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Because of the nonlinearity and nonstationarity in the vibration signals of some rotating machinery, the analysis of these signals
using conventional time- or frequency-domain methods has some drawbacks, and the results can be misleading. In this paper, a
couple of features derived from multivariate empirical mode decomposition (MEMD) are introduced, which overcomes the
shortcomings of the traditional features. A wind turbine gearbox and its bearings are investigated as rotating machinery. In this
method, two types of feature structures are extracted from the decomposed signals resulting from the MEMD algorithm, called
intrinsic mode function (IMF). �e �rst type of feature vector element is the energy moment of e�ective IMFs. �e other type of
vector elements is amplitudes of a signal spectrum at the characteristic frequencies. A correlation factor is used to detect e�ective
IMFs and eliminate the redundant IMFs. Since the basic MEMD algorithm is sensitive to noise, a noise-assisted extension of
MEMD, NA-MEMD, is exploited to reduce the e�ect of noise on the output results. �e capability of the proposed feature vector
in health condition monitoring of the system is evaluated and compared with traditional features by using a discrimination factor.
�e proposed feature vector is utilized in the input layer of the classical three-layer backpropagation neural network. �e results
con�rm that these features are appropriate for intelligent fault detection of complex rotating machinery and can diagnose the
occurrence of early faults.

1. Introduction

With the advent of new era of Industry 4.0, the human
and machine interaction has dramatically changed [1].
�e improvement and advancement in intelligent sys-
tems have paved the way for the better use of smart
devices. �is shifts traditional human-machine inter-
actions (HMI) toward intelligent human-machine in-
teractions. �e application of intelligent HMI ranges
from medical scenarios to industrial applications [2–5]
(e.g., robotics, energy, maintenance, and semiconductor

manufacturing). Among the key drivers of the transition
from traditional to intelligent HMI, progress in machine
learning and intelligent algorithms constitutes the main
portion of importance [6–9].

Monitoring the condition of rotating machinery plays an
important role in the engineering industries [10, 11]. To
detect early faults and fully inspect the health condition of
rotating systems, a condition monitoring structure is re-
quired to operate as soon as possible [12, 13]. �e main
objective of exploiting condition monitoring systems is to
improve accuracy by lowering costs. �e extraction of fault
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characteristics from these types of systems is a key step in the
process of fault detection and condition monitoring [14].

Signals from complex rotating machinery are usually
nonstationary and nonlinear, and extracting features that
lead to a desirable outcome has become a challenging
process. Features are the parameters that are derived from
signals to indicate the characteristics of systems. So far,
various features that can be extracted from vibration signals
have been investigated [15–17]. Signal processing to extract
fault features is divided into three main domains: time
domain, frequency domain, and time-frequency domain.
Some conventional time-domain methods are skewness and
kurtosis [18] or root mean square (RMS) and peak value of a
signal [19]. Frequency analysis mostly contains Fourier
spectra of a time series signal, cepstrum analysis, or envelope
analysis [20, 21]. *ese features are in the time or frequency
domain and are mostly extracted from raw vibration signals.
In the presence of nonlinearity and nonstationarity in the
signal, traditional features cannot have an accurate dis-
tinction between system conditions [22]. Because of these
problems, time-frequency analysis of complex signals is
introduced as an application of feature extraction. Time-
frequency methods, such as the short-time Fourier trans-
form [23], wavelet transform [24], empirical mode de-
composition (EMD) [25], or Wigner–Ville [26], analyze
signals in both time and frequency domains. *erefore,
features can contain more comprehensive information of
signals.

With the advent of a new time-frequency method,
named Hilbert–Huang transform (HHT) [27], many studies
have been conducted using this method in the field of signal
processing [28–30]. HHT is a powerful algorithm useful for
nonlinear and nonstationary signals, performing an adaptive
decomposition operation called empirical mode decompo-
sition (EMD). *e decomposed signals, named intrinsic
mode functions (IMFs), are almost monocomponents which
satisfy Hilbert transform terms. Each IMF covers a small
range of frequency scales. *is characteristic of IMFs makes
them a suitable tool for the analysis of complex systems.
EMD algorithm is sensitive to noise. When signals are noisy,
the mode-mixing phenomenon can occur in IMFs [31]. In
this situation, either a single IMF carries a signal of a widely
disparate scale, or a single mode (or scaling) exists in more
than one IMF. To overcome this phenomenon, Ensemble
EMD (EEMD) is proposed [32].

When the system contains many components and has
comprehensive information from all over the system,
multiple sensors are located on different parts of the system.
In this condition, the signals obtained from the sensors are a
kind of multivariate signals. If the EMD algorithm is used on
each signal individually, joint information will be wasted
[33]. Furthermore, the same group of IMFs may have dif-
ferent characteristic information [34]. To overcome these
problems, Riling et al. [35] proposed bivariate EMD. In this
method, by mapping the bivariate signal in different di-
rections, the local mean of the signal is calculated. To
continue this idea, in 2010, Rehman and Mandic [36]
proposed an empirical mode decomposition algorithm for
trivariate signals. After that, they proposed an extension to

their method and introduced multivariate EMD (MEMD) to
deal with multidimensional signals [37]. *is method allows
us to analyze multidimensional signals simultaneously and
covers the problem of using the EMDmethod for these kinds
of signals. Zhao et al. [38] employ multivariate EMDmethod
to extract some health condition information of the studied
system. In their study, they used full spectrum based con-
dition monitoring for rotating machinery. Lv et al. [33] used
multivariate EMD as an application to investigate the health
conditions of the patients.

