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It is well known that stochastic coupled oscillator network (SCON) has been widely applied; however, there are few studies on
SCON with bidirectional cross-dispersal (SCONBC). �is paper intends to study stochastic stability for SCONBC. A new and
suitable Lyapunov function for SCONBC is constructed on the basis of Kirchho�’s matrix tree theorem in graph theory.
Combining stochastic analysis skills and Lyapunov method, a su�cient criterion guaranteeing stochastic stability for the trivial
solution of SCONBC is provided, which is associated with topological structure and coupling strength of SCONBC. Furthermore,
some numerical simulation examples are given in order to illustrate the validity and practicability of our results.

1. Introduction

In the past few decades, stochastic coupled oscillator net-
work (SCON) has attracted extensive attention from the
scienti�c community and has been widely used in many
�elds, such as physics [1–3], biology [4, 5], engineering [6, 7],
and so on. On the other hand, dispersal is a common
phenomenon in nature, which is due to the imbalance of
oscillators in di�erent regions. A lot of results about single
dispersal have appeared in [8–10] since it plays an important
role in the research of application problems. In addition, it is
worth noting that dispersal also occurs between di�erent
oscillators of di�erent groups, that is, bidirectional cross-
dispersal. To the best of the authors’ knowledge, SCON with
bidirectional cross-dispersal (SCONBC) is rarely studied.
Based on the above discussion, the purpose of this paper is to
research the stochastic stability of SCONBC.

As is known to all, the Lyapunov method is a powerful
tool for analyzing the stochastic stability of SCONBC. For all
that, owing to the complex structure of stochastic coupled
oscillator networks with bidirectional cross-dispersal terms,
it is quite challenging to construct the Lyapunov function for
SCONBC. Li et al. proposed a method to solve this problem
by combining graph theory in [11]. In this paper, inspired by

them, we successfully construct a suitable Lyapunov func-
tion for SCONBC by the approach combining Kirchho�’s
matrix tree theorem in graph theory, which solves the above
problem we mentioned and has been applied in various
articles [12, 13].

Gao et al. has researched periodic solutions for neutral
coupled oscillator network with feedback and time-varying
delay and the existence of periodic solutions for discrete-
time coupled systems on networks with time-varying delay
in [14, 15]. Compared with the existing literature, our in-
novations and contributions are as follows:

(1) Bidirectional cross-dispersal terms are taken into
SCONBC, and a new Lyapunov function for
SCONBC is constructed by applying Kirchho�’s
matrix tree theorem in graph theory.

(2) A su�cient criterion is obtained, which combines
stochastic analysis skills and can show how topo-
logical structure and coupling strength a�ect the
stochastic stability for the trivial solution of
SCONBC.

(3) Some numerical examples and their simulation re-
sults are provided to validate the applicability of our
theoretical results.
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+e structure of this paper is arranged as follows. Some
necessary notations are given in Section 2.1, and concepts
about graph theory are provided in Section 2.2. In Section 3,
we establish SCONBC and give its model formulation. A
sufficient criterion ensuring stochastic stability for the trivial
solution of SCONBC and its proof is offered in Section 4.
Section 5 provides some numerical simulation examples.
Finally, the conclusion is drawn in Section 6.

2. Preliminary

2.1. Notations. +roughout this paper, the notations in
Table 1 will be used unless otherwise specified.

Other notations will be explained where they first appear.

2.2. Graph#eory. Here, we introduce some useful concepts
associated with graph theory. A digraphG � (A, E) contains
a set A � 1, 2, . . . , n{ } of vertices and a set E of arcs (k, h)

which lead from initial vertex k to terminal vertex h, and
each vertex of digraph G is regarded as an oscillator. Define
the weight matrix ofG as Q � (qkh)n×n, where qkh > 0 if there
exists an arc from vertex h to vertex k. Digraph G with the
weighted matrix Q is denoted by (G, Q). +e Laplacian
matrix of digraph (G, Q) is defined as

L �


i≠1

q1i −q12 · · · −q1n

−q21 
i≠2

q2i · · · −q2n

⋮ ⋮ ⋱ ⋮

−qn1 −qn2 · · · 
i≠n

qni

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

For other details on graph theory, we refer the readers to
[16, 17].

At the end of this section, we provide a lemma in graph
theory.

