-ship dataset. LEVIR-
ship has a total of 1494 images and 3025 ship targets, and
each image contains at least one ship target. According to
the original partitioning method, the training set contains
876 images of 1790 ship targets, and the test set contains
618 images of 1235 ship targets. 'e target location dis-
tribution and scale distribution in the LEVIR-ship dataset
are shown in Figure 12. In Figure 12(a), the horizontal axis
and the vertical axis are the positions of the target in the
width and height of the image, respectively, the horizontal
axis in Figure 12(b) is the target pixel, and the vertical axis
is the number of targets. It is obvious that the target lo-
cation distribution and scale distribution in the lever ship
data set are relatively uniform.

'e NWPU VHR-10 [39] dataset contains a total of 800
high-resolution images and ten classes of objects. In this
paper, 150 background images without targets are deleted,
and 650 images with targets are reserved for training and
testing. 'e training set and test set are randomly divided in
a ratio of 5 to 5. Figure 13 shows the target location dis-
tribution and scale distribution in the NWPU VHR-10
dataset. In Figure 13(a), the horizontal axis and the vertical
axis are the positions of the target in the width and height of
the images, respectively, the horizontal axis in Figure 13(b) is
the target pixel, and the vertical axis is the number of targets.
Most of the objects in the NWPU VHR-10 dataset are
gathered in the central area of the images, and there are few
small-scale objects, mostly medium-scale targets.

4.2. Implementation Details. Before training, the images are
resized to 416× 416 size and then sent to the network for
training. 'e training has a total of 4000 iterations. 'e
training batch size is set to 64, and the initial learning rate is
0.0001. When iterating to 3200 and 3600 times, the learning
rate is reduced by one tenth, respectively. 'e training of the
network was performed on an RTX3060 GPU, and the
training was accelerated using CUDA 11.3 and cuDNN 8.05.

'e algorithm in this paper performs location and
category regression based on predefined anchor boxes on
S× S grids of each image. 'erefore, the generation of an-
chor boxes has a great impact on the performance of the
network. 'e K-means++ algorithm can generate better
anchor boxes to accelerate the convergence of the network.
In order to speed up the convergence of the network, this
paper uses the K-means++ clustering algorithm to obtain the
size of the prior box. 'e clustering process of the
K-means++ algorithm is shown in Algorithm 2. 'e size of

ρ

C

Figure 11: Schematic diagram of DIOU. c is the diagonal of the
minimum bounding box of the real box and the predicted box, and
ρ is the distance between the center points of the two.
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the prior box is shown in Table 2. Each prediction scale sets
three prior frames, which are, respectively, suitable for the
detection of large, medium, and small objects.

4.3.EvaluationCriteria. In this paper, the general evaluation
methods map and FPs are used to evaluate the algorithm.
'emAP is a general evaluation criterion in object detection,
which is determined by P (precision) and R (recall). 'e
formulas for calculating P and R are as follows:

P �
TP

TP + FP
, (11)

R �
TP

TP + FN
. (12)

In formula (13) and formula (14), TP represents positive
samples, that is, the number of ships detected; FP represents
the negative sample, that is, the number of ships incorrectly
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Figure 12: Distribution of object locations and scales in the LEVIR-ship dataset. (a) Target location distribution. (b) Target scale
distribution.
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Figure 13: Distribution of object locations and scales in the NWPU VHR-10 dataset. (a) Target location distribution. (b) Target scale
distribution.

Table 2: 'e priori box size for the LEVIR-ship dataset and NWPU VHR-10 dataset.

Feature map Receptive field Detection object
Anchor box

LEVIR-ship NWPU VHR-10
13×13 Large Large (77, 102), (104,138), (152,202) (36, 27), (57,65), (130,121)
26× 26 Medium Medium (31, 41), (45,60), (61, 81) (22, 13), (16,21), (18, 39)
52× 52 Small Small (8, 11), (13, 17), (21, 28) (6, 8), (15, 8), (10, 16)
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detected; FN stands for false samples, that is, the number of
ships missed [40]. According to P and R, the calculation of
mAP can be expressed as follows:

mAP �


Ncls

i�1  Pi Ri( dRi

Ncls

. (13)

In the above formula, Ncls represents the number of
categories in the dataset.Pi represents the precision of the
i-th class, and Ri represents the recall of the i-th class. In this
paper, FPS is used to evaluate the inference speed of the
algorithm. 'e FPS formula is

FPS � frameNumelapsedTime. (14)

In the above formula, frameNum is the number of
images, and elapsedTime is the inference time. 'e higher
FPS indicates that the model inferences faster.

