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An adaptive fuzzy sliding control (AFSMC) approach is adopted in this paper to address the problem of angular position control
and vibration suppression of rotary �exible joint systems. AFSMC consists of fuzzy-based singleton control action and switching
control law. By adjusting fuzzy parameters with the self-learning ability to discard system nonlinearities and uncertainties,
singleton control based on fuzzy approximation theory can estimate the perfect control law of feedback linearization. To enhance
robustness, an additional switching control law is incorporated to reduce the approximation error between the derived singleton
control action and the perfect control law of feedback linearization. AFSMC’s closed-loop stability will be demonstrated via sliding
surface and Lyapunov function analysis of error function. In order to demonstrate the e�ectiveness of the AFSMC in tracking
performance as well as its ability to respond to model uncertainties and external perturbations, simulations are carried out using
Simulink andMatlab in order to demonstrate how well it adapts to these situations. Based on these results, it can be concluded that
the AFSMC performs satisfactorily in terms of tracking.

1. Introduction

Rotary �exible joints (RFJs) are well known for their
ability to signi�cantly a�ect the performance of a system
in comparison to rigid joint manipulators. RFJ control-
lers must emphasize joint �exibility to ensure high
precision and vibration-free performance without sac-
ri�cing �exibility. Due to the inherent nonlinear and
uncertain dynamics of these systems, high precision and
vibration-free performance can be achieved without
sacri�cing �exibility. �is system is used as a robotic arm
for various industrial automation applications in order to
accelerate production speed and increase accuracy and

precision by using the RFJ robotic arm. �e use of these
kinds of equipment is extensive when it comes to per-
forming a number of risky operations in the event of
natural disasters. Besides performing inspections,
maintenance, and refueling work, RFJ is used for space
exploration activity.

In order to operate RFJ with high precision and accuracy,
it is challenging to develop a suitable control mechanism. In
this system, there are two main problems: the �rst is the
angle of displacement of the rotary arm and the second is the
arm’s �exibility. In order to reduce vibration of the �exible
joint, the control purpose is to maintain the rotary arm at the
desired position. As a result, the RFJ system’s e�ciency
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should be enhanced by maintaining the limiting factor of
actuator saturation. Powerful motors could be a suitable
option, but due to their size and power consumption, they
cannot be used.

Various efforts have been undertaken to investigate the
RFJ system. (e issues were to reduce the vibration of the
flexible arm while the tip of the arm was directed according
to the reference direction. A flexible robotic arm was con-
trolled using the quadratic d-stability design method
showing the nonminimum phase behavior [1]. Double-loop
feedback closed path was used to control the RFJ parameters
in which the inner and outer loops are responsible for motor
position control and arm vibration control, respectively (see
[2, 3]). State feedback-based fuzzy controller was designed
for the RFJ system using linear matrix inequalities [4]. (e
tip deflection of the flexible arm is controlled via a hybrid
controller by incorporating a double feedback architecture
to minimize the resonance in the flexible arm [5]. An in-
tegral resonant control method was also implemented for
flexible joints of robotic manipulators [6]. For flexible joint
manipulator systems, a robust control scheme based on
backstepping was proposed [7]. One of the most well-known
control strategies is fractional-order control (FOC), which
can be applied to various physical systems, including flexible
joint manipulators, as seen in [8–13]. Fuzzy systems and
neuronal networks can implement intelligent control
methods in the literature [14, 15]. Different variants of
sliding mode control (SMC), known for its inherent ro-
bustness, have also been used to control single link robotic
manipulators in order to achieve smooth and robust op-
eration [16, 17].

