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Remote-sensing image scene data contain a large number of scene images with di�erent scales. Traditional scene classi�cation
algorithms based on convolutional neural networks are di�cult to extract complex spatial distribution and texture information in
images, resulting in poor classi�cation results. In response to the above problems, we introduce the vision transformer network
structure with strong global modeling ability into the remote-sensing image scene classi�cation task. In this paper, the parallel
network structure of the local-window self-attention mechanism and the equivalent large convolution kernel is used to realize the
spatial-channel modeling of the network so that the network has better local and global feature extraction performance. Ex-
periments on the RSSCN7 dataset and theWHU-RS19 dataset show that the proposed network can improve the accuracy of scene
classi�cation. At the same time, the e�ectiveness of the network structure in remote-sensing image classi�cation tasks is veri�ed
through ablation experiments, confusion matrix, and heat map results comparison.

1. Introduction

With the development of satellite remote-sensing technol-
ogy and unmanned aerial vehicle technology, the intersec-
tion of remote sensing and computer vision provides a new
research area for remote-sensing image processing. Com-
pared to terrestrial imagery, remote-sensing imagery pro-
vides a di�erent perspective to describe the Earth’s surface
and facilitate a range of Earth observation missions [1].
Remote-sensing image scene classi�cation is the funda-
mental work for understanding remote-sensing imagery and
plays an important role in remote-sensing imagery appli-
cations such as Land Use/Land Cover (LULC) classi�cation
[2–4] and urban planning [5].

Remote-sensing image scene classi�cation refers to the
classi�cation of di�erent remote-sensing images in a dataset
according to certain classi�cation features, so the key to
scene classi�cation lies in the extraction of image features.
�e following are three types of methods for image feature
extraction: First, the feature descriptors are directly
extracted from the image, such as color histogram, scale-
invariant feature transform SIFT [6], directional gradient

histogram HOG [7], and local binary pattern LBP ; the
second is to continue feature extraction based on some
underlying features extracted from image blocks, such as the
bag-of-words model BOVW and sparse coding [8]; and the
third is to automatically extract features from images
through deep learning methods. Each of the three methods
has its own advantages and disadvantages, while the deep
learning method does not need to manually extract feature
descriptors, and it possesses excellent classi�cation e�ect, so
the trend of using deep learning methods for remote-sensing
image scene classi�cation is increasing [9, 10] at present.
Among these deep learning methods, traditional convolu-
tional neural network (CNN) is the most widely used one.
Compared with traditional handcrafted feature extraction
methods, its multistage feature extraction architecture can
extract more discriminative semantic features and provides
an end-to-end framework. Deep learning techniques for
remote-sensing image scene classi�cation aremainly divided
into three types, namely unsupervised image classi�cation,
supervised image classi�cation, and object-based image
analysis [11]. In this paper, the technique of supervised
classi�cation is used to classify remote-sensing images.
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(e difficulty of remote-sensing scene classification is
that when determining the scene scheme, (1) the size of key
objects varies greatly, (2) many objects unrelated to the scene
scheme are often submerged in the image, and (3) compared
with natural images, remote-sensing scenes are more
complex in terms of spatial arrangement and object dis-
tribution [12, 13]. (erefore, how to effectively perceive
regions of interest of different sizes and build more dis-
criminative representations from complex object distribu-
tions is crucial for understanding remote-sensing scenes.
Figure 1 below shows the changes in the size and number of
objects in the aerial images selected in this paper.

