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An essential step in surface wave exploration is the inversion of dispersion curves. By inverting dispersion curves, we can
efectively establish the shear-wave velocity model and obtain reliable subsurface stratigraphic information. Te inversion of
dispersion curves is an inversion problem with multiple parameters and multiple poles, and obtaining a high precision solution
is difcult. Among the methods of inversion of dispersion curves, local search methods are prone to fall into local extremes, and
global search methods such as particle swarm optimization (PSO) and genetic algorithm (GA) present the disadvantages of
slow convergence speed and low precision. Deep learning models with strong nonlinear mapping capability can efectively
solve nonlinear problems. Terefore, we propose a method called PSO-optimized long short-term memory (LSTM) network
(PSO-LSTM) to invert the dispersion curves in order to improve the efect of inversion of dispersion curves. Te method is
based on the LSTM network, and PSO is used to optimize the LSTM network structure and other parameters that need to be
given manually to improve the prediction of the network. Two theoretical geological models are used in the paper: Model A and
Model B to test the PSO-LSTM.Te tests include the noisy data test and noise-free data test. Model A was tested without noise,
and Model B was tested with noise. In addition, PSO and LSTM were tested on model A to compare the performance of PSO-
LSTM. In Model A, the maximum relative errors of PSO and LSTM are 20.76% and 5.85%, respectively, and the maximum
standard deviations of PSO and LSTM are 57.37 and 1.97, respectively. For PSO-LSTM, the maximum relative errors of Model
A and Model B in the inverse results are 2.05% and 2.09%, and the maximum standard deviations of Model A and Model B in
the inverse results are 1.23 and 3.87, respectively. Te test results of Model A show that the inversion performance of PSO-
LSTM is better than those of LSTM and PSO, and the performance of the network can be improved after PSO is used to
optimize the network parameters. Te inverse results from Model B show that the PSO-LSTM is robust and can invert the
dispersion curves well even after adding noise to the model. Finally, the PSO-LSTM is used to invert the actual data from
Wyoming, USA, which demonstrates that the PSO-LSTM can be used for the quantitative interpretation of Rayleigh wave
dispersion curves.

1. Introduction

Rayleigh waves are waves that transmit along the surface or
medium partition interface formed by the interference and
superposition of P-wave and S-waves. Since the discovery of

Rayleigh waves by the British scholar Rayleigh [1], scholars
have been investigating theories related to the propagation
of Rayleigh waves in the strata. In the early stages of research,
Rayleigh waves were treated as noise, and researchers fo-
cused on the characteristics of Rayleigh waves to reduce their
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hazard in earthquakes or to eliminate their impact on valid
information in oil seismic exploration [2]. With the deep-
ening of research, scholars found that Rayleigh waves
propagate in layered media with dispersion phenomenon.
Scholars then began to use Rayleigh waves in the study of
stratigraphic structure. Compared with the conventional
exploration methods, such as refection seismic exploration,
surface wave exploration has the advantages of nonde-
structive testing, convenient construction, high resolution at
shallow depth and fast detection speed [3] and is broadly
used in the felds of soil delineation, engineering nonde-
structive testing, and geological hazard survey.

Surface wave exploration can be divided into three steps:
surface wave data acquisition, dispersion curves picking,
and inversion of dispersion curves. As the key step of
surface wave exploration, the inversion of dispersion curves
directly afect the reliability of the requested stratigraphic
information. Currently, there are two main types of
methods to invert the dispersion curves: local search
methods and global search methods. Local search methods
include the least squares method, Levenberg–Marquardt (L-
M) algorithm, and Occam algorithm. Dorman and Ewing
[4] used the damped least squares method to invert the
dispersion curves for the frst time. Te S-wave velocities
obtained by the inversion were consistent with those ob-
tained by the refracted wave method, confrming the val-
idity of the method. Xia et al. [5] combined the L-M
algorithm and the singular value decomposition technique
to invert the Rayleigh wave phase velocity. Te method
improved the convergence speed, computational perfor-
mance, and stability of the inversion. In addition to least
squares method, the Occam algorithm has also been applied
to the study of inversion of dispersion curves. For example,
Ai and Cheng [6] employed the Occam algorithm for the
inversion of Rayleigh wave dispersion curves, and the re-
sults of inversion showed that the Occam algorithm can
balance the accuracy of model and the computational rate of
the inversion well. Local search methods are extensively
used because of their rapid computational speed. However,
such methods rely excessively on the initial model, and
reliable results of inversion can be obtained only if the initial
model is similar to the real model. In addition, local search
methods are prone to fall into local extremes, and the partial
derivatives involved in the calculation and the results of
inversion are afected by the accuracy of the Jacobi matrix.
Te development of local search methods is limited by these
factors. Terefore, researchers have applied another global
research method that can avoid the initial model selection
and partial derivative calculation to invert dispersion
curves, such as GA and simulated annealing algorithm (SA).
Shi and Jin [7] used GA for inversion of dispersion curves.
In the inversion, Shi and Jin modifed the search range by
analyzing the initial search results, and thus improved the
search efciency of the method. Yamanaka and Ishida [8]
added an elite screening strategy to GA to promote the
convergence of the solution. Dal Moro et al. [9] used GA
and a posteriori probability density estimation for inversion
of dispersion curves, and the method obtained solutions
with higher accuracy compared to those obtained by GA. In