To solve the control problem of an RFJ system with
parametric uncertainty and exogenous disturbances, we
implement adaptive fuzzy sliding mode control (AFSMC).
(is is the first systematic application of AFSMC control
technique to the RFJ control problem. Combining fuzzy-
based singleton control with compensating switching
control, the proposed strategy is based on a hybrid ap-
proach. To demonstrate the perfect feedback linearization
regulation with an adaptive mechanism to adjust the
design parameters, the singleton control law is imple-
mented. (e switching control part, on the other hand, is
derived from SMC, which is well known for its inherent
robustness [18, 19]. AFSMC will approach the perfect
feedback linearization control under variations in plant
dynamics and disturbances by integrating this additional
compensating term. By carefully analyzing stability while
forcing the tracking error towards zero, the overall
composite control structure is analyzed in the sense of
Lyapunov [20, 21]. Numerical simulations of Quanser’s
RFJ manipulator system confirm the performance of the
intended controller.

(e rest of this paper is organized as follows. First, the
modeling of the RFJ system is presented in Section 2. (en,
the comprehensive details of the design formulation of
AFSMC along with stability analysis in the sense of Lya-
punov are presented in Section 3. (e computer simulation
analysis of AFSMC is given in Section 4. Finally, the paper is
concluded in Section 5.

2. Rotary Flexible Joint System

Here is an overview of a typical RFJ platform developed by
Quanser [22], extensively used in robotic engineering
simulations related to vibration analysis and resonance. It
may be possible for this type of manipulator to disturb its
natural frequencies, accelerating the maneuver of the link
with high vibration. Consequently, the vibration can decay
naturally, but it takes longer than desired.

2.1. Platform Description. (e physical model of the RFJ
system is shown in Figure 1. (is machine consists of a long
arm and a short arm that are placed together on a rotary
platform that spins. (ere is a double spring pivoting system
employed in the more extended arm, while a short arm is
mounted on the long arm using a double spring pivoting
system. Consequently, the length of the short arm varies
depending on where it is placed on the long arm as a result of
the placement of the short arm. In this way, it is possible for
the flexible joint to be more vibratory as a result. With the
aid of a DC-powered servomotor, the rotary arm is provided
with a spring connection to induce flexibility as a result of a
DC-powered spring connection. (ere is a servo system
known as SRV02 that is a complete unit that consists of a DC
motor, gears, tachometer, potentiometer, and encoder that
are integrated within the unit. In order to determine the
rotary speed of the rotary arm, a tachometer is used, while
the potentiometer is used to measure the angle of angular
orientation of the load gear. In order to estimate the angular
position of the servo load shaft as well as the vibration angle
of the flexible joint, two encoders are used.

2.2. Mathematical Model. Figure 2 shows the schematic
diagram of the RFJ system (see [21]). (e variable θ rep-
resents the rotary arm while the angle of vibration α rep-
resents the flexible joint. (e vibration angle tends to
increase once the arm moves along the horizontal plane.(e
variables m1 and m2 are the masses, and L1 and L2 are the
long and short arm lengths. d12 is the distance of the short
arm from the pivoting center.

In [22], the dynamics of the RFJ system are described as
differential equations using simplified dynamics:

Jeq
€θ + Jl(

€θ + €α) � τ − Beq
_θ,

Jl(
€θ + €α) + Ksα � 0,

(1)

where Jl is the inertia of the arm, τ is the output torque, Bl is
the link’s viscous damping force coefficient, Ks is the linear
spring stiffness, and Jeq and Beq are the equivalent moments
of inertia and damping term, respectively [23]. A torque that
is applied at the base of a rotary arm is expressed as follows:

τ �
ktKgηmηg vm − Kgkm

_θ􏼐 􏼑

Rm

, (2)

where kt is the motor torque parameter, Kg represents the
gear proportion, the variables ηg and ηm are the efficiencies
of motor and gearbox, respectively, km is the motor’s back-
emf constant, vm is the controlled voltage, and Rm represents
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the armature resistance. (is is how RFJ dynamics are
expressed as state-space models:

_x � F(x) + Gvm + d(t),

x t0( 􏼁 � x0,
(3)

where x ∈ Rn is the state vector, i.e., x � θ α _θ _α􏽨 􏽩
T
, which

is assumed to be measurable and x0 � 0 is the initial state
vector at time t0. (e control input vector G and state
transition functionF are smooth and continuous nonlinear
functions, described as