In recent years, the transformer has achieved great
success in the fields of natural language processing ?NLP?
and speech processing (SP). Due to its powerful global
feature extraction capability, this structure was introduced
into the field of computer vision [14]. (e dominant model
in the field of computer vision is the CNN network. As the
transformer structure becomes more and more efficient, the
use of the vision transformer to complete visual tasks has
become a new research direction. Vision transformer has
powerful global modeling capabilities, but there are some
limitations, such as the lack of information exchange in the
local area, the large amount of parameters and calculation,
getting extremely prone to over-fitting, and the internal
structure information of the image block getting destroyed
in the process of image patching. In response to the above
problems, researchers have redesigned the vision trans-
former network model. One of the design solutions is to
combine the vision transformer and CNN network struc-
ture. (is network can fuse the global modeling ability of
vision transformer and the local feature extraction ability of
CNN to improve the model efficiency and performance to a
certain extent, such as the conformer [15], CoAtNet [16],
visual attention network (VAN [17]), twins [18], and
LocalViT [19]. Another method is to control the model
capacity by dividing the input feature map into small
windows for local-window self-attention. (is method can
enhance the capture efficiency of local relationships and
greatly reduce the computational complexity of the model,
such as the Swin transformer [20]. However, it should be
noted that in this method, there will be the problem of
window limitation. (e information of the image only in-
teracts in each small window, and there will be a lack of
information interaction between the windows. A Swin
transformer uses a shifted window attention to construct the
global input image, but it is not constructed in overlapping
local windows, so weights can only be shared on channel
dimensions and not including global weight sharing on
space, and in the form of shifted window attention, it does
not really override the relationship between global objects.

For remote-sensing scene classification tasks, it is ex-
tremely important to design a network that can learn local
and global features to solve the problem of the size change of
key targets in each pixel area.(e contributions of this paper
mainly include the following three points:

(1) A parallel model structure is proposed, which spa-
tially solves the problem of limited receptive field of

small window self-attention and enhances the spa-
tial-channel modeling capability of the network

(2) According to some lightweight vision transformer
structures, the computational efficiency has been
improved

(3) (e enhanced classification module is introduced to
enhance the feature representation capability of
high-level feature remote-sensing image scenes and
enhance the expressive capability of the network

Compared with other network structures, this network
has higher classification accuracy. Validated on the RSSCN7
dataset and WHU-RS19 dataset, it achieved good results.

(e rest of the chapter is structured as follows. (e
second section is related work, including the research status
and analysis of some lightweight convolutional neural
network structures and vision transformer structures, as well
as the role of parallel structures in feature extraction. Section
3 provides the method of this paper, including the overall
framework of the network and the introduction of each
module. Section 4 shows the experiments of our method on
two remote-sensing scene classification datasets. Finally, a
conclusion is drawn in Section 5.

2. Related Work

2.1. Scene Classification Lightweight Network. For the tra-
ditional convolutional neural network, the core of the
lightweight network is to lighten the network in terms of
volume and speed under the premise of maintaining the
accuracy as much as possible. For example, the classic
convolutional neural network SqueezeNet [21] uses model
compression to replace 3× 3 convolution with 1× 1 con-
volution to reduce the amount of parameters and calculation
and ShuffleNet [22] proposes pointwise group convolution
and channel shuffle to maintain accuracy and reduce the
parameters and calculation. MobileNet [23] proposes a
depthwise separable convolution structure instead of ordi-
nary convolution, which greatly reduces the model volume
and improves the calculation speed. (ese network struc-
tures are widely used in scene classification tasks due to their
low computational cost [24].

(e introduction of the traditional vision transformer
structure into the remote-sensing scene classification task
will inevitably introduce a large amount of parameters and
calculations. In the existing research, the work of reducing
the parameters and calculations of the vision transformer
model while maintaining the network accuracy are as fol-
lows: (e Swin transformer divides the feature map into
multiple small windows, adopts the local-window self-at-
tention mechanism in the small windows to reduce the
computational complexity, and realizes the global modeling
of the image on the channel through the shifted window
attention operation and obtains good results; MPViT [25]
uses multiscale patch and multipath structure, while re-
ducing the number of channels and reducing model pa-
rameters to achieve good performance; CMT [26]
introduced depthwise separable convolution in the self-
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attention module to downsample the feature map, by which
computational resources are saved effectively.