Lemma 1 (see [16]) (Kirchhoff’s matrix tree theorem).
Assume that n≥ 2. Let qk denote the cofactor of the k-th
diagonal element of the Laplacian matrix of the weighted
digraph (G, Q). #en,

qk � 
T∈Tk

W(T), k ∈ K, (2)

where Tk is the set of all spanning trees T of the weighted
digraph (G, Q) that are rooted at vertex k and W(T) is the
weight of T. Particularly, if the weighted digraph (G, Q) is
strongly connected, then qk > 0.

3. Model Formulation

Stochastic oscillators have important applications in
many branches of industry [18], such as biology [19],
physics [20], and so on. In this section, we provide a
detailed description of SCONBC. Let us firstly see the
stochastic oscillator equation with white noise, which is
expressed as

€x(t) + α _x(t) � βx(t) _Β(t), (3)

where x(t) ∈ Rn is the system state, α and β are damping
coefficients, and Β(t) is a one-dimensional Brownian mo-
tion. In this paper, we consider n oscillators and the k-th
oscillator is denoted as follows:

€xk(t) + αk _xk(t) � βkxk(t) _Β(t), k ∈ K, (4)

where xk(t) ∈ R denotes the system state of the k-th os-
cillator. Since the bidirectional cross-dispersal is a common
phenomenon in our real life, in order to describe the dy-
namic behavior of system (3) more accurately, the bidi-
rectional cross-dispersal terms are added, and based on a
transform of yk(t) � _xk(t), system (4) can be written as
follows:

dxk(t) � yk(t) + 
n

h�1
akh yh(t) − xk(t)( ⎡⎣ ⎤⎦ dt,

dyk(t) � −αkyk(t) + 
n

h�1
bkh xh(t) − yk(t)( ⎡⎣ ⎤⎦dt + βkxk(t)dΒ(t), k, h ∈ K,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Table 1: Notations used in this paper.

Notation Description
R +e set of real numbers
Rn +e set of n-dimensional Euclidean space
R+ [0, +∞)

Τ +e transpose of vector
(Ω,F, Ft t≥ 0,P) A complete probability space
Ft t≥ 0 A filtration satisfying the usual conditions
P A probability measure
E +e expectation of P

Β(t)
A one-dimensional Brownian motion

defined on the complete probability space

|z|
+e Euclidean norm of vector

z � (z1, · · · zn)ΤεRn, |z| � (
n

k

z2
k)1/2

K A collection of 1, 2, . . . , n{ }

K∞

A collection of μ(·) which is on R+⟶ R+,

strictly increasing and unbounded, and
μ(0) � 0

V(z, t)

+e family of all nonnegative functions which
is on Rn × R+ and is continuously twice

differentiable in z and once in t is represented
by C2,1(Rn × R+;R+)

IΛ
An indicator function, where Λ is a

collection; if tϵΛ, IΛ � 1; otherwise, IΛ � 0
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where the dispersal of y(t) in the h-th group of oscillators
which is from x(t) in the k-th group of oscillators is
expressed as the function akh(yh(t) − xk(t)) and the
function bkh(xh(t) − yk(t)) denotes the dispersal of x(t) in
the h-th group of oscillators which is from y(t) in the k-th
group of oscillators. akh and bkh represent the coupling
strength of the irreducible coupling configuration matrices
A � (akh)n×n and B � (bkh)n×n, separately. Specially, it is
worth noting that akh and bkh � 0 if there is no cross-dis-
persal from x(t) in the k-th group of oscillators to y(t) in the
h-th group of oscillators and from y(t) in the k-th group of
oscillators to x(t) in the h-th group of oscillators.

+e form of SCONBC (5) is too complex for the readers
to read and will make subsequent proof tedious; therefore,
we solve these problems by simplifying SCONBC (5) into the
following SCONBC (6):

dzk(t) � fk zk(t), t( dt + gk zk(t), t( dΒ(t), (6)

where

zk � xk, yk( 
Τ
, gk � 0, βkxk( 

Τ
, (7)

fk zk, t( 

� yk + 
n

h�1
akh yh − xk( , −αkyk + 

n

h�1
bkh xh − yk( ⎛⎝ ⎞⎠

Τ

.

(8)

We let the initial value z(0) � z0, and it is easy to see that
there exists a trivial solution denoted as z(t; z0, 0) � z(t) to
SCONBC (4).

Subsequently, for any V(z, t) ∈ C2,1(Rn × R+;R+), a
differential operator of SCONBC (4) LV is normally de-
fined by [18]

LV(z, t)≜
zV(z, t)

zt
+

zV(z, t)

zz
f(z, t)

+
1
2
trace (g(z, t))

Τz
2
V(z, t)

zz
2 g(z, t) .

