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Heart disease causes major death across the entire globe. Hence, heart disease prediction is a vital part of medical data analysis.
Recently, various data mining and machine learning practices have been utilized to detect heart disease. However, these
techniques are inadequate for efectual heart disease prediction due to the defcient test data. In order to progress the efcacy of
detection performance, this research introduces the hybrid feature selection method for selecting the best features. Moreover, the
missed value from the input data is flled with the quantile normalization and missing data imputation method. In addition, the
best features relevant to disease detection are selected through the proposed hybrid Congruence coefcient Kumar–Hassebrook
similarity. In addition, heart disease is predicted using SqueezeNet, which is tuned by the dwarf mongoose optimization algorithm
(DMOA) that adapts the feeding aspects of dwarf mongoose. Moreover, the experimental result reveals that the DMOA-
SqueezeNet method attained a maximum accuracy of 0.925, sensitivity of 0.926, and specifcity of 0.918.

1. Introduction

Heart disease destroys the function and structure of the
heart, which causes the major death of humans around the
globe. Several heart diseases produce heart attacks, the most
difcult cardiovascular disease [1]. Te major part of the
human body is the heart, which pumps blood into the entire
body organ. In case, the heart does not function properly,
then the diferent organs in the human body will stop to
work make to death. Hence, the regular functioning of the
heart is very important. Heart disease is considered the most
important reason for death worldwide [2]. Moreover, heart
disease is generally occurring in both women and men.
Hence, the invention of an efcient heart disease prediction
technique helps to reduce the death rate [3, 4]. In the medical
feld, heart disease diagnosis is a complex task, regularly

increasing the mortality rate. Hence, the researchers have
introduced an automatic disease diagnosis technique for
perceiving heart disease. To detect heart disease, the re-
searchers gathered the clinical data from clinical experience,
and the detection is done by decision-making method and
doctor’s diagnosis [1].

Recently, various researchers utilized machine learning,
data mining, and deep learning techniques in healthcare for
predicting heart disease [5]. Deep learning is an extended
version of the machine learning model, normally utilized in
image and data processing techniques in numerous medical
felds [6–9]. Normally, data mining methods are utilized to
compute the relationship among numerous factors and
hidden information of input data [10, 11]. Various deep
learning models [12] have been applied to acquire the sig-
nifcant performance of heart disease prediction [13, 14]. For
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heart disease prediction, feature selection is considered as a
signifcant step [13, 15]. Te high reliability and precision
classifcation methods ofer more assistance to data in
recognizing prospective patients. Te commonly used heart
disease prediction techniques are logistic regression, clus-
tering algorithm, Näıve Bayes, neural networks, and support
vector machine (SVM), which ofer substantial performance
in heart disease prediction [16, 17]. Furthermore, missing
and uncertain data disturbs the prediction method’s per-
formance [4, 18]. Moreover, deep learning methods provide
efective performance with massive and unclear datasets. In
addition, deep learning techniques help to classify the in-
existence and existence of heart disease [2, 19].

Te heart disease prediction technique using a newly
devised model is explained in this paper. Te input data is
preprocessed here using quantile normalization and missing
data imputation. Ten, the preprocessed data is processed
under the feature selection to choose the relevant features
based on the congruence coefcient and
Kumar–Hassebrook similarity. Te SqueezeNet does the
heart disease prediction, wherein the weight of SqueezeNet is
learned by the DMOA that provides the detected outcome is
either normal or abnormal patients.

Te novelty of this research is specifed by

(i) Proposed hybrid Congruence coefcient
Kumar–Hassebrook similarity for feature selection: In
this research, the best feature from the input data is
chosen by the hybrid congruence coefcient
Kumar–Hassebrook similarity. Here, the pre-
processed data is frst given to the Congruence co-
efcient that selects the top score features.Ten, these
features are again sent to the Kumar-Hassebrook
similarity that selects the most appropriate features.
In addition, the heart disease prediction is completed
by the SqueezeNet, which is learned by the DMOA.

Te structure of this paper is given in this section.
Section 2 describes the literature survey of heart disease
detection, the proposed methodology is explained in Section
3, results and discussion of the introduced model are
exhibited in Section 4 and then Section 5 shows the con-
clusion of this paper.

2. Literature Survey

Te survey of numerous heart disease prediction methods is
given as follows: Kora et al. [20] introduced the bacterial
foraging particle swarm optimization (BF-PSO) for
detecting heart disease. Here, the hybrid BF-PSO is designed
by integrating Bacterial foraging optimization (BFO) with
particle swarm optimization (PSO). Although the proposed
model provides improved detection accuracy by extracting
more relevant features, this method had maximum training
time. Manur et al. [4] modeled the bi-directional long short-
term memory with conditional random feld (Bi-LSTM-
CRF) to predict heart disease. Here, the medical data was
examined by the bidirectional LSTM, and the CRF model
was employed to compute the relationship among various
features. Te computation cost of this method was

maximum. Budholiya et al. [21] introduced the XGBoost
mode for diagnosing heart disease. However, the model
failed to process complicated datasets. Oliver et al. [1] in-
troduced the regressive learning-based neural network
classifer (RLNNC) for predicting heart disease.Tis method
provided a better detection result, but the computation cost
of this method was high.