(is paper refers to the lightweight structure and
principles of the convolutional neural network and the vi-
sion transformer structure and designs a lightweight net-
work architecture that can combine the advantages of the
vision transformer and the convolutional neural network
feature extraction.

2.2. Transformer Parallel Structure. Parallel structures in
neural networks, such as GoogLeNet, [27] improve network
performance by paralleling convolution kernels of different
sizes (different receptive fields) and Big-Little Net [28]
obtains multiscale features by fusing two branches at dif-
ferent scales. According to the structural characteristics of
the convolutional network structure and transformer
structure, iFormer [29] applies the frequency ramp structure
to trade off the high and low frequency components and
improves the efficiency through the channel splitting
mechanism. In order to be able to learn key objects of
different sizes within remote-sensing images and use less
amount of parameters and calculation, this paper parallelizes
equivalent large convolution kernels with local-window self-
attention capturing local relations and global feature
extraction.

(e channel assignment in the parallel network structure
can be divided into two types: one is to compress the channel
to a specified number by point convolution, and the other is
to divide the channel into a specified number by channel
split [30]. Compared with channel split, the method of
applying point convolution for channel compression has
more parameters. Finally, we split the feature map output by
patch merging into two equal parts by channel split and then
use channel concatenating and shuffling. (e method in-
tegrates different features in the branch to realize the
construction of global features in the network space-channel
range.

3. Methodology

3.1. Framework Overview. (e overall framework of this
network structure is shown in Figure 2(a), which consists of
three parts: stem, stage, and enhanced classification. Stem
consists of convolutional layers and pooling layers, which
downscale an input image of size 256× 256 to 64× 64. Each
stage consists of the patch merging module and CAW
module. Patch merging mainly plays the role of down-
sampling the image, and CAW block is the main feature
extraction module. (e patch merging module changes the
size of the feature map to 1/2 times the original size by
selecting elements in the row and column directions of the

(a) (b)

Figure 1: (a) and (b) Examples of object size and number variation in remote-sensing images.
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feature map at intervals of 2 and then stitching them to-
gether as a whole tensor. At this time, the channel dimension
will become original four times, and a fully connected layer
is used to adjust the channel dimension to twice the original
to achieve downsampling. After the feature extraction of the
three-layer stage, the feature map is input into the enhanced
classification layer to obtain the final classification result.

3.2. CAW Block. In the task of remote-sensing scene
classification, it is of great significance to the classification
of remote-sensing scenes to better capture the character-
istics of target objects of different sizes and make the
features more representative. (e concatenation of local-
window self-attention mechanism and shifted window self-
attention can realize the global modeling of the image in the
channel direction. For general image classification tasks,
images are generally localized, and this structure can learn
most of the content in the image. However, in the scene
classification image, there are changes in the size of the
target object, so it is particularly important to introduce a
global modeling in the space. In the process of using vision
transformer to patch the feature map, the internal structure
information of the image block will be destroyed, and the
feature map is not patched when the convolutional neural
network is used to extract the features of the image, which
can ensure the integrity of the internal features of the
image. (erefore, we consider adding a convolution kernel
to the parallel branch for feature extraction. In the con-
volutional neural network, a larger convolution kernel can
achieve more global feature extraction, but a large con-
volution kernel will bring a huge amount of parameters and
calculation, so we introduce the VAN module. (e VAN
network mainly consists of two parts which are the large
kernel attention (LKA) structure and the multilayer per-
ceptron (MLP) structure, where the LKA structure uses a

5 × 5 depthwise convolution, a 7 × 7 depthwise convolution
(with a dilation rate of 3), and a 1 × 1 convolution to ap-
proximate a 21 × 21 convolution kernel, which can be used
in the image with a slight compute costs and parameters to
capture long-range relationships.