(9)

Our purpose is to explore the stochastic stability for the
trivial solution of SCONBC (4) in this paper, and its defi-
nition is given as follows.

Definition 1. If for every ε ∈ (0, 1), t ∈ R+ and the constant
τ > 0, there exists δ � δ(z0, ε, τ)> 0 such that

P |z(t)|< τ, t≥ 0{ }≥ 1 − ε, (10)

for the initial value |z0|< δ, then the trivial solution of
SCONBC (3) is stochastically stable.

4. Main Results

In this section, we will provide a theorem and its proof in
regard to the stochastic stability for the trivial solution of
SCONBC (4).

Theorem 1. #e trivial solution of SCONBC (4) is sto-
chastically stable if the following condition is satisfied for any
k, h ∈ K.

ck + dkβ
2
k ≤ 

n

h�1
ckakh − dkbkh( ≤ 2αk dk − ck, (11)

where ck and dk are the cofactors of the k-th diagonal element
of the Laplacian matrix in digraphs (G, A) and (G, B),
respectively.

Proof. We firstly construct a Lyapunov function as follows:

V(z, t) � 

n

h�1
ckx

2
k + 

n

k�1
dky

2
k, (12)

where ck, dk > 0 in light of Lemma 1.
According to the differential operator defined above, it

can be obtained that

LV(z, t) � 2 
n

k�1
ckxk, 2 

n

k�1
dkyk

⎛⎝ ⎞⎠

yk + 
n

h�1
akh yh − xk( 

−αkyk + 
n

h�1
bkh xh − yk( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, +
1
2

0, βkxk( 

2 
n

k�1
ck 0

0 2 
n

k�1
dk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

βkxk

⎛⎝ ⎞⎠,

≤ 
n

k�1
ck x

2
k + y

2
k  + 

n

k�1
akh H

(1)
kh yk, yh, t(  + y

2
k − x

2
k 

⎧⎨

⎩

⎫⎬

⎭ + 
n

k�1
dk −2αky

2
k + 

n

k�1
bkh H

(2)
kh xk, xh, t(  + x

2
k − y

2
k 

⎧⎨

⎩

⎫⎬

⎭

+ 
n

k�1
dkβ

2
kx

2
k,

(13)

where H
(1)
kh (yk, yh, t) � y2

h − y2
k and H

(2)
kh (xk, xh, t) � x2

h −

x2
k. In accordance with combination identical equation in

graph theory (see [11], +eorem 2.2) and the fact W(Q)≥ 0
as well as W(Q)≥ 0, we can know that
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n

k,h�1
ckakhH

(1)
kh yk, yh, t(  � 

Q∈Q
W(Q) 

(k,h)∈E CQ( )

H
(1)
kh yk, yh, t( ≤ 0, (14)



n

k,h�1
dkbkhH

(2)
kh xk, xh, t(  � 

Q∈Q

W(Q) 

(k,h)∈E CQ
 

H
(1)
kh yk, yh, t( ≤ 0,

(15)

where Q and Q are the sets of all spanning unicyclic graphs
of the weighted digraphs (G, A) and (G, B), respectively,
W(Q) and W(Q) are the weights ofQ and Q separately, and
CQ and CQ

, respectively, denote the directed cycle of Q as
well as Q. +en, taking inequalities (14) and (15) into in-
equality (1, we can get

LV(z,t)≤
n

k�1

ck − 
n

h�1
ckakh − dkbkh(  +dkβ

2
k

⎡⎣ ⎤⎦x
2
k +

ck + 
n

h�1
ckakh − dkbkh(  −2αkdk

⎡⎣ ⎤⎦y
2
k

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

≤0.

(16)

On the other hand, let m � min1≤k≤n ck, dk , where m is a
positive constant and we can get

V(z, t)≥ 
n

k�1
m zk



2 ≥m|z|

2 ≜ μ(|z|), (17)

where μ(.) ∈K∞ and μ(.) � m(.)2. It is obvious thatV(z, t)

is a continuous positive definite function and V(0, 0) � 0.
Hence, for every ε ∈ (0, 1) and the constant τ > 0, we can find
a δ � δ(z0, ε, τ) such that

1
ε
sup
z∈Sδ

V(z, 0)≤ μ(τ) (18)

where Sδ � z: |z|< δ{ }. +en, it can be easily obtained that
δ < τ. Subsequently, we let z0 ∈ Sδ and establish a stopping
time sequence r � inf t≥ 0, z(t) ∉ Sτ , where Sτ �

z: |z|< τ{ }.