3. Challenges

Te complications of various prevailing heart disease pre-
diction techniques are given as follows:

(i) In [20], the BF-PSO model was introduced to
predict heart disease. However, the scheme pro-
duced the minimum detection accuracy with very
large databases.

(ii) In [4], the bi-LSTM-CRF model was devised to
detect heart disease early. However, this method
provides poor detection performance since the
detection method did not utilize any algorithm for
training the classifer.

(iii) Te challenges of the proposed method in [21] are
that it only detects heart disease, but did not detect
any other similar tasks.

(iv) Te major challenging step of heart disease pre-
diction is feature extraction. Moreover, using high
dimensional data increases the training time of
classifers.

4. Proposed Congruence Coefficient Kumar-
Hassebrook Enabled Feature Selection and
DMOA-SqueezeNet for Heart
Disease Detection

Tis research introduced an efective heart disease detection
approach, namely, DMOA-SqueezeNet. Initially, input data
is considered from a specifc dataset [22], which is given to
preprocessing phase where the image is preprocessed using
quantile normalization [23] and missing data imputation.
After that, feature selection is done to select the suitable
features utilizing the proposed hybrid feature selection
scheme, namely, the congruence coefcient
Kumar–Hassebrook similarity. Finally, heart disease pre-
diction is performed using SqueezeNet [22], which is trained
using an optimization algorithm, namely, DMOA [24]. Te
block diagram of the newly modeled heart disease detection
technique is revealed in Figure 1.

4.1. Get the Input Data. Te input data is taken from the
heart disease dataset C, which consists of d number of heart
disease data, and is formulated as

C � C1, C2, . . . , Ca, . . . , Cd , (1)

where d denotes the total number of medical data, Ca

specifes the ath number of data, and this data is considered
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for forecasting the heart disease in this research, and the
dimension of original data is k × n.

4.2. Preprocessing. Tis step explains the preprocessing of
input data Ca with size k × n using quantile normalization
[23] and missing data imputation. Te preprocessing
method is used to remove the redundant data from the input
data Ca with size k × n.

4.2.1. Quantile Normalization. For quantile normalization,
the input data (Ca)k×n is subjected to quantile normalization
[23] for normalizing it. Te process of quantile normali-
zation is a simple procedure to normalize the input data. To
perform the quantile normalization, the frst step is to rank
the input data based on its magnitude values and then
compute the average values of input data with the same rank.
After that, applying the values of input data occupying that
specifc rank with the average value. Te fnal step is to
rearrange the input data into the original order. Hence, the
outcome of quantile normalization is indicated as Qk×n.

4.2.2. Missing Data Imputation. After the quantile nor-
malization, the missing data imputation is performed,
replacing the missing data from the normalized data Qk×n

with the substituted values. Here, the missing values are
substituted in two ways, like numerical attribute substitution
and categorical attribute substitution. For numerical attri-
bute substitution, the mean values of numerical data are
computed and then substituted it with the missing values.
For categorical attribute substitution, most data type is
substituted with the missing values. Hence, the outcome of
missing data imputation is indicated as Xk×n.

4.3. Feature Selection. After the preprocessing, the processed
data contains various relevant and irrelevant features.

However, all of these features are not necessary for heart
disease prediction; hence the prediction process requires
only meaningful features. Tus, feature selection is required
to select the appropriate and meaningful features. In this
research, the suitable features are selected by the proposed
hybrid congruence coefcient Kumar–Hassebrook similar-
ity. For that, initially, the preprocessed data Xk×n is sent to
the congruence coefcient and then the outcome of the
congruence coefcient is passed to the Kumar–Hassebrook
similarity so that the best features are selected.

4.3.1. Congruence Coefcient. Te congruence coefcient
[25] is utilized to select the features from Xk×n by comparing
the candidate feature with the target values. It is used to
evaluate the similarity of two confgurations. It increases the
prediction accuracy of the model. Hence, the expression for
the congruence coefcient is given by

Jk �
 PR

���������

 P
2

 R
2

 , (2)

where P denotes the candidate feature and R specifes the
target values. After calculating the congruence coefcient,
the top o features with a high degree of factor are selected as
the best feature, and the selected feature from the congru-
ence coefcient is denoted as Yk×o, where n> o.

4.3.2. Kumar–Hassebrook Similarity. After selecting the best
feature Yk×o using the congruence coefcient, the
Kumar–Hassebrook similarity [26] is applied on it to select
the most appropriate feature. In Kumar–Hassebrook simi-
larity, the best feature is picked by comparing the candidate
feature with the target value, and the expression becomes

MKHS �
 TV

 T
2

+  V
2

−  TV
, (3)
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Figure 1: Block diagram of the proposed technique for heart disease detection.
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where T denotes the candidate feature and V specifes the
target values. After computing the Kumar–Hassebrook
similarity, the top z features with the highest values are
selected as the fnal best features, and the selected feature
from the Kumar–Hassebrook similarity is denoted as Vk×z,
where o> z.

4.4. Heart Disease Prediction Using SqueezeNet. Te dys-
function of the actual processing of the heart is called heart
disease. Generally, heart diseases are identifed through
various deep-learning techniques. In this research, the heart
disease prediction is done using SqueezeNet [22], which is
trained by the DMOA method. Here, the SqueezeNet model
selects the input as Vk×z for heart disease prediction. Te
gain of the