4.4. Comparative Experiments. In this section, the com-
parison experiment is divided into two parts. In Section
4.4.1, the proposed algorithm is compared with other
methods and baseline network, and the advantages of this
algorithm are analyzed. In Section 4.4.2, the feasibility of this
improvement is compared. 'e improvement feasibility
comparison mainly includes the feasibility of mixed con-
volution improvement, the comparison of Res, and the
comparison of feature enhancement modules (SFEM and
MFEM) with RFB and EIRM.

4.4.1. Comparison with OtherMethods and Baseline Network.
According to the experimental parameter settings in Section
4.2, a comparative experiment was conducted on the lever
ship data set, and the results are shown in Table 3. First,

compared with the baseline network, the improvement of
the algorithm in this paper has achieved better results.
Although the detection speed (FPS) decreased slightly, the
accuracy of multiscale ship detection was improved by
3.25%. Secondly, compared with other two-stage algorithms,
the mAP and FPS of this algorithm have reached the highest
level. In general, the accuracy of the proposed algorithm has
been greatly improved compared with the baseline network,
and the speed still has great advantages compared with the
two-stage algorithm, meeting the requirements of real-time
detection (FPS ≥ 30).

Figure 14 is a comparison chart of the loss function curve
between YOLO v4 and the algorithm in this paper. 'e blue
is the loss value curve, and the red is the mAP curve.'e loss
curve represents the difference between the predicted and
actual results. According to the loss curve and mAP curve, it
is obvious that the proposed algorithm converges faster than
YOLO v4, and the loss value is lower and the accuracy is
higher. 'e model in this paper is significantly better than
the YOLO v4 network in terms of detection accuracy.

Figure 15 is a comparison chart of the detection results
between the algorithm in this paper and the YOLO v4
algorithm. In order to make the detection results more
representative, we selected a total of six groups of images
for comparison. Among them, Figures 15 (a)–15 (g) is the
original image, Figures 15 (h)–15 (n) is the detection result
of YOLO v4, and Figures 15 (o)–15 (u) is the detection
result of the proposed algorithm. In Figure 14, the images
Figures 15 (a)–15 (c) contain small, medium, and large-
scale ship targets; in Figure , the ship targets have long
wakes and complex wave backgrounds; in Figure 15 (f ), the
ship targets are occluded by shadows; in Figure 15 (g), the
ship target is affected by strong light and the contrast
between light and dark is strong. According to the

Table 3: the LEVIR-ship dataset with the experimental results.

Method mAP (%) FPS (s)
LARGE-RAM [38] 60.80 0.2
Faster RCNN [41] 79.0 6.4
EIRM-SGPANet [13] 77.82 51.7
YOLO v4 76.30 61.8
Ours 79.55 56.2

Input: P � P1 · · · Pn , P is the set of center points.
Step 1: randomly select a sample from the dataset as the initial cluster center C1.
Step 2: first calculate the shortest distance D(x), between each sample and the current existing cluster center, then calculate the
probability of each sample being selected as the next cluster centerD(x)2/ 

x∈X
D(x)2Finally, select the next cluster center according to

the roulette method.
Step 3: repeat Setp2 until K cluster centers are selected.
Step 4: for each sample Xi in the dataset, calculate its distance to K cluster centers and classify it into the class corresponding to the
cluster center with the smallest distance.
Step 5: recalculate its cluster center Ci � 1/|Ci|x∈Ci

X for each category Ci.
Step 6: repeat Step 4 and Step 5 until the position of the cluster center no longer changes.
Output: K cluster centers P� P1 · · · Pk .

ALGORITHM 2: K-means++ algorithm
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characteristics of the above images and the detection results
of Figures 15 (h)–15 (n), it can be seen that the feature
extraction ability and the receptive field of the feature map
of YOLO v4 algorithm are obviously insufficient, which is
easy to cause missed detection and false detection of
multiscale ships. According to Figures 15 (o)–15 (u), it is
obvious that the proposed algorithm has high detection
accuracy in multiscale ship detection and can detect large,
medium and small-scale ship targets well. At the same time,
under the influence of wake, wave background, light, and

shadow, the algorithm in this paper can well suppress the
interference of background factors and accurately detect
ship targets of various scales.