(e CAW block proposed in this paper is a parallel
structure module of vision transformer. (e Swin trans-
former divides the feature map into several small windows
and then uses the self-attention mechanism for feature
extraction for each small window, while the VAN mainly is
composed of LKA and MLP. LKA stacks depthwise con-
volution (DW-Conv), depthwise dilated convolution (DW-
D-Conv), and 1× 1 convolution (1× 1 Conv) to make LKA
equivalent for larger convolutional neural networks. In this
paper, a Swin transformer with a window size of 4 × 4 and a
VAN network with an equivalent window of 21 × 21 are
used to form a parallel structure. (is parallel mechanism
not only retains the feature extraction advantages of the
Swin transformer’s local-window self-attention but also
makes up the window limit problem for the Swin trans-
former. (e CAW block module diagram is shown in
Figure 2(b), and the input feature map channel is divided
into two equal parts. (e operation description and ex-
pressions of the entire network structure are as follows,
where X, Y ∈Rh×w×c/2 are the feature maps obtained by
patch merging and channel split.

(e feature map of the upper branch converts the feature
map of sizeH×W×C/2 into the feature vector of HW×C/2
through reshape operation and then uses layer normaliza-
tion (LN) to normalize the feature vector, and inputs the
Swin transformer module for feature extraction; the Swin
transformer module is mainly composed of windowed
multihead self-attention (W-MSA), moving window mul-
tihead self-attention (SW-MSA), MLP, and skip connec-
tions. (e output formula of the local-window self-attention
branch is expressed as
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Figure 2: Network structure diagram.
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X′ � W − MSA(LN(Reshape(X))) + Reshape(X),

X1 � MLP LN X′( (  + X′,

X1′ � SW − MSA LN X1( (  + X1,

X2 � MLP LN X1′( (  + X1′.

(1)

(e feature map of the lower branch enters the VAN for
global feature enhancement. In the VANmodule, the feature
map is first normalized through batch normalization (BN),
then through a 1× 1 convolution kernel,then nonlinearly
activated with Gaussian Error Linear Unit (GELU), then
through LKA and a 1× 1 convolution kernel, and finally
passes through theMLP structure.(e output formula of the
global feature supplementary branch is expressed as

%

Y′ � Conv1 × 1(LKA(GELU(Conv1 × 1(BN(Y))))) + Y,

Y1 � MLP BN Y′( (  + Y′,

Y1′ � Conv1 × 1(LKA(GELU(Conv1 × 1?BN Y1( )))) + Y1,

Y2 � MLP BN Y1′( (  + Y1′.

(2)

Finally, merge the feature maps of the two branches and
then perform the Shuffle operation to shuffle the feature
maps in the two channels so that the feature maps of the two
channels are fused. (e final output of the module is

OUTPUT � Shuff le Concat X2, Y2( ( . (3)

3.3. EnhancedClassification. Current CNNs usually take the
final downsampling operation, the fully connected layer, and
the softmax classifier as a whole, treating it as a classification
layer. Some salient features of this classification layer include
those as follows: It usually does not have any convolutional
layers, the number of parameters is small, and it is usually a
linear feature representation structure. For remote-sensing
image scenes, owing to interclass similarity and intraclass
variation, it is necessary to highlight local semantics and
more discriminative features. (erefore, it is particularly
important to optimize the classification layer to have
stronger feature representation capabilities. To enhance the
feature representation of high-level feature remote-sensing
imagery scenes, an additional 1× 1 convolutional layer and a
ReLU activation function are added before the classifier. As
shown in Figure 2(c), adding a 1× 1 convolutional layer
before the classifier can increase the nonlinearity of the
network and enhance the expressive ability of the network to
a certain extent.

4. Experiments and Results

4.1. Network Complexity. (is network is designed based on
the vision transformer structure. In order to ensure the
accuracy of the network and reduce the amount of pa-
rameters and calculation of the network structure, this paper
refers to some vision transformer network structures with
less parameters and less calculation in the design of the
network structure. In order to prove the effectiveness of the

network structure proposed in this paper in remote-sensing
image classification tasks, this paper selects some classic
convolutional neural networks and vision transformer
structures for comparative experiments. (e comparison
table of parameters and calculation is shown in Table 1:

4.2. Dataset. (is paper conducts experiments on two
widely used remote-sensing image classification datasets:
RSSCN7 dataset and WHU-RS19 dataset.