F �

0 0 1 0

0 0 0 1

0
Ks + Bl

Jeq
−

Beq

Jeq

Bl

Jeq

0 −
Ks + Bl( 􏼁 Jl + Jeq􏼐 􏼑

JlJeq
+

Beq

Jeq
−

Bl Jl + Jeq􏼐 􏼑

JlJeq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G � 0 0
1

Jeq
−
1

Jeq
􏼢 􏼣

T

,

(4)

where as vm ∈ R is the output-controlled voltage. (e un-
known bounded disturbance is represented by a variable
d(t) such that d(t)≤D.

Note. (e linear model of RFJ given by (3) only represents
the open-loop instability characteristics and will not be
utilized during the control design. In the following sections,
we will present the design formulation of AFSMC based on
the assumption that system dynamics are unknown and that
only system state variables are known.

3. Sliding Mode Adaptation in Fuzzy Logic

(is section describes how AFSMC is designed to control
RFJ manipulator systems for tracking angular position and
reducing vibrations.

3.1.ProblemStatement. Consider the nth order accurate time
invariant model of nonlinear system in generic form which
is given by

_x � f(x, t) + g(x, t)u + d(t). (5)

If the functions f(x, t) and g(x, t) are precisely known,
then a perfect linearization control law can be realized by the
expression given below.

u
∗

�
1

g(x, t)
−f(x, t) + _xd − a1 _e(t) − a2e(t)􏼂 􏼃, (6)

Long Arm

Spring

Encoder

SRV02 Servo Motor
Tachometer
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Figure 1: RFJ platform by Quanser.
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Figure 2: Rotating flexible joint schematic diagram.
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where _xd is the desired state and e(t) � x − xd represents the
tracking mistake, while a1 and a2 are positive gain pa-
rameters. However, in reality, it is not easy to find the exact
numerical values of f(x, t) and g(x, t). As a result, it is not
easy to directly implement the linear feedback control law
given by (6). For improved tracking performance while
ensuring closed-loop stability, an adaptive mechanism will
be required to approximate the perfect control law of
feedback linearization.

3.2. Design Formulation of AFSMC. Based on the singleton
control action and switching control law, this section presents
the AFSMC design. To track the horizontal arm angle θ while
overturning the vibration angle α of the RFJ system, singleton
control law based on the fuzzy approximation theory is
proposed. It is possible to construct a singleton control law
that is resistant to model uncertainty and external perturba-
tions by using linguistic information.(e singleton control law
is intended to approximate the feedback linearization control
law given by (6) with accuracy by defining different mem-
bership functions. As the number of input variables increases,
however, the control law becomes computationally expensive.
In order to address this problem, the following sliding surface
has been used as input to the fuzzy set.

s(t) � k1 _e(t) + k2e(t) + k3 􏽚 e(t)dt, (7)

where e is the error vector defined as

e � θ − θd α − αd􏼂 􏼃
T
, (8)

and k1, k2, and k3∈, R1×4 are the gain vectors of sliding
parameters. (e time differentiation of the sliding param-
eters given by (7) is written as

_s(t) � k1€e (t) + k2 _e(t) + k3e(t) . (9)

In fuzzy sets, uniformly distributed and membership
functions of triangular symmetry are used to formulate the
IF part for the input sliding surface s. (e fuzzy system is
categorized by a set of IF-THEN rules, where the ith fuzzy
linguistic rule is written as follows.