addition, some scholars have also used SA for inversion of
dispersion curves studies. Lu et al. [10] proposed a heat-bath
simulated annealing algorithm based on the SA.Te inverse
results showed that the heat-bath simulated annealing al-
gorithm is more suitable for inversion of dispersion curves
than the L-M algorithm. Compared with local search
methods, the above global search methods are superior, but
these global search methods with long operation time and
low solution accuracy are still needed to improve for high
precision surface wave exploration.

Deep learning models are capable of building a good
mapping between signal and semantics by building a hier-
archical structure similar to the human brain, extracting
features layer by layer from the bottom to the top of the input
data [11]. Deep learning models are excellent at solving
nonlinear problems and making fast predictions, and their
applications in the geophysical feld are gradually increasing
in recent years, such as earthquake detection and localization
[12], seismic lithology prediction [13], denoising [14],
detecting faults [15], and other directions. Deep learning
techniques have also yielded impressive results in the feld of
surface wave exploration. Dai et al. [16] proposed a network
specifcally for dispersion curve extraction called dispersion
curves network (DCNet). Te network can extract the dis-
persion curves quickly and accurately. Teoretical and
practical data test results show that the accuracy of the
extracted dispersion curves using DCNet has reached the level
of manual pickup and can meet the needs of practical work.
Song et al. [17] proposed a neural network Res-Unet++,
which can accurately and efciently extract the dispersion
curves. Actual data have verifed that using this network to
select the dispersion curves is better than that of manual
selection. Yablokov et al. [18] developed an artifcial neural
network for Rayleigh surface wave fundamental mode dis-
persion curve inversion. Te accuracy of the inverse results of
this method is better than the Monte Carlo algorithm inverse
results and similar to the Gray Wolf optimization inverse
results by theoretical model testing. For noisy data, the ar-
tifcial neural network still works well. Wu et al. [19] proposed
a LSTM network to invert surface wave based on the frst
height last velocity loss function. Te test results of synthetic
and real data show that the network can be efectively used not
only for theoretical data inversion but also cope well with real
data. Te results of dispersion curves inversion mentioned
above were summarized as shown in Table 1.

On this basis, the PSO-LSTM is used in this paper for the
study of inversion of dispersion curves. PSO is used in the
selection of parameters of the LSTM for the number of
neurons in the hidden layer, the learning rate, and the
number of training rounds in the LSTM to avoid the low
prediction accuracy of the network model due to improper
manual tuning of the parameters. In order to evaluate the
ability of the PSO-LSTM to invert dispersion curves in detail,
the feasibility of the model for inversion of dispersion curves
was frst verifed by using a model without noise; then the
stability of the PSO-LSTM was tested by using a model with
10% Gaussian noise; and fnally, the ability of the PSO-
LSTM to invert the actual data was tested by using seismic
data from the Wyoming area.
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Table 1: Dispersion curves inversion studies carried out in recent decades (performed algorithms with their merits and demerits).