Each IMF order resulting from theMEMD algorithm has
the same frequency characteristic. *is capability makes the
MEMD algorithm a suitable method for feature extraction to
diagnose faults in rotating systems. Some of the IMFs are
spurious and need to be eliminated from the calculation to
speed up the process of feature extraction and make the
feature vector smaller without losing accuracy. Some IMFs
are high-frequency ones, which can be regarded as noisy
IMFs. In contrast, some IMFs contain low-frequency
characteristics that exist due to the stopping criteria of the
EMD algorithm and do not have physical meaning. Effective
IMFs can be detected by user experience, but to make the
process faster, a criterion or factor must be used. Ricci et al.
[39] introduced a merit index that automatically selects the
effective IMFs and eliminates the spurious ones.*is index is
based on the symmetrical and periodic IMF specifications.
In [38], a sensitivity factor which is based on mutual in-
formation is proposed. In [33], a correlation factor is in-
troduced to detect the most effective IMFs and, as is obvious
from the name of the factor, it is based on the correlation
between the signal and each IMF.

*e features derived from the signals can be imple-
mented as input for an artificial neural network (ANN)
system [40] or can be used for a support vector machine
(SVM) [41] to analyze the conditions of the system intel-
ligently and automatically. Yang et al. [42] extract bearing
health characteristics using the energy of decomposed IMFs.
*ey compare the output results from a simple ANN while
the features are derived from wavelet analysis. Bin et al. [43]
used a combined method of wavelet packet decomposition
(WPD) and EMD to extract fault features from a bearing
mechanism as rotating machinery. In their study, the energy
moment from the IMFs is used as the feature vector. WPD is
used to denoise and preprocess a signal.

To address the aforementioned issues and challenges, an
intelligent feature extraction is proposed. *e following are
the main novelties and contributions of this study:

(i) *e NA-MEMD algorithm is used as a feature
extraction method.

(ii) Correlation analysis is used to detect effective IMFs.
(iii) In addition to the energy moment of effective IMFs,

an amplitude factor in the frequency domain is
introduced as a complementary element for the
feature vector.

(iv) To show the capability of the proposed features in
the diagnosis of system conditions, a discrimination
criterion is exploited to make the comparison
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tangible. Features are then used for a back-
propagation (BP) neural network input layer.

(v) *e proposed algorithm can be used for analyzing the
features of the data from the athletes and the fault
analysis of the key mechanical components in the
sport field. *is paper focuses on the analysis of
bearings used in the key components in the sport field.

*is paper is organized as follows. In Section 2, the pro-
posed signal processing and feature extraction procedure are
explained. Section 3 is dedicated to the structure and design
configuration of the neural network. In Section 4, the rotation
system is introduced. In Section 5, the implementation of the
proposedmethod on the studied system is investigated, and the
results are discussed. *e conclusion is presented in Section 6.

2. Feature Extraction Using Multivariate EMD

2.1. Fundamentals of Multivariate EMD. In standard EMD
[27], the local mean can be calculated by interpolating the
upper and lower envelope of a univariate signal. However,
when dealing with multivariate signals, it is rather confusing
to determine IMFs, because the value of local minima and
maxima cannot be directly defined. Rehman andMandic [37]
introduce a multivariate EMD algorithm to overcome these
issues. In this method, multivariate (n-variate) signals are
considered as n-dimensional time series. Some appropriate
direction vectors are chosen, and multivariate signals are
projected on the selected direction vectors. All envelopes of
these projected signals are calculated, and by averaging the
envelopes, the local mean of the multivariate signal is de-
termined.*erefore, the sifting process [31] (which is used in
standard EMD) can be implemented to calculate IMF groups.

*e process of local mean calculation can be considered
as an approximation of the integral of all envelopes along
with the multiple directions in the n-dimensional space. *e
accuracy of this calculation depends on the uniformity of the
chosen direction vectors. To generate a set of uniformly
distributed points, quasi-Monte Carlo-based low-discrep-
ancy sequences can be utilized. *e Halton sequence family
is exploited as a convenient way to generate a low-dis-
crepancy sequence.

Let x1, . . . , xn be the first n prime numbers, and the ith
sample of a one-dimensional Halton sequence, denoted by
rx

i , is given by

r
x
i �

a0

x
+

a1

x
2 + . . . +

as

x
s+1, (1)

where the base-x representation of i is given by

i � a0 + a1x + . . . + asx
s
. (2)

Starting from i � 0, the ith sample of Halton sequence
then becomes

r
x1
i , r

x2
i , . . . , r

xn

i( 􏼁. (3)

*e Hammersley sequence is used when the total
number of samples, n, is known a priori; in this case, the ith
sample within the Hammersley sequence is calculated as

i

n
, r

x1
i , r

x2
i , . . . , r

xn− 1
i􏼒 􏼓. (4)

By using Halton and Hammersley sequences, a suitable
set of direction vectors on the n-sphere is generated.
Henceforth, projections of signals on this direction vector
will be calculated. In the following paragraph, multivariate
EMD will be explained briefly.