Rule i: IF s is in the domain of Fi
s, THEN ufci

is ϑi,where
ufci

is the crispy controlled voltage output of the ith fuzzy
linguistic law. A singleton-controlled voltage expression is
derived through a center of gravity defuzzification method
and the singleton fuzzifier [15], which implies

vfc(ϑ, ξ) �
􏽐

n
i�1 ϑi.ωi

􏽐
n
i�1 ωi

, (10)

where ωi represents the firing strength of the ith rule and n

represents several fuzzy rules. In compact form, the resultant
singleton-controlled voltage expression given by (10) can be
written as

vfc(ϑ, ξ) � ϑTξ, (11)

where ϑ � [ϑ1, ϑ2, . . . , ϑn]T represents the parameter
vector grouping all consequent parameters and

ξ � [ξ1, ξ2, ..., ξn]T symbolizes the set of fuzzy basis functions
described as

ξi �
ωi

􏽐
m
i�1 ωi

. (12)

In the singleton-controlled voltage expression given by
(11), the vector coefficients of ϑ, i.e., ϑi, i � 1, 2, n, are
selected to be the adjustable parameters to approximate the
perfect feedback linearization law given by (6). (us, the
singleton-controlled voltage given by (11) employing tri-
angular membership functions can approximate the perfect
feedback linearization law given by equation (8) to a random
degree of correctness provided that an adequate number of
rules have been defined.

To circumvent this problem, an adaptive mechanism is
implemented by utilizing ϑi as a tunable parameter in sin-
gleton-controlled voltage expression that adjusts itself with
changing environment. Based on the universal approxi-
mation theorem [23], linearization feedback can be
expressed in the form of

v
∗

� v
∗
fc ϑ∗, ξ( 􏼁 + ϵ

� ϑ∗Tξ + ϵ,
(13)

where ϵ � v∗ − v∗fc(ϑ
∗, ξ) is the fuzzy estimation error and ϑ∗

is the ideal unidentified constraint vector. Let 􏽢ϑ be the
approximated value of ideal vector ϑ∗; then, the singleton-
controlled voltage expression given by (11) to approximate
the ideal control law of feedback linearization u∗ is described
below.

􏽢vfc(
􏽢ϑ, ξ) � 􏽢ϑ

T
ξ. (14)

Regardless of how well the fuzzy based singleton-
controlled voltage can be approximated, there will always be
some residual error between 􏽢vfc and v∗. To minimize the
approximation error ϵ, an auxiliary compensating switching
control term vsw is augmented in (14), which yields the
following AFSMC-based controlled voltage expression.

vm � 􏽢vfc(􏽢α, ξ) + vsw, (15)

where the switching control law is expressed as

vsw � −Kssign(s(t)). (16)

(e derived control expression of controlled voltage
given by (15) will guarantee that the system states θ and α
remain bounded and that the tracking error vector e as-
ymptotically vanishes despite the high degree of uncertainty
inherent in the system under consideration.

4. Numerical Simulation

In simulation analysis, the initial parameters of the ma-
nipulator system are considered as xi � [0 0 0 0]T. (e
performance of the proposed control methodology is
evaluated through numerical simulation in this part. (e
square-wave profile of ±20 deg amplitude with a frequency
of 0.33 Hz is commanded as the desired angular position for
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the RFJ system. (e RFJ system parameters’ numerical
values have also been considered as parametric variations to
address robustness. (e numerical values of the AFSMC
design parameters are set to be c1 � 1500, c2 � 120,� 335.1,

k1 � [20 10]T, k2 � [2 2]T, and k1 � [0.05 0.03]T. (e
response curves of joint angle θ and vibration angle α against
a square-wave input command are shown in Figures 3 and 4,
respectively. (e AFSMC demonstrates faster convergence
towards the reference profile of joint angle θ, as shown in
Figure 3. Due to the rapid convergence of joint angle θ, some
spikes are observed in the vibration angle α. However, the
controller immediately stabilizes it towards zero references.
(e time histories of the generated controlled voltage are
shown in Figure 5, which are very much attainable.

5. Conclusion

In this paper, AFSMC is applied to the flexible joint tracking
problem in the RFJ manipulator system. In the presence of
parametric uncertainties and perturbations, the derived
AFSMC achieves the requisite tracking performance and
suppresses the joint vibrations of the RFJ manipulator
system. (e numerical performance of the closed-loop
system is evaluated using Quanser’s RFJ system testbed.
Quite satisfactory simulation results have been obtained
for the AFSMC in handling disturbances and nonlinearities
[24, 25].
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