Algorithm Reference number Merits Demerits Compared with

Least-squares algorithm [4]

(1) High calculation
speed;

(2) High precision of
solution

(1) Te appropriate
initial model needs to
be given;
(2) Te partial
derivative needs to be
calculated;
(3) Easy to fall into
local minima

None

Levenberg–Marquardt algorithm
combined with the singular value
decomposition technique

[5]
(1) High calculation

speed;
(2) Excellent stability

(1) Te appropriate
initial model needs to
be given;
(2) Te partial
derivative needs to be
calculated;
(3) Easy to fall into
local minima

None

Occam algorithm [6]

(1) High calculation
speed;

(2) High precision of
solution;

(3) Excellent stability

(1) Te appropriate
initial model needs to
be given;
(2) Te partial
derivative needs to be
calculated;
(3) Easy to fall into
local minima

None

Genetic algorithm [7]

(1) Excellent ability
to escape from local

minima;
(2) Independent of
selecting the initial

model;
(3) Calculation of
partial derivatives is

avoided

(1) Huge
computational time
cost;
(2) Low accuracy of
calculation

None

Genetic algorithm combining elite
selection and dynamic mutation
strategy

[8]

(1) Excellent
stability;

(2) Excellent ability
to escape from local

minima;
(3) Independent of
selecting the initial

model;
(4) Calculation of
partial derivatives is

avoided

(1) Huge
computational time
cost;
(2) Low accuracy of
calculation

Marquardt algorithm

Genetic algorithms combining
marginal posterior probability
density estimation

[9]

(1) Excellent ability
to escape from local

minima;
(2) Independent of
selecting the initial

model;
(3) Calculation of
partial derivatives is

avoided

(1) Huge
computational time
cost;
(2) Low accuracy of
calculation

None

Computational Intelligence and Neuroscience 3



2. Principle and Implementation of PSO-LSTM

2.1. Long and Short-Term Memory Network. Te LSTM in-
troduces a gating mechanism, which is better at handling
timing problems than the traditional recurrent neural net-
work.Te cell structure of the LSTM is shown in Figure 1. In
Figure 1, ft, it, and ot denote the forget gate, input gate, and
output gate, respectively, ct denotes the neural unit state, ht

denotes the hidden layer state, xt denotes the input vector of
the LSTM unit, σ and tanh denote the sigmoid and tanh
activation functions, respectively.

Te core components of the LSTM are the cell state and the
gate structure; the cell state can be seen as a channel for in-
formation transfer, allowing information to be passed con-
tinuously; the gate structure continuously learns during the
training process whether to keep or forget information. Te
input gate determines the important information in the current
input, which in turn updates the cell state; the forget gate
determines the information that should be discarded or
retained; the output gate is used to determine the new hidden
ht, and to pass the new cell state ct and the new hidden state ht

to the next LSTM cell. Te information transfer within the
LSTM neural unit follows equation (1)–(6):

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑, (1)

it � σ Wi · hi−1, xt􏼂 􏼃 + bi( 􏼁, (2)

at � tanh Wc · ht−1, xt􏼂 􏼃 + bc( 􏼁, (3)

Ct � ft · Ct−1 + it · at, (4)

ot � σ Wo · hi−1, xt􏼂 􏼃 + bo( 􏼁, (5)

ht � ot · tanh Ct( 􏼁, (6)

where w denotes the weight and b denotes the bias amount
of each gating unit.

2.2. Particle Swarm Optimization. PSO can be used to fnd
the optimal solution quickly through the information in-
teraction between particles. Te particles in the algorithm
are moving simultaneously, and all particles will generate
memory and experience in the process of motion. Any
individual particle will compare its experience with the

Table 1: Continued.

Algorithm Reference number Merits Demerits Compared with

Heat-bath simulated annealing
algorithm [10]

(1) Excellent ability
to escape from local

minima;
(2) Independent of
selecting the initial

model;
(3) Calculation of
partial derivatives is

avoided;
(4) Suitable for

parallel
programming

(1) Low accuracy of
calculation

Levenberg–Marquardt algorithm
and fast simulated annealing

algorithm

Artifcial neural network [18]

(1) Excellent
stability;

(2) High inversion
efciency

(1) Requires large
amounts of training
data;
(2) Training the
network costs a lot of
time

Monte Carlo approach and gray
wolf optimizer

LSTM based on the frst height last
velocity [19]

(1) Excellent
stability;

(2) High inversion
efciency

(1) Requires large
amounts of training
data;
(2) Training the
network costs a lot of
time