(e RSSCN7 dataset [34] was released by Qin Zou of
Wuhan University in 2015. It contains 2800 remote-sensing
images and a total of seven typical scene categories including
grassland, forest, farmland, parking, residential, industrial,
river, and lake. Each category contains 400 images with a
pixel size of 400× 400, and the diversity of scene images
makes it more challenging. In the experiment, we divide the
dataset into training sets and test sets in an 8 : 2 ratio by
random selection.

(e WHU-RS19 dataset [12] was released by Wuhan
University in 2011, containing 1005 remote-sensing images
and a total of 19 typical scene categories including airports,
beaches, bridges, business districts, deserts, farmland,
football fields, forests, factories, grassland, mountains, parks,
parking, ponds, ports, railway stations, residential, rivers,
and viaducts, each of which contains 50 images with a pixel
size of 600× 600. Compared with the RSSCN7 dataset, this
dataset is more diverse and has fewer training samples, so it
is more challenging.(e distribution ratio of training set and
test set of this dataset is the same as that of RSSCN7 dataset.

4.3. Evaluation Criteria. In this section, we explain the
evaluation metrics used to quantify the classification per-
formance of network models: accuracy, precision, sensi-
tivity, specificity, and F1-score. To represent the above
metrics, we also need to count four quantities in the con-
fusion matrix: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). (e evaluation index
formula is expressed as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

Specificity �
TN

TN + FP
,

F1 − score � 2 ×
precision × recall
precision + recall

(4)

Confusion matrices are often used to measure model
classification performance.(is matrix can intuitively reflect
the difference between the predicted value and the true
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value. It consists of four quantities: TP, TN, FP, and FN,
which are specifically expressed as follows:

True Positive(TP) FalseNegative(FN)

False Positive(FP) TrueNegative(TN)
 . (5)

4.4. Preprocessing and Experimental Set-Up. In order to
obtain a better training effect, the pictures in the experiment
are all subjected to the same preprocessing. First, the pictures
in the dataset are scaled and adjusted to 256× 256, and then
the pictures are digitized and normalized. (e normalized
means set is [0.485, 0.456, 0.406], and standard deviation is
set to [0.229, 0.224, 0.225].

(e experimental environment of this paper is shown in
the following table, including software and hardware in-
formation, and the same experimental environment and
experimental platform are applied to ensure the fairness and
feasibility of the experiment. (e training set and test set use
the batchsize of 16, and the optimizer uses AdamW, the
weight decay coefficient is 5e− 2, and the learning rate is
0.0001. (e experimental platform data is shown in Table 2.

In the training process, in order to make the network get
better convergence effect, a total of 500 epochs were trained
in each experiment. We take the highest value of the rec-
ognition accuracy of the experimental test set as the final
classification accuracy and use the accuracy, sensitivity,
precision, specificity, and F1 value as evaluation indicators.

4.5. Experimental Results and Discussion. In order to verify
that the introduction of VAN based on the structure of Swin
transformer can solve the problem of limited receptive field
of the Swin transformer and improve the classification effect
of remote-sensing scene images, this paper conducts ex-
periments on the RSSCN7 dataset and the WHU-RS19
dataset. Among them, 4 sets of ablation experiments and 10
sets of comparison experiments are set on the RSSCN7
dataset, and 10 sets of comparison experiments are set on the
WHU-RS19 dataset. (e comparative experiments in this
paper include 4 groups of classic convolutional neural
networks and 6 groups of transformer structure-related
network structures. In order to ensure the accuracy of the
experimental results, all experiments in this paper use the

same experimental environment, learning rate, loss func-
tion, optimizer, batchsize, etc.