Let X(t) � [x1(t), x2(t), . . . , xn(t)] be an n-dimensional
signal and Dk � dk

1, dk
2, . . . , dk

n􏼈 􏼉 correspond to the kth di-
rection vector in a direction set D. *e multivariate EMD
algorithm is described as follows:

(1) Choose a suitable set of direction vectors, D.
(2) Calculate the kth projection, pk(t) of X along the kth

direction, where k � 1, 2, . . . , K and K is a total
number of direction vectors.

(3) Find the time instants, tk
i , corresponding to the

maxima of projected signals.
(4) Interpolate [tk

i , X(tk
i )] to determine multidimen-

sional envelopes, Ek(t).
(5) Calculate the mean by

M(t) �
1
l

􏽘

K

k�0
E

k
(t). (5)

(6) Calculate the residual component R(t)�X(t) − M(t).
If D(t) satisfies the stopping criterion explained in
the previous section, then consider R(t) as an IMF
and then repeat the algorithm until it meets the
criterion.

2.2. Effect of Noise on IMFs. EMD method is sensitive to
noise. In [44], an investigation is conducted on the sensi-
tivity of MEMD to noise. It can be inferred from this study
that the MEMD algorithm is sensitive to noise and mode-
mixing problems that can happen in this method. An ex-
tension to MEMD is proposed to cover the problem. *e
extension is named noise-assisted multivariate empirical
mode decomposition (NA-MEMD). NA-MEMD algorithm
tries to eliminate noise interference in EEMD and reduce
mode mixing in EMD and MEMD methods. *e general
algorithm in NA-MEMD is the same as in MEMD. *e
difference is that the input multivariate signal consists of
input data and noise in separate channels. After the
implementation of the MEMD algorithm on the new
multivariate signal, the resulting noise-related IMFs will be
discarded. *is method is demonstrated briefly as follows:

(1) Construct l-channel of uncorrelated Gaussian white
noise time series which have the same length as that
of the input (l≥ 1).

(2) Add noise channels, created in the previous step, to
the input signals; therefore, the new input signal is
(n+ l)-channel.

(3) Process the (n+ l)-channel multivariate signal using
MEMD algorithm to obtain IMFs.
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(4) Discard l-channels corresponding to the noise from
(n+ l)-variate IMFs and get n-channel IMFs corre-
sponding to the original signal.

2.3.2eCriterion forChoosing IMFs. To extract fault features
from the signal, suitable IMFs must be selected. A suitable
IMF is an IMF which has a meaningful frequency scale. *e
choice of IMF is usually based on experience and is done
manually. *is process is slow and time-consuming. To
make this procedure faster and relatively automatic, an index
or coefficient is needed to be introduced. One way to de-
termine the suitability of an IMF is to calculate the corre-
lation between the IMF and the original signal [45]. *e
IMF, which has a small correlation coefficient, is regarded as
a redundant or noise component. With the help of the
correlation coefficient, it is possible to accurately determine
and eliminate the noise component and evaluate the effective
IMFs to extract fault features from them.

In dealing with theMEMD algorithm, the resulting IMFs
are a set of IMF groups, and some calculation must be done
to identify the effective IMFs. Hence, a fault correlation
factor (FCF) has been proposed [33] to conduct the analysis.
Suppose that the input signal is n-variate signal and there
exist n groups for mth IMFs corresponding to each signal.
*e multivariate signal can be organized as a matrix as
follows:

S(t) � S1(t), S2(t), . . . , Sn(t)􏼂 􏼃. (6)

*e kth IMF on n groups corresponds to each input
signal and constitutes a matrix in the form of

C(t) � c
k
1(t), c

k
2(t), . . . , c

k
n(t)􏽨 􏽩. (7)

A simplified form of the correlation coefficient is as
follows:

λxy �
􏽐

N
n�1 x(t)c(t)

�����������������

􏽐
N
n�1 x

2
(t) 􏽐

N
n�1 c

2
(t)

􏽱 , (8)

where t is the time and N is the total number of sampling
points. λk

i is defined as the FCF of ith IMF of C(t) (7) and can
be calculated by conducting correlation analysis on this IMF
with each n-variate signal, respectively, and averaging all
correlation factors. λk

i indicates the correlation between this
IMF and the original signal. To make a comparison between
each order of IMFs, the FCF of IMFs with the same order
must be calculated. It can be achieved by averaging all vector
correlations since each order of IMFs contains almost the
same features.

λk
� 􏽘

n

i�1

λk
i

n
. (9)

When the value of λk is large, it means that the degree of
correlation of the fault characteristic between the kth order
IMF of the n IMF groups and the original signal is higher.
Based on the criterion of Pearson Correlation Coefficients,
when the value of the correlation coefficient is higher than

0.3, it can be assumed that the signals are relevant. *erefore
with this approach, effective IMFs can be determined.