None

ct–1

ht–1

xt

ft
it ot

ct
~

σ σ σtanh

tanh

ht

ct

ht

×

××

+

Figure 1: LSTM basic cell structure [20, 21].
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experience provided by other particles in the process of
fnding the optimal solution, so that it will constantly be in
the optimal solution. Te PSO’s velocity position update
equation is shown in equation (7):

v
t+1
i,j � ωv

t
i,j + c1r1 pbestti,j − x

t
i,j􏼐 􏼑 + c2r2 gbesttj − x

t
i,j􏼐 􏼑,

x
t+1
i,j � x

t
i,j + v

t+1
i,j ,

⎧⎪⎨

⎪⎩
(7)

where w is the inertia weight; c1 and c2 is the learning factor;
r1 and r2 is the random number between [0,1]; v, x, pbest,
gbest are the velocity component, position component,
individual optimum, and population global optimum of the
ith particle in the jth dimension at the tth iteration,
respectively.

2.3. PSO-LSTM

2.3.1. Flow of PSO Optimize Network Parameters. Te se-
lection of network parameters for LSTM is usually based on
researchers’ experience, and the low prediction accuracy of
the model caused by artifcial selection can be avoided if PSO
is used to determine the parameters. Te process of PSO to
fnd the optimal network parameters is as follows: the
number of hidden layer neurons, learning rate, and number
of training rounds of key model parameters in LSTM are
used as optimization-seeking variables for particles in dif-
ferent dimensions, and the optimal model parameters are
obtained by continuously updating the velocity and position
of particles and calculating and comparing the objective
function ftness values so as to achieve the global optimum.
Te PSO-LSTM fow chart is shown in Figure 2. Te PSO-
LSTM fow is described as follows:

Step 1Te data are divided into training and test sets in
a 4 :1 ratio. Te input data is only the Rayleigh wave
phase velocity; therefore, no normalization of the data
is performed.
Step 2 Te number of hidden neurons, learning rate,
and number of training rounds of the LSTM are set as
the search parameters to initialize the population, and
the search ranges of hidden neurons, learning rate, and
number of training rounds are 50–300, 0.05–0.3, and
200–1000, respectively (the search ranges for these
parameters are given based on the researcher’s
experience).
Step 3Te prediction error of the PSO optimized LSTM
is the ftness value of the particle, and the ftness value
changes with the number of iterations, and the indi-
vidual particle updates the individual optimal position
and the global optimal position according to the ftness
value and then updates its own speed and position
according to equation (7).
Step 4 Stop the iterative update when the ftness value of
the particle stabilizes and determine the values of the
number of hidden layer units, learning rate, and the
number of training rounds.
Step 5 Input the optimal parameters into the LSTM for
training and prediction.

2.3.2. Evaluation Metrics for PSO-Optimized LSTM Network
Parameters. In the process of parameter optimization by
PSO, PSO continuously updates the number of hidden layer
units, learning rate, and training rounds to build LSTM
models with optimized parameters for training and pre-
diction. Te particle ftness value is represented by the mean
absolute percentage error (MAPE) of the prediction of
shear-wave profles on the test set. Te lower the value of
MAPE, the better the parameters found in this iteration, and
the optimal parameters are determined. Te MAPE is cal-
culated as

MAPE �
1
N

􏽘

N

i�1

yi − yi

∧

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (8)

where N is the sample size, yi denotes the true value, and y
∧

i

denotes the predicted value.
Te model is built with optimal parameters and trained

after the optimization search is completed. Te accuracy of
the LSTM solution is tested by the mean squared error
(MSE) between the predicted and true values. Te lower
value of MSE indicates the higher accuracy of the model
solution, and the formula for calculating MSE is

MSE �
1
N

􏽘

N

i�1
yi − yi

∧
􏼒 􏼓

2
, (9)

where N is the sample size, yi denotes the true value, and y
∧

i

denotes the predicted value.