In order to study the influence of the depth of CAW on
the classification performance of remote-sensing images, we
increased the number of module layers at different stages,
and compared the accuracy, parameter amount, and com-
putation amount of CAW-Net with different depths, where
brackets represent the number of CAW blocks at different
stages. (e experimental data are shown in Tables 3 and 4:

From the experimental results, with the increase of the
number of network layers, the amount of parameters and the
amount of calculation increase, the model appears over-
fitting, which leads to a decrease in the accuracy rate.
Considering both the classification performance and model
complexity, we believe that CAW (1, 1, 1) has the best price-
performance ratio.

In order to prove the complementarity of the two vision
transformer structures and achieve the effect of improving
the performance of remote-sensing scene image classifica-
tion, in the ablation experiment, we split and replace the two
branches into four different combined structures to conduct
experiments on RSSCN7. (e maximum value in the 500
epochs is used as the experimental result, and the experi-
mental results are shown in Table 5. Among them, the Swin
transformer-only and VAN-only models are network
models obtained by paralleling the same module with other
structures unchanged; No Shuffle is the network model
obtained by removing the Shuffle structure in the original
network structure; and point convolution is a network
structure model that replaces the channel segmentation
structure in the original network structure with point
convolution for channel compression.

It can be seen from Table 5 that the parallel connection of
Swin transformer and VAN can solve the problem of limited
receptive field of local-windows self-attention and further
improve the performance of the network. Compared with
using the two modules alone, the accuracy is increased by
0.54% and 1.56%, respectively; Adding Shuffle after the two
branches which are connected in parallel can better integrate
the features of the two branches, and the network accuracy is
increased by 0.89%. In the channel allocation, the spilt
operation is better than channel compression, which im-
proves the network performance by 0.72%. Considering the
classification performance andmodel complexity, we believe
that this network structure has the best cost performance. In
Figure 3, we give the seven-category confusion matrix of the
RSSCN7 dataset of this network, and Figure 4 shows the 19-
category confusion matrix of this network.

Table 2: Experimental platform data.

Attributes Configuration information
Operating
system Windows 10

CPU Intel(R) Core (TM) i5-10300H CPU @
2.50GHz

GPU GeForce RTX 2060
CUDA CUDA 11.6.110
Frame PyTorch 3.7

Table 1: Comparison of parameters and calculations of the model.

Model FLOPs (G) Parameter (M)
ResNet50 [31] 5367.48 23.52
Vgg16 [32] 20185.96 138.36
DenseNet [33] 3742.61 7.98
GoogleNet [27] 2071.13 6.99
ViT-Ti [14] 21980.16 86.38
Swin transformer [20] 7078.50 28.24
VAN [17] 1149.08 41.00
Conformer-Ti [15] 3241.03 11.31
CMT [26] 1580.74 8.17
MPViT [25] 4212.25 6.08
CAW 566.61 1.27
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In order to reflect the recognition effect of this network
structure on remote-sensing datasets, this paper uses some
classic convolutional neural network models and vision
transformer network models that perform well in computer
vision for comparative experiments. (e experiments are
performed on the RSSCN7 dataset and the WHU-RS19
dataset under the same environment. (e experimental
results are shown in Tables 6 and 7. (e experimental results
with the best effect are marked in bold, and the results are
kept to two decimal places.

From the results in Tables 5–7, we can see that
compared with other network structures, the network
structure proposed in this paper achieves good results on

remote-sensing datasets with exponentially reduced pa-
rameters and calculation. (e parameters of this network
are 9.4 times that of ResNet50, 38.8 times that of ViT-Ti,
and 12.5 times that of Swin transformer. Compared with
these networks, on the RSSCN7 dataset, the accuracy rates
of the networks proposed in this paper have increased by
1.79%, 5.36%, and 2.32%, respectively, and the accuracy
rates on the WHU-RS19 dataset have increased by 1.46%,
14.08%, and 4.86%.