4.4.2. Comparison of the Baseline Network and the Proposed
Method. In order to verify the influence of the size of the
convolution kernel and the channel allocation method on
the detection accuracy, in this paper, different convolution
kernels and assignment methods are used to perform
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Figure 14: Loss curve comparison chart. (a) YOLO v4 loss curve. (b) 'e loss curve of the algorithm in this paper.
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ablation experiments. 'e experimental results are shown in
Table 4. 1357exp means that the convolution kernels are 1, 3,
5, and 7, and the channels are divided in the exponential
form. 1357 means that the convolution kernels are 1, 3, 5,
and 7, and the channels are divided equally. At the same

time, we added two evaluation indicators—Parameter and
BFLOPS. Parameter represents the size of the model, that is,
the amount of parameters, and BFLOPS represents the
amount of model calculation. According to the results, it can
be seen that removing the large kernel convolution and
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Figure 15: Comparison of test results. 'e yellow arrow points to the targets of missed detection and false detection.

Table 4: Comparison of convolution kernel size and distribution method of mixed convolution.

Method mAP (%) Parameter (M) BFLOPS (G) FPS (s)
MIRes-3579 77.78 254 60.442 56.2
MIRes-1357 77.8 253 60.359 61.8
MIRes-3579exp 76.9 253 60.384 61.8
MIRes-1357exp (ours) 78.75 253 60.322 61.8
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replacing it with a 1× 1 convolution can bring a little im-
provement in accuracy, while the amounts of parameters
and calculation are also slightly reduced. In the comparison
between the exponential division and the equal division, the
exponential division achieves higher accuracy.'erefore, for
the multiscale ship detection of ORSIs, due to the complexity
of ORSIs and the multiscale characteristics of ship targets,
compared with large kernel convolution, 1× 1 convolution
may be more efficient. 'e comparison results verify that the
improvement of the mixed convolution in this paper enables
it to achieve excellent results in multiscale ship detection in
ORSIs.

To verify the superiority of the proposed MIRes, the
influence of various residual blocks on the detection accu-
racy is compared in this paper. Table 5 shows the com-
parison results of various residual blocks. It is obvious that
although IRes has better feature extraction ability, its ac-
curacy has been improved compared to Res. However, the
MIRes proposed in this paper achieves better results, and the
increase in the amounts of parameters and computation is
almost negligible. Compared with Res and IRes, the intro-
duction of mixed convolution enables MIRes to have
stronger multiscale feature extraction capabilities, so it can
achieve better detection accuracy in multiscale ship target
detection in ORSIs.

Table 6 shows the comparison results of the multiscale
feature enhancement module and other feature en-
hancement modules. For fairness, RFB, EIRM [13], and
the multiscale feature enhancement module are added to
the same location on the basis of the improved backbone
network. SFEM and MFEM in this paper act on the
middle and low-level feature maps, respectively. 'ere-
fore, two RFBs and two EIRMs were added in the ex-
periment to act on the middle and low-level feature maps.
S-RFB represents adding RFB modules to the low-level
feature map branch, and M-RFB represents adding RFB
modules to the midlevel feature map. S-EIRM means
adding EIRM to the low-level feature map branch, and
M-EIRM means adding EIRM to the middle-level feature

map. According to the results, it is obvious that, in the
low-level feature map, the atrous convolution of the RFB
with a large expansion rate may introduce a large amount
of background, which will cause a decrease in accuracy.
'e scaling strategy of EIRM is also less accurate. SFEM
only uses a combination of atrous convolution with an
expansion rate of 1 and ordinary convolution, which
enhances the feature description while suppressing the
interference of background noise, and improves the ac-
curacy of ship detection. For midlevel feature maps,
MFEM also achieves better results than RFB and EIRM.
Finally, the proposed multiscale feature enhancement
module achieves higher accuracy than EIRM and RFB.
'erefore, the strategy of using different enhancement
modules for feature maps of different scales can achieve
better results than the fixed feature enhancement
strategy.