3. Synthetic Data Tests

Te signifcant infuence on the variation of Rayleigh wave
dispersion curves characteristics is shear-wave velocity and
thickness of the stratum [5], and the remaining parameters
have a minor efect on it. In order to reduce calculation cost,
only the shear-wave velocity and thickness are inverted. For
the network training data, the scalar transfer algorithm is
used to generate the data. Te frequency band range of the
dispersion curves is 5–100Hz with a frequency interval of 3.
Te sample data were randomly generated within the upper
and lower 50% of the theoretical model parameters [22]. Te
frequencies in the data are all the same, and to reduce the
time cost, only the Rayleigh wave phase velocity in the
dispersion data is used as the input data of the network
model, and the stratum layer thickness and shear-wave
velocity in themodel parameters are used as the label data. In
the article, the inertia weights, learning factors c1, and c2 of
PSO are 0.8, 2.0, and 2.0, respectively. In the inversion of
dispersion curves, the number of particles and iterations of
PSO are 20 and 50, respectively. In PSO-LSTM, the number
of particles and iterations of PSO are 10 and 20, respectively.
All tests in the article were performed in the same envi-
ronment. Te software platform is PyCharm, and the pro-
gramming environment is the Python language using the
PyTorch framework. PyTorch and Python version are 1.10.2
and 3.6.13, respectively. Te CPU and GPU of the computer
used in this article are Intel Core i5-10400F and NVIDIA
GeForce RTX 3060, respectively.
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Te objective function of the PSO to invert dispersion
curve is

F �

�����������������������

􏽐
M
i�1 V

obs
R (i) − V

cal
R (i)􏼐 􏼑

2

M

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

􏽶
􏽴

, (10)

where Vobs
R is the measured phase velocity of the Rayleigh

wave; Vcal
R is the theoretical phase velocity of the Rayleigh

wave; and M is the number of points of frequency.
To verify the performance of PSO-LSTM, two typical

geological models were designed. Model A is a four-layer
geological model with increasing velocity with depth;
Model B is a four-layer model with a low-velocity layer in
the middle of the model; and the model parameters are
shown in Table 2. Model A is tested without noise, and the
data contain the dispersion data of the fundamental mode;
Model B is tested with noise, and the data contain the
dispersion data of the fundamental mode and second
mode. Te sample data of model A and B are shown in
Figure 3. Te sample data of model A contain no noise,
and the sample data of model B have 10% Gaussian noise
added to it.

3.1. Noiseless Synthetic Data Test. To compare the inversion
performance of PSO, LSTM, and PSO-LSTM, we tested
these three inversion methods using Model A. Te number
of neurons in the hidden layer 1 and hidden layer 2 in the
parameters of the LSTM network without PSO optimization
given by experience are 160 and 118, respectively; the

learning rate and the number of training rounds of the
LSTM network are 0.17 and 719, respectively. Te optimal
LSTM network parameters by PSO search are as follows: the
number of neurons in hidden layers 1 and 2 is 254 and 276,
respectively; the learning rate is 0.0890; and the number of
training rounds is 719. From Figures 4(a) and 4(b), we can
see that using the model parameters searched in 20 iterations
to train the network can already get reasonable training
results. Te same trend of training error and validation error
in Figure 4(b) indicates that the model is well trained. From
Figure 4(c), it can be seen that PSO, LSTM, and PSO-LSTM
inverted dispersion curves ft well with the observed dis-
persion curves, indicating that they have found the optimal
solution. In Figure 4(d), the shear-wave velocity profle of
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Figure 2: Te fowchart of the proposed PSO-LSTM.

Table 2: Model parameters and search range (Vp, Vs, h, ρ represent
P-wave velocity, S-wave velocity, stratigraphic layer thickness, and
stratigraphic density, respectively).

Model Layers
Parameters Search range

Vs Vp ρ h Vs h
(m/s) (m/s) (g/cm3) (m) (m/s) (m)

Model A

1 160 531 2.0 2 80∼240 1∼3
2 260 862 2.0 3 130∼390 1.5∼4.5
3 200 663 2.0 5 100∼300 2.5∼7.5
4 400 1327 2.0 ∞ 200∼600 ∞

Model B

1 200 663 1.9 2 100∼300 1∼3
2 160 673 1.9 4 80∼240 2∼6
3 300 1102 1.9 6 150∼450 3∼9
4 400 1470 1.9 ∞ 200∼600 ∞
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PSO inverted has a large deviation from the shear-wave
velocity profle of real model in the second and fourth layers;
the shear-wave velocity profle of LSTM inverted agrees
better with the shear-wave velocity profle of real model, but
there are also some deviations in the layer thicknesses of the
second and fourth layers; our proposed PSO-LSTM works
the best, and the inverse transverse velocity profle agrees
almost perfectly with the shear-wave velocity profle of real
model. Te ft of the inverted model to the real model shows

that the LSTM network is more suitable for inversion of
dispersion curves than PSO; the prediction efect of LSTM
network is better after PSO optimizes the network param-
eters of LSTM, and PSO optimizes the network parameters
to play a role in improving the network accuracy.