Based on Ito’s formula, we can obtain

V(z(tΛr), tΛr) � V z0, 0(  + 
tΛr

0
LV(z(s), s)ds

+ 
tΛr

0

zV(z(s), s)

zz
g(z(s), s)dΒ(s).

(19)

Taking the expectation of both sides of equality (19) and
on the basis of inequality (16), it is derived that

EV(z(tΛr), tΛr)≤V z0, 0(  . (20)

When r≤ t, in conformity with inequality (17), we can
get

EV(z(tΛr), tΛr)≥E I r≤t{ }V(z(r), r) ≥ μ(τ)P r≤ t{ }. (21)

According to inequalities (20) and (21) and δ that we find
above, it can be obtained that

P r≤ t{ }≤ ε. (22)

Let t⟶∞, and we can get

P r≤∞{ }≤ ε. (23)

+erefore,

P |z(t)|< τ, t≥ 0{ }≥ 1 − ε, (24)

which means that the trivial solution of SCONBC (4) is
stochastically stable according to Definition 1. □

Remark 1. +e condition in+eorem 1 is mild and reflects
the close relationship between the stochastic stability
for the trivial solution of SCONBC (4) and the topological
structure of digraphs (G, A) and (G, B). In addition,
due to the high dimension as well as the complex structure
of SCONBC (4), it is obviously difficult to establish
a suitable Lyapunov function for SCONBC (4). In this
paper, we propose a framework method to solve this
problem, that is, constructing Lyapunov function by
Kirchhoff’s matrix tree theorem in graph theory, and
the method can be applied to more complex network
models.

Remark 2. In recent years, the dynamic behavior of sto-
chastic coupled oscillator networks has been widely
studied and applied. Zhang et.al researched the exponential
synchronization problem of stochastic coupled oscillator
networks with time-varying delays in [21]. In [22], Li et al.
illustrated the synchronous stationary distribution of hybrid
stochastic coupled oscillator networks. Different from the
above results, this paper explores stochastic coupled oscil-
lators with bidirectional cross-dispersal terms, which makes
the study of SCONBC (4) more practical.

5. Numerical Test

In this part, some numerical simulation examples are provided
to verify the validity of our results. Here, we consider SCONBC
(4) with n � 3 oscillators and let positive constants
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α1 � 7.33, α2 � 3.70, α3 � 6.37,

β1 � 1.20, β2 � 0.88, β3 � 0.57.
(25)

+e coupling configuration matrices are

A �

0 1.80 0.48

1.51 0 0.32

0.52 1.63 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (26)

B �

0 1.05 0.12
0.45 0 0.23
0.24 1.21 0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (27)

which are irreducible evidently. By calculation, we can get
that

c1 � 3.4129, c2 � 4.6524, c3 � 1.4544, d1 � 0.7077,

d2 � 1.6677, d3 � 0.3231,
(28)

which means that the condition in +eorem 1 is met.
+erefore, SCONBC (4) is stochastically stable, whose dy-
namic behavior can be seen in Figures 1–3 with the initial
values as follows:

z1 � (2.00, 1.00)
Τ
, z2 � (−0.20, 0.80)

Τ
, z3 � (1.00, −0.04)

Τ
.

(29)

6. Conclusion

In this paper, we have researched stochastic stability for the
trivial solution of SCONBC (4). Based on Kirchhoff’s matrix
tree theorem in graph theory, a new and suitable Lyapunov
function is constructed. A sufficient criterion which ensures
that the trivial solution of SCONBC (4) is stochastically
stable has been given by applying stochastic analysis skills
and Lyapunov method. Finally, some numerical simulation
examples have been presented to explain the validity of our
theories. Compared with the stochastic coupled oscillator
networks studied in the previous papers [14, 15], this paper
considers the bidirectional cross-dispersal terms. Due to the
phenomenon of bidirectional cross-dispersal between dif-
ferent oscillators in different groups, our results can be
widely used in the study of biological populations, the in-
teraction of physical oscillators, and so on. However, this
paper has considered the small noise in real life, namely,
white noise, but in real life, there are many colored noises
such as Levy noise, Poisson noise, second moment process
noise, and so on, which is the limitation of this article and
our future research work.
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Figure 2: +e sample path of the trivial solution z2(t) for
SCONBC (4).
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Figure 1: +e sample path of the trivial solution z1(t) for
SCONBC (4).
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Figure 3:+e sample path of the trivial solution z3(t) for SCONBC
(4).
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