In order to verify the impact of the IOU loss function on the
detection accuracy, this paper uses GIOU, DIOU, and CIOU to
conduct comparative experiments.'e experimental results are
shown in Table 7. It is obvious that, in the algorithm of this
paper, CIOU achieves the best effect compared to GIOU and
DIOU. CIOU introduces the strategy of anchor box aspect ratio,
which enables it to achieve higher accuracy than DIOU.

4.5.AblationExperiments. To verify the effectiveness of each
module, ablation experiments were implemented on the
LEVIR-ship dataset. Table 8 is the results of the ablation
experiments. It is obvious that MIRes and the multiscale
feature enhancement modules SFEM and MFEM proposed
in this paper can effectively improve the detection accuracy
of the baseline network YOLO v4. 'is proves that the
improvements proposed in this paper can effectively im-
prove the accuracy of multiscale ship detection in ORSIs.
MIRes used improved mixed convolution and wider net-
work structure, which greatly enhances the multiscale fea-
ture extraction capability of the backbone network. MFEM
and SFEM act on the middle- and low-level feature maps to

Table 5: Comparison of different residual blocks.

Method mAP (%) Parameter (M) BFLOPS (G) FPS (s)
Res (YOLO v4) 76.3 244 59.563 61.8
IRes 77.2 252 60.309 61.8
MIRes (ours) 78.75 253 60.322 61.8

Table 6: Comparison of feature enhancement modules.

Feature enhancement mAP (%) Parameter (M) BFLOPS (G) FPS (s)
S-RFB 77.73 254 61.873 56.2
S-EIRM 77.95 257 64.354 56.2
SFEM 79.21 247 64.791 61.8
M-RFB 78.26 257 61.872 56.2
M-EIRM 78.16 272 64.265 51.7
MFEM 78.55 267 65.55 56.2
S-RFB, M-RFB 76.52 258 63.423 56.2
S-EIRM, M-EIRM 76.79 276 68.297 51.7
SFEM, MFEM 79.55 271 70.778 56.2
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Table 9: Extended experimental results of NWPU VHR-10 dataset.

Method AI (%) SH (%) ST (%) BD (%) TC (%) BC (%) GTF (%) HB (%) BR (%) VH (%) mAP (%)
FCOS [42] 90.47 73.72 90.36 98.94 89.38 80.82 96.74 87.91 61.92 88.16 85.84
SHDET [43] 100 81.36 90.90 98.66 90.84 82.57 98.68 91.11 76.43 89.82 90.04
FMSSD [44] 99.70 89.90 90.30 98.20 86.00 96.80 99.60 75.60 80.10 88.20 90.40
MRFF-RCA [40] 99.50 88.40 90.20 98.70 89.20 95.40 99.20 89.60 82.20 92.90 92.50
YOLO v4 99.97 87.16 98.54 97.38 97.73 94.54 99.65 82.67 77.61 93.42 92.87
Ours 99.93 90.72 98.45 97.67 99.66 96.45 99.80 83.55 83.64 91.69 94.17
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Figure 16: Comparison of loss curves. (a) YOLO v4 loss curve. (b) 'e proposed algorithm loss curve.

Table 7: Comparison of loss functions.

Loss function mAP (%) FPS (s)
GIOU 77.69 56.2
DIOU 77.56 56.2
CIOU 79.55 56.2

Table 8: Ablation experiment.

MIRes SFEM MFEM mAP (%) Parameter (M) BFLOPS (G) FPS (s)
Baseline 76.3 244 59.563 61.8
√ 78.75 253 60.322 61.8

√ 78.84 247 64.791 61.8
√ 77.18 258 64.791 56.2

√ √ 79.21 256 65.55 61.8
√ √ 78.55 267 65.55 56.2

√ √ 77.65 262 70.019 56.2
√ √ √ 79.55 271 70.778 56.2
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Figure 17: Continued.
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further enhance the feature description of ship targets,
thereby improving the accuracy of ship detection. At the
same time, SFEM, MFEM, and MIRes were added, and the
method in this paper finally reached mAP of 79.55%.
Compared with the baseline network, it has obtained a great
improvement.