3.2. Noisy Synthetic Data Test. Noise is inevitable when ac-
quiring real seismic data. Te noise will make the extracted
phase velocity deviate from the true value, making the
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Figure 3: Sample data and labels for Models A and B. (a, c) Sample data of Model A and Model B. (b, d) Mean labels for Model A and
Model B.
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inversion more difcult and reducing the accuracy of inverse
results [10]. Terefore, the capability of PSO-LSTM to invert
noisy data is necessary to be examined. In order to simulate the
real data, 10%Gaussian noise is added to bothModel B and the
sample data of Model B. Ten, the trained network is used to
invert model B. Te optimal LSTM network parameters are
searched by PSO: the number of neurons in hidden layers 1 and
2, the learning rate, and the number of training rounds are 61,

239, 0.1140, and 747, respectively. From Figure 5(a), we can see
that after 20 iterations, the function values have converged.
Figure 5(b) indicates that the model is well trained. In
Figure 5(c), the dispersion curves ft well, and there is no
signifcant deviation between the inverted dispersion curves
and the observed dispersion curves. Figure 5(d) shows that the
PSO-LSTM can still reconstruct the shear-wave velocity model
well after noise is added to the model.Te reconstructed shear-
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Figure 4: Training process of Model A and its prediction results: (a) convergence process of PSO; (b) network training error; (c) inverted
dispersion curve; and (d) inverted shear-wave velocity profle.
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wave velocity model fts well with the shear-wave velocity
model of the real model, indicating that the inversion works
well.

3.3. Stability Analysis. To further evaluate the performance
of the PSO-LSTM to invert the dispersion curves, the the-
oretical model test was repeated 10 times, respectively, and
the mean and standard deviation of the inverse results were

calculated. Te mean and standard deviation are generally
used to refect the stability of the inverse results, the smaller
the mean and standard deviation, the more stable the inverse
results [23, 24]. Keeping the network parameters constant,
the network is trained 10 times and predicted separately.Te
inverted results are shown in Figure 6 and Table 3. In ad-
dition, 10 inversion tests were also performed separately for
PSO and LSTM on Model A, and the inverted results are
added in Table 3. InmodelA, the maximum relative errors in
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Figure 5: Training process of model B and its prediction results: (a) convergence process of PSO; (b) network training error; (c) inverted
dispersion curve; and (d) inverted shear-wave velocity profle.
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the inverse results of PSO, LSTM, and PSO-LSTM are
20.76%, 5.85%, and 2.05%, respectively. Te maximum
standard deviations of the inverse results of PSO, LSTM, and
PSO-LSTM in Model A are 57.37, 1.97, and 1.23, respec-
tively. Tese results show that among PSO, LSTM, and PSO-
LSTM, PSO-LSTM performs the best and is the most stable.

In Table 3, the maximum relative errors and maximum
standard deviations of model B are 2.09% and 3.87. In
Figure 6(c), the inverted dispersion curves are close to the
real dispersion curves. From Figure 6(d), it can be seen that
the reconstructed shear-wave velocity model and the real
shear-wave velocity profle are well ftted. Tese show that
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Figure 6: Te inverse mean values of Model A and Model B. (a, c) Inverted dispersion curve of Model A and Model B. (b, d) Mean inverted
shear-wave velocity profle of Model A and Model B.
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Table 3: Mean values of Model A and B inverse results (IMV denotes the inverse mean value, RE denotes the relative error, and SD denotes
the standard deviation).