2.4. Feature Selection. *e idea of extracting features for the
diagnosis of rotating machinery faults is a critical task.
Features must be selected wisely, because some features may
be futile in extracting fault characteristics of a signal, al-
though these parameters are useful for other vibration
signals. To choose the most effective features, a scientific
criterion, which relates the features to the system condition,
can be used. To achieve this purpose, in this paper, a dis-
crimination criterion, denoted as J, is applied [46]. *is
criterion is based on the ratio between inter- and intra-
variance. Suppose N features are extracted for a vibration
signal with K class of system conditions. If rk,n is the nth
feature of the kth class, the intraclass and interclass variance
matrix of the average dispersion coefficients are given as
follows:

Sintra �
1

K × N
􏽘

K

k�1
􏽘

N

n�1
rk,n − μ

k
􏼐 􏼑 rk,n − μ

k
􏼐 􏼑

t
,

Sinter �
1
K

􏽘

K

k�1
􏽘

N

n�1
rk − μ

c
􏼐 􏼑 rk − μ

c
􏼐 􏼑

t
,

(10)

while the mean of feature vectors of the kth class is
defined by μ

k
� (1/N) 􏽐

N
n�1 rk,n and the total mean of feature

vectors of all classes is μ
c

� (1/N) 􏽐
K
k�1 μk

.
Finally, J is computed as follows:

J � trace S
− 1
intraSinter􏼐 􏼑. (11)

According to the criterion, for the features with a high
value of J, the effect of the corresponding feature on the
diagnosis of a specific fault becomes greater.

2.5. Traditional Features. Traditional fault features are
simple and can easily be implemented in signals [47]. In
Table 1, some of these traditional features are represented in
the frequency and time domain. When a fault occurs in the
rotating machinery, the time-domain signal may change
both its amplitude and distribution. Moreover, the fre-
quency spectrum may encounter some deviation from the
normal condition. Usually, with the help of these features,
some faults can be determined in the system.Note. xn is
vibration signal with n � 1, . . . , N; N is the number of data
points; sk is the frequency spectrum of xn; K is number of
spectral lines; and fk is frequency value of kth spectral line.

2.6. Feature Extraction from Decomposed IMFs. In addition
to the traditional features mentioned earlier, the MEMD
algorithm is used to extract some other features to form a
more reliable and almost more robust feature vector.

Standard EMD is designed to process univariate signals.
When signals from multiple sensors (or conditions) are
individually processed by the EMD algorithm, there might
be two main drawbacks in the results. *e first drawback is
the loss of joint information. *e main reason for collecting

4 Computational Intelligence and Neuroscience



information frommultiple sensors (or conditions) is to have
a more comprehensive understanding of the system. By
implementation of EMD algorithm individually on each
signal, the idea of multiple sensors would be vain. *e
second drawback is about the features of the same order of
IMFs in each signal. IMFs in the same order corresponding
to each signal that resulted from the EMD algorithm may
have different features [34]. *is makes it difficult to de-
termine the effective IMFs.

MEMD algorithm overcomes these two problems. *e
IMFs, resulting from theMEMD algorithm, not only contain
comprehensive information about the system, but also, in
the same order of IMFs, almost consist of the same feature
information.*ese two advantages of MEMD, in addition to
the benefits of the EMD method, make this algorithm an
ideal choice for extracting features contributing to multi-
variate signals.

As was mentioned before, each order of IMFs calcu-
lated by noise-assisted MEMD contains a small frequency
scale. *is characteristic paves the way for analysis and
feature extraction in the frequency domain for each order
of IMFs. When a fault occurs in a rotating component of a
system, a natural frequency (or meshing frequency for
contacting components, e.g., gearboxes) is excited, which
results in a burst of energy at this frequency. To identify
the fault, it is necessary to detect the frequency occurrence
of these high-energy bursts. Since each IMF order is
composed of a small range of frequencies, by performing
frequency-domain analysis, the amplitude of the signal in
characteristic frequencies can be determined. FCF is a
suitable index to eliminate redundant IMFs or specifically
redundant frequency bands. *is amplitude can be
regarded as a fault feature for implementation in smart
analysis.

To clarify what was mentioned above, the procedure is
implemented on the synthetic signal. *e multivariate
synthetic signal is given as follows:

x1 � sin 2πf1t( 􏼁 + 0.5 cos 2πf2t( 􏼁 + 0.9 sin 2πf3t( 􏼁,

x2 � 0.7 sin 2πf1t( 􏼁 + cos 2πf2t( 􏼁 + 0.4 cos 2πf2t( 􏼁,

x3 � 0.9 sin 2πf1t( 􏼁 + 0.6 cos 2πf2t( 􏼁 + cos 2πf2t( 􏼁,

(12)

where f1 � 20 Hz, f2 � 50 Hz, and f3 � 90 Hz. *e sam-
pling point is N � 1000, and the sampling frequency is

fs � 1000Hz. White Gaussian noise is added to each signal.
Noise signals are white Gaussian signals and the corre-
sponding power is − 10 dBW.