4.6. Extend Experiment. To further verify the effectiveness
and scalability of our algorithm on other categories, this
paper implements extended experiments on the NWPU
VHR-10 dataset. 'e experimental results are shown in
Table 9. AI, SH, ST, BD, TC, BC, GTF, HB, BR, and VH
represent airplane, ship, storage tank, baseball diamond,
tennis court, basketball court, ground track field, harbor,
bridge, and vehicle, respectively. It can be seen from the
results that the accuracy of the proposed algorithm for the

overall mAP and ship category has reached the highest level.
At the same time, it is extended to other categories, such as
BD, TC, BC, GTF, HB, and BR.'e algorithm in this paper is
improved compared to YOLO v4.

Figure 16 is the comparison of the loss curve between the
algorithm in this paper and the YOLO v4 algorithm on the
NWPU VHR-10 dataset. Obviously, although the loss curve
amplitude of the algorithm in this paper is large, the de-
tection accuracy is steadily improved, while the loss value
converges. 'e YOLO v4 algorithm converges faster and the
curve is smooth, but its detection accuracy is low.

Figure 17 is the comparison of some detection results
between the proposed algorithm and the YOLO v4 algo-
rithm on the NWPU VHR-10 dataset. In order to reflect the
scalability of the proposed algorithm in other categories, this
paper selects images that contain different targets and are
difficult to detect. 'e detection results contain a total of

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Figure 17: Comparison of detection results in the NWPU VHR-10 dataset. 'e yellow arrow points to the targets of missed detection and
false detection.
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seven groups of images. Figures 17(a)–17(g) are the original
images, Figures 17(h)–17(n) are the YOLO v4 detection
results, and Figures 17(o)–17(u) are the detection results of
the algorithm in this paper. Among them, some targets in
Figures 17(a) and 17(b) are occluded by shadows, some
targets in Figures 17(c) and 17(d) are not completely
intercepted, and the colors of targets and backgrounds in
Figures 17(e) and 17(f) are similar. Targets in Figure 17(g)
are larger. According to the detection results of
Figures 17(h)–17(n) and Figures 17(o)–17(u), it can be seen
that YOLO v4 is prone to missed detection and false de-
tection when detecting shadow-occluded targets, intercepted
targets, and targets with similar background color and
texture. 'e proposed algorithm can extract more multiscale
feature information, and themultiscale feature enhancement
module can further enhance the feature description and
receptive field of the target and suppress the interference of
background information. It has better detection results for
multiscale targets in complex backgrounds.

5. Conclusion

To improve the accuracy of multiscale ship target detection
in ORSIs, the multiscale feature enhancement ship target
detection algorithm based on the one-stage algorithmYOLO
v4 is proposed in this paper. Firstly, in order to improve the
multiscale feature extraction capability of the backbone
network, this paper improved the mixed convolution and
proposed MIRes based on the improved mixed convolution.
'e MIRes are used to replace the Res in the deep CSP
module. 'e wider network structure of the MIRes and the
multikernel mixed convolution greatly enhance the feature
extraction capability of the backbone network and the
feature map receptive field. Secondly, the multiscale feature
enhancement modules SFEM and MFEM are proposed,
which act on the middle and low-level feature maps to
enhance the feature map receptive field and feature infor-
mation. Finally, comparative and extended experiments are
implemented on the LEVIR-ship dataset and the NWPU
VHR-10 dataset. 'e experimental results on the LEVIR-
ship dataset show that the proposed algorithm achieves a
3.25% improvement compared to the baseline network and
meets the requirements of implementation detection. At the
same time, compared with the current relatively excellent
feature enhancement modules, the multiscale feature en-
hancement module in this paper has achieved the best re-
sults. 'e experimental results on the NWPU VHR-10
dataset show that the proposed algorithm achieves a 3.56%
improvement in the ship category compared to the baseline
network. At the same time, it also achieved good results in
the categories of base diamond, tennis court, basketball
court, ground track field, harbor, and bridge.

Data Availability

'e research data come from the network public dataset.'e
NWPU VHR-10 dataset can be downloaded at https://www.
heywhale.com/mw/dataset/5e9d2c33ebb37f002c618636.

'e LEVIR dataset can be downloaded at http://levir.buaa.
edu.cn/Code.htm. 'e LEVIR-ship dataset and experiment
results can be downloaded at https://pan.baidu.com/s/
18n1KIsUOQiCGbPwDDPme6g?pwd�1111.
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