Model A

Parameters True
PSO LSTM

IMV RE (%) SD IMV RE (%) SD
Vs1 (m/s) 160 162.81 20.76 6.27 156.84 1.98 0.81
Vs2 (m/s) 260 311.80 20.24 57.37 264.86 1.87 1.64
Vs3 (m/s) 200 194.58 14.76 45.42 195.79 2.11 0.96
Vs4 (m/s) 400 404.44 1.76 10.36 398.89 0.27 1.97
H1 (m) 2 2.42 19.92 0.53 1.88 5.85 0.36
H2 (m) 3 2.39 2.71 1.02 2.95 1.63 0.17
H3 (m) 5 5.74 1.11 2.18 4.91 1.73 0.41

Model A
PSO-LSTM

Parameters True IMV RE (%) SD
Vs1 (m/s) 160 160.80 0.51 0.39
Vs2 (m/s) 260 264.96 1.91 0.59
Vs3 (m/s) 200 201.79 0.90 0.58
Vs4 (m/s) 400 397.10 0.73 1.23
H1 (m) 2 2.04 2.05 0.01
H2 (m) 3 2.97 1.10 0.02
H3 (m) 5 4.97 0.57 0.02

Model B
Vs1 (m/s) 200 203.74 1.87 0.93
Vs2 (m/s) 160 163.66 2.09 1.24
Vs3 (m/s) 300 299.09 0.30 1.66
Vs4 (m/s) 400 403.64 0.91 3.87
H1 (m) 2 1.98 1.22 0.02
H2 (m) 4 3.96 1.05 0.04
H3 (m) 6 5.94 0.93 0.06
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Figure 7: Wyoming: seismic record (a) and dispersion image (b) [25].
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PSO-LSTM is stable, and the inverted models from PSO-
LSTM can accurately predict the real ones.

4. Real Data Test

Tenext step will be to test the ability of PSO-LSTM to invert
the actual data acquired from the Wyoming area of the
United States [25]. Te original seismic record is shown in
Figure 7(a). Forty-eight 8Hz vertical component geophones
were used to collect data, the interval was 0.9m, the min-
imum ofset distance was 0.9m, and the shock source was a
hammer shock source. Figure 7(b) shows the dispersion
image extracted from the seismic record.Te inverse test was
performed using the dispersion curves picked up on the
fundamental mode (solid dots in Figure 7(b)). Te explo-
ration depth was divided into fve layers based on the logging

data, and the set stratigraphic physical parameters are shown
in Table 4.

250 sample data were created according to Table 4 using
the fast scalar method, and the data are shown in Figure 8.
Te parameters of the PSO-LSTM obtained by PSO search
are as follows: the number of neurons in hidden layers 1 and
2 are 217 and 192, respectively, the learning rate is 0.1760,
and the number of training rounds is 719. Figures 9(a) and
9(c) show the inverse results, and Figure 9(b) shows the
network training error. From Figure 9(a), it can be seen that
the dispersion curve obtained from the inversion matches
well with the measured curve. In Figure 9(c), the shear-wave
velocity model obtained from inversion matches well with
the logging data. Te inverted shear wave velocity model is
not only close to the logging data in terms of speed but also
roughly consistent with the depth of the real formation. Tis

Table 4: Wyoming: search range and model parameter settings for inversion of PSO-LSTM (σ stands for Poisson’s ratio) [26].

Layers Vs h σ ρ
(m/s) (m) (g/cm3)

1 100∼300 1∼5 0.38 2.0
2 100∼400 1∼5 0.38 2.0
3 100∼600 1∼5 0.35 2.0
4 200∼600 1∼5 0.35 2.0
5 200∼800 ∞ 0.30 2.0
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Figure 8: Sample data and labels for real data: (a) sample data of actual data and (b) labels of actual data.
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Figure 9: Inverted results of the measured data in Wyoming: (a) measured data and inverted dispersion curve; (b) network training error;
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shows that the results of PSO-LSTM inverted the actual data
are reliable.

5. Conclusion

In this paper, we propose a dispersion curve inversion
method based on a deep learning model. Te method can
avoid the manual parameter selection and improve the
prediction accuracy of the network. In the specifc test work,
the optimal network parameters are frst selected using PSO,
and the prediction of the dispersion data is performed after
training the model using the selected network parameters.
PSO-LSTM achieved favourable inverse results in the model
test. Te maximum relative error and maximum standard
deviation of PSO-LSTM in Model A and Model B are 2.05%,
2.09%, and 1.23, 3.87, respectively. Te inverse results of
Model A show that the PSO-LSTM can be successfully
applied to the study of inversion of dispersion curves. Te
test results of Model B confrm the stability of PSO-LSTM.
Even if the dispersion curve data contain some noise, the
inversion results of PSO-LSTM are still reliable. Finally, the
ability of PSO-LSTM to invert actual data is tested. Te real
data tests show that PSO-LSTM is practical and the inverse
results are reliable.
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