Since noise is added to the multivariate signal, to prevent
the phenomenon of mode mixing, the NA-MEMD algo-
rithm is implemented. Figure 1 shows the calculated IMFs by
using NA-MEMD. From this figure, it is verified that each
order of IMFs has the same frequency characteristics. IMF3
to IMF5 consist of the main frequencies of component
signals. *e remaining IMFs are redundant ones, either
high-frequency IMFs which are regarded as noise or low-
frequency IMFs which are due to the stopping criterion and
do not have physical meaning.

FCF is used to determine effective IMFs and to detect
which IMFs contain frequency features. In Table 2 the
calculated results for FCF are shown. According to the
criterion of Pearson Correlation Coefficients, since IMF3 to
IMF5 have FCF higher than 0.3, they can be assumed to be
relevant IMFs, which is acceptable for the manual estimation
of these IMFs. *erefore, the process of selecting suitable
IMFs converts to a relatively automatic procedure.

*e amplitude of frequency spectrum of IMFs in
characteristic frequencies is an ideal feature for fault de-
tection of rotating machinery. In the dominant IMFs in the
studied synthetic signal, there exist peaks in the propinquity
of characteristic frequencies. *e amplitude of these peaks is
going to be used as a feature for the input of an artificial
neural network, because the amplitude of these peaks
changes when the system operates under different condi-
tions. *erefore, this characteristic can make a distinction
for different health conditions in the system.

To have accurate and reliable results from the neural
network, features as the input of the neural network must
contain the detailed information of the studied system.
Vibration signals from rotating machinery are usually
nonlinear and nonstationary. *is specification of vibration
signal, which changes the energy of the signal, is in some
frequency bands. IMF components contain information
corresponding to a frequency band; thus, the IMF energy
can be used to characterize a signal. Instead of using energy
[42] or the energy entropy of the signal [16], the energy
moment [43] is used as part of the proposed characteristic
vector. In this method, the time feature is used for the
calculation of energy; thus, it can be a complementary
feature extraction method in addition to the proposed

Table 1: Traditional feature set parameters.

Time-domain features Frequency-domain features

Root mean square pt1 �

������������

(1/N) 􏽐
N
n�1 x2

n

􏽱

Frequency barycenter pf1 � (􏽐
K
k�1 fksk/􏽐

K
k�1 sk)

Peak pt2 � max(|xn|) Root mean square frequency pf2 �

�����������������

(􏽐
K
k�1 f2

ksk/􏽐
K
k�1 sk)

􏽱

Square mean root pt3 � ((1/N) 􏽐
N
n�1

���
|xn|

􏽰
)2 Standard deviation frequency pf3 �

������������������������

(􏽐
K
k�1 (fk − pf1)

2sk/􏽐
K
k�1 sk)

􏽱

Absolute mean pt4 � (1/N) 􏽐
N
n�1 (|xn|) Frequency spectrum mean pf4 � (1/N) 􏽐

K
k�1 sk

Kurtosis pt5 � (1/N) 􏽐
N
n�1 x4

n Frequency spectrum deviation pf5 � (1/K − 1) 􏽐
K
k�1 (sk − pf4)

2

Crest factor pt6 � (pt1)/(pt2) Frequency spectrum entropy pf6 � − 􏽐
K
k�1(sk/Kpf4)log((sk/Kpf4)
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frequency-domain method. �e energy moment can dis-
tinguish signal features more accurately compared to the
classical energy method when the signal is nonlinear or
nonstationary, which will be explained in the following
paragraphs.

�e energy moment for each IMF can be calculated as

Ei � ∫ t. ci(t)
∣∣∣∣

∣∣∣∣2dt, (13)

and for continuous calculation and discrete analysis,

Ei � ∑
n

k�1
(kΔt) ci(k.Δt)

∣∣∣∣
∣∣∣∣2, (14)

where n is the total number of sampling points, Δt is the
period of samples, and k is the number of the sample points.

Energy moment can form a feature vector as follows:

T � E1, E2, . . . , En[ ]. (15)

Because the energy moment has a high value, T can be
adjusted using normalization. Assume E � ∑ni�1 Ei; then,
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Figure 1: Decomposition results by using NA-MEMD on the synthetic multivariate signal.

Table 2: Fault correlation factor for synthetic multivariate signal.

IMF order 1 2 3 4 5 6 7 8 9 10
FCF 0.2131 0.1965 0.6491 0.4125 0.6600 0.0224 0.0208 0.0366 0.0376 0.0191
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Tn �
E1

E
,
E2

E
, . . . ,

En
E

[ ], (16)

where Ti is normalized energy moment for signal ci. As is
clear from (13) and (14), the moment energy contains both
the signal energy and the signal distribution in the time
domain (because of the term t in the equations), indicating
the advantage of the moment energy over the calculation of
the classical energy [43].

3. Neural Network Structure

A BP neural network is designed to intelligently diagnose
faults in rotating machinery. To do so, a neural model of BP
must be structured. A typical BP neural network structure is
illustrated in Figure 2. �is network has one hidden layer. In
the �eld of rotating machinery fault detection, the input
layer contains features extracted from the original signal,
and the output layer is the system health conditions (i.e.,
being healthy or having a speci�c fault type).

�e number of hidden layer cells cannot be de�ned
accurately. If the hidden layer nodes are too high, the
connection between nodes increases, and as a result, the
number of connection weights increases, making the neural
network training process more complex. If the hidden layer
nodes are too small, the accuracy of the output results cannot
be guaranteed. For a three-layer network (one hidden layer),
there is an empirical and experimental relationship that
relates the number of hidden layer nodes k to the number of
input layer nodes n [43]. �e relationship is given as follows:

k � 2n + i, 0≤ i≤ 8. (17)

Note that even in this relationship, k is not de�nite and
can be changed.

In Figure 3, an overview of smart fault detection of
rotating machinery is illustrated schematically.

4. System Description

To explain the proposed method, this paper investigates the
transmission system in the wind turbine system (gearbox
and bearing), as a rotating machinery. �e vibration data
from the experiment were provided by the National Re-
newable Energy Laboratory (NREL). �e system is depicted
in Figure 4. As is indicated in the �gure, the main sections
rotate at the three speed stages, i.e., the low-speed stage
(LSS), the intermediate-speed stage (ISS), and the high-
speed stage (HSS). �e test drive is designed for the wind
turbine with rated power of 750 kW.�e overall ratio for the
gearbox system is 1 : 81.491. In Table 3, more details on the
description of the gearbox are shown [48].

To obtain vibration data from the gearbox system, ac-
celerometers are mounted on the top of the gearbox. Data
are collected at a rate of 40 kHz per channel using a National
Instruments PXI-4472B high-speed data acquisition system
(DAQ). Eight sensors are located in di�erent places of the
system to obtain comprehensive information from the
gearbox system.

As was mentioned in the previous section, the feature
vectors contain some components which are related to the
amplitude of the frequency spectrum with the characteristic
frequency. Characteristic frequency encompasses not only
the rotating frequencies of the components but also the
meshing frequencies of linked components. �e studied
system in faulty condition corresponds to three major fault
types. �e formulation for the calculation of the main
characteristic frequencies is brie§y illustrated in Table 4.

For the gearbox of �xed axis, f1, f2,N1, andN2 are the
frequency of the pinion, the frequency of the gear, the
number of teeth in the pinion, and the number of teeth in the
gear, respectively. For the planetary stage, fs, Ns,NR, and
Np are the sun frequency, the number of suns, the ring gear,
and the teeth of the planet, respectively. For the bearing, fr,
n, ϕ, d, and D are the shaft speed, the number of rolling
elements, the angle of the load from the radial plane, the
rolling element diameter, and the bearing average diameter,
respectively. In Figure 5, the main dominant characteristic
frequencies are shown schematically. �ese frequencies are
high-speed shaft (HSS) frequency, planetary gear mesh
frequency (PLTGM), high-speed shaft bearing B (Figure 4),
high-speed shaft gear mesh (HSGM), and its second and
third harmonics.

5. Method Implementation on System
and Discussion

5.1. Feature Extraction for the System. As was mentioned, the
input layer in the neural network is a vector constructed from
fault features. Some elements are composed of normalized
energy moments. First, a windowing process is implemented
on the input signal to construct as many signals as possible for
the input of the NA-MEMD algorithm as the input of the
neural network. �e signals provided by NREL are made up
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• •
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• •
 •

• •
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Figure 2: A typical BP neural network.

Computational Intelligence and Neuroscience 7



Feature Extraction stage

Intelligent fault detection stage
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selection Extract fault
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Implement artificial
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Machine fault
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Figure 3: Intelligent fault detection §owchart.
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Figure 4: Wind turbine planetary gearbox system (courtesy of NREL).

Table 3: Dimensions and mechanical details of the gear element [48].

Gear Elements No. of teeth Mate teeth Root diameter (mm) Helix angle Face width (mm) Ratio
Ring gear 99 39 1047 7.5 L 230
Planet gear 39 99 372 7.5 L 227.5
Sun gear 21 39 186 7.5 R 220 5.71
Intermediate gear 82 23 678 14 R 170
Intermediate pinion 23 82 174 14 L 186 3.57
High-speed gear 88 22 440 14 L 110
High-speed pinion 22 88 100 14 R 120 4.0

Overall: 81.49
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of 10 signals of 60 s duration. Each signal contains 2400000
data samples. A window is a section of each signal with
240000 data samples without overlapping which divides the
corresponding signal into 10 subsignals. �us, for each
condition of the system, 100 features can be constructed.
Windowing increases the feature vectors, increasing the ac-
curacy of neural network operation. Subsections are now
considered as input to the MEMD algorithm to obtain IMFs.
To avoid the mode-mixing phenomenon, NA-MEMD is used
instead of theMEMDalgorithm. 3 white Gaussian noises with
a variance of 0.1 are added as 3 new channels to the mul-
tivariate input signal. In Figure 6, the resulting IMFs for one
channel of the multivariate faulty signal are shown. 20 IMFs
are extracted from the NA-MEMD while some of them are
spurious and must be omitted from the consideration. In
Table 5, FCF values calculated for the IMFs are shown. IMFs
of orders three to eight have an FCF higher than 0.3; thus,
these IMF groups are considered as e�ective IMFs for the
calculation of energy moment.

�e feature selection algorithm is applied to the pro-
posed features. For the system studied, two classes of system
conditions are considered (K � 2) and 30 characteristics are
extracted (N� 30). �e resultant discrimination criterion is
shown in Table 6. According to the table, the values of J for
most of the MEMD characteristics are greater than the
traditional characteristics except for the value of pt1 (that is,
the root mean square).�is shows that the proposed features
can be suitable for detecting faults in the wind turbine

gearbox studied. �erefore, the feature vector can be con-
structed as follows:

F � E3′, E4′, E5′, E6′, E7′, E8′, AF6, AF8, AF11[ ], (18)

where Ei′ and AFi are normalized energy moment and
amplitude factor (AF) for the ith IMF order, respectively. It
should be noted that these features are selected based on the
studied dataset; however, the feature selection practice for all
similar datasets is the same. It means the features with
highest FCF value should be selected for the input of any
machine learning method.

In Table 7 a feature vector as a sample is depicted. It can
be seen from the table that the input vector is composed of
nine features. Although the output layer of the neural
network contains two conditions (i.e., healthy and faulty), it
is worth noting that the faulty condition encompasses three
di�erent faults. Since the data provided consist of two
conditions, inevitably two output conditions are chosen for
the neural network. �e trend of fault feature vectors is
constructed to detect faults individually. However, in this
paper, because of the limitation of data, faults are detected
simultaneously in one condition label.

5.2.�eDesignNeural Network for the System. �emain step
in designing a neural network is to train the network based on
the training samples. As mentioned earlier, the feature vectors
in the input layer contain nine components. �e number of

Table 4: Characteristic frequencies formulations.

Component Characteristic frequency Formulation
Fixed-axis gearbox Meshing frequency fm � f1N1 � f2N2

Planetary stage
Planet frequency [49] fp � ((Np − NR)Ns/(NR +Ns)Np)fs
Carrier frequency [49] fc � (Ns/NR +Ns)fs
Meshing frequency [49] fm− p � (fs − fc)Ns � (NRNS/NR +NS)fs

Bearing

Ball pass frequency, outer race [50] BPFO � (nfr/2) 1 − (d/D)cos ϕ{ }
Ball pass frequency, inner race [50] BPFI � (nfr/2) 1 + (d/D)cos ϕ{ }

Fundamental train frequency (cage speed) [50] FTF � (fr/2) 1 − d/D cosϕ{ }
Ball (roller) spin frequency [50] BSF(RSF) � (D/2 d) 1 − ((d/D)cos ϕ){ }2
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Figure 5: �e characteristic frequency of the gearbox.
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nodes in the output layer is considered to be 2, corresponding
to two conditions of system.100 feature vectors are constructed
for each system condition. 80% of data are considered as the
training data and 20% as the testing data. In this study, a three-
layer neural network is constructed for the intelligent fault
diagnosis procedure. �erefore, according to (17) and network
training conditions, the number of hidden layer nodes (k) is
18–26. In this study, k � 18, since the di�erences between the
output errors for the di�erent values of k are in the same order

(1e -5) while the learning rate is 0.001. �e training function is
TRAINLM to update the weight and bias values based on the
Levenberg–Marquardt optimization method, and the activa-
tion function between the hidden layer and output layer is
Sigmoid function. Note that the setting is similar for all ex-
periments and all experiments have been done usingMATLAB
platform. Diagnosis rate for both training data and test data is
100%. �is shows that the features and the network con�g-
uration are successfully selected.
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Figure 6: Decomposition results by using NA-MEMD on the synthetic multivariate signal.
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6. Conclusion

In this paper, the MEMD algorithm is applied for extracting
features from rotating machinery. To investigate the capacity
of the proposed method, vibration signals from a wind
turbine gearbox system as a rotating machinery system are
utilized.When the rotating system is complex and consists of
many faults, multiple sensors are exploited to obtain com-
prehensive information from the system. MEMD algorithm
has the advantage of dealing with multivariate signals si-
multaneously. Usually, when the system is nonstationary and
there are nonlinearity and multiple faults, using traditional
features may be abortive. Features derived from the MEMD
algorithm are based on the time and frequency domain,
which compensate for the problem of using traditional
features. To validate the effectiveness of the proposed fea-
tures, a discrimination criterion is introduced. *is criterion
is based on the relativity of features to the fault classes.

*e basic MEMD algorithm is sensitive to noise. In this
study, an extension of MEMD called NA MEMD is
implemented on multivariate signals to overcome the noise
sensitivity of MEMD. MEMD algorithm decomposes signals
into some signals named IMFs. Some of these IMFs are
spurious and need to be eliminated from the calculation. A
correlation factor is introduced to achieve this purpose.
With the help of this factor, the number of redundant
features is reduced. Two types of features are extracted from
the IMFs. From the point of view of time-domain analysis,
the energy moment of IMFs is a suitable feature, since it
contains the time characteristics of signals. *erefore, this
can be helpful when the signal is nonstationary. *e other
feature is in the frequency domain, and it relates to the
amplitude of frequency spectrum in the characteristic fre-
quencies. Because each IMF order encompasses a small
frequency range, frequency analysis of IMFs is an effective
way of highlighting characteristics.

Based on the results, designing a neural network using
the proposed features yields acceptable output results. *e
network is successfully trained using the training data, and
the diagnostic rate is 100% not only for the training data, but
also for the test data. It should be mentioned that the
proposed algorithm is applied to real experimental data;
however, by increasing the number of classes, the perfor-
mance may decrease.

It should be noted that intelligent feature extraction
using the proposed NA-MEMD method provides compre-
hensive information on the health status of the system. *e

proposed methodology gives higher explainability of the
features compared to other similar methods. However, re-
cently, deep learning-based methods have been successfully
implemented in industrial datasets to automatically extract
features. In spite of the effectiveness of these methods, they
require high computation resources compared with the
proposed method.
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machine-interaction in the industry 4.0 era,” in Proceedings of
the 2014 12th IEEE International Conference on Industrial
Informatics, pp. 289–294, Porto Alegre, Brazil, 2014.

[2] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Transfer learning
using deep representation regularization in remaining useful
life prediction across operating conditions,” Reliability En-
gineering & System Safety, vol. 211, p. 107556, 2021.

[3] M. Mousavi, M. Alzgool, and S. Towfighian, “Autonomous
shock sensing using bi-stable triboelectric generators and
mems electrostatic levitation actuators,” Smart Materials and
Structures, vol. 30, no. 6, Article ID 065019, 2021.

[4] W. Zhang and X. Li, Federated Transfer Learning for Intel-
ligent Fault Diagnostics Using Deep Adversarial Networks with
Data Privacy, IEEE/ASME Transactions on Mechatronics,
2021.

[5] I. Jebellat, H. N. Pishkenari, and E. Jebellat, “Training
microrobots via reinforcement learning and a novel coding
method,” in Proceedings of the 2021 9th RSI International
Conference on Robotics and Mechatronics (ICRoM), pp. 105–
111, IEEE, Tehran, Iran, 2021.

Table 6: Discrimination criterion for the proposed features.

Feature AF6 AF8 E3′ E4′ pt1 E5′ E6′ E7′ AF11 E8′ pti, pf1, pf∗i

J criterion’s value 1.932 1.812 1.720 1.600 1.541 1.021 0.952 0.741 0.603 0.402 ≤ 0.1

Table 7: Neural network input and output vector.

Feature vector System condition
[0.0826, 07469, 0.0877, 0.0200, 0.0261, 0.0367, 0.0477, 0.0409, 0.0535] Healthy
[0.2125, 0.5985, 0.0347, 0.0664, 0.0052, 0.0826, 0.5308, 0.7147, 0.0659] Faulty

12 Computational Intelligence and Neuroscience



[6] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Open-set domain
adaptation in machinery fault diagnostics using instance-level
weighted adversarial learning,” IEEE Transactions on Indus-
trial Informatics, vol. 17, no. 11, pp. 7445–7455, 2021.

[7] S. Siahpour, X. Li, and J. Lee, “A novel transfer learning
approach in remaining useful life prediction for incomplete
dataset,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 71, 2022.

[8] X. Li, W. Zhang, H. Ma, Z. Luo, and X. Li, Degradation
Alignment in Remaining Useful Life Prediction Using Deep
Cycle-Consistent Learning, IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[9] V. Fazlollahi, F. A. Shirazi, M. Taghizadeh, and S. Siahpour,
“Robust wake steering control design in a wind farm for
power optimisation using adaptive learning game theory
(algt) method,” International Journal of Control, pp. 1–17,
2021.

[10] A. Ainapure, S. Siahpour, X. Li, F. Majid, and J. Lee, “In-
telligent robust cross-domain fault diagnostic method for
rotatingmachines using noisy condition labels,”Mathematics,
vol. 10, no. 3, p. 455, 2022.

[11] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Universal domain
adaptation in fault diagnostics with hybrid weighted deep
adversarial learning,” IEEE Transactions on Industrial Infor-
matics, vol. 17, no. 12, pp. 7957–7967, 2021.

[12] S. Siahpour, F. N. Khakiani, V. Fazlollahi, A. Golozar, and
F. A. Shirazi, “Morphing omni-directional panel mechanism:
a novel active roof design for improving the performance of
the wind delivery system,” Energy, vol. 217, p. 119400, 2021.

[13] C. Shen, D. Wang, F. Kong, and P. W. Tse, “Fault diagnosis of
rotating machinery based on the statistical parameters of
wavelet packet paving and a generic support vector regressive
classifier,” Measurement, vol. 46, no. 4, pp. 1551–1564, 2013.

[14] B. Li and Y. Zhang, “Supervised locally linear embedding
projection (sllep) for machinery fault diagnosis,” Mechanical
Systems and Signal Processing, vol. 25, no. 8, pp. 3125–3134,
2011.

[15] Y. Lei, Z. He, and Y. Zi, “A new approach to intelligent fault
diagnosis of rotating machinery,” Expert Systems with Ap-
plications, vol. 35, no. 4, pp. 1593–1600, 2008.

[16] J. Ben Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, and
F. Fnaiech, “Application of empirical mode decomposition
and artificial neural network for automatic bearing fault di-
agnosis based on vibration signals,” Applied Acoustics, vol. 89,
pp. 16–27, 2015.

[17] H. D. M. de Azevedo, P. H. C. de Arruda Filho, A. M. Araújo,
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