We apply Gradient-weighted Class Activation Mapping
(Grad-CAM) [35] to a different network, using images from
the RSSCN7 validation set. Grad-CAM is a recently pro-
posed visualization method, which highlights the feature
map in the form of a heat map in order to visualize the
feature representation learned by the neural network from
an intuitive effect.

As shown in Figure 5, we compare the visualization
results of Swin transformer, VAN, and our network. Both
the Swin transformer and VAN can capture the area where
the target object is located, but it is not accurate enough
and there is a certain misjudgment; for example, in the
factory scene, the field next to the factory with a similar
color is misjudged as a factory. Although VAN can
identify the scene area in these scenes, it is more divergent.
For example, in the grass and industry scenes, the VAN
network can capture the area where the grass and the
industry are located, but the range is small and not ac-
curate enough. Our model captures details representing
semantic features in complex background images, and it
has higher confidence than baseline models in the clas-
sification of some difficult objects. We can infer that our
model has stronger feature extraction ability and can learn
more discriminative features.

Table 3: Comparison results of CAW-Net networks with different depths.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
CAW (1, 2, 1) 95.18 95.24 95.17 99.21 95.19
CAW (1, 2, 2) 95.54 95.39 95.54 99.29 95.53
CAW (1, 2, 3) 95.35 95.40 95.34 99.24 95.37
CAW (1, 1, 1) 96.25 96.27 96.24 99.40 96.24

Table 4: Comparison of parameters and calculations of CAW-Net with different depths.

Model FLOPs (G) Parameter (M)
CAW (1, 2, 1) 656.68 1.58
CAW (1, 2, 2) 695.12 2.03
CAW (1, 2, 3) 733.55 2.48
CAW (1, 1, 1) 566.61 1.27

Table 5: Comparison results of parallel networks with different structures.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
Swin transformer-only 95.71 95.84 95.73 99.30 95.71
VAN-only 94.69 94.69 94.64 99.14 94.63
No shuffle 95.36 95.39 95.34 99.24 95.36
Point convolution 95.53 95.64 95.53 99.27 95.56
CAW 96.25 96.27 96.24 99.40 96.24
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Figure 3: RSSCN7 dataset classification confusion matrix.
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Figure 4: WHU-RS19 dataset classification confusion matrix.

Table 6: Overall accuracy and other parameters of the method on the RSSCN7 dataset.

Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
ResNet50 [31] 94.46 94.59 94.09 99.09 94.49
Vgg16 [32] 93.75 93.79 93.76 98.99 93.71
GoogleNet [27] 93.57 93.61 93.57 98.93 93.56
DenseNet [33] 93.21 93.34 93.21 98.89 93.21
ViT-Ti [14] 90.89 90.89 90.89 98.49 90.89
Swin transformer [20] 93.93 93.96 93.91 99.00 93.93
VAN [17] 94.11 94.17 94.11 99.03 94.11
Conformer-Ti [15] 95.00 95.06 95.00 99.20 95.00
CMT [26] 94.82 95.06 94.83 99.14 94.81
MPViT [25] 95.00 95.03 95.00 99.19 95.00
CAW 96.25 96.27 96.24 99.40 96.24
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5. Conclusions

Aiming at the problems of large size changes of key ob-
jects, complex spatial arrangement, and object distribu-
tion in remote-sensing scene classification tasks, this
paper proposes a parallel network model combining the
local-window self-attention mechanism and equivalent
large convolution kernel. (e complementary parallel
structure of Swin transformer and VAN realizes the space-
channel modeling of transformer network structure with a
small amount of parameters and calculation. A series of
experiments on two challenging remote-sensing image
scene classification datasets show that the network pro-
posed in this paper has good remote-sensing image scene
classification results.

In the follow-up work, we will further simplify the
network structure and try to optimize the network perfor-
mance by introducing some other attention mechanismsthat
can improve the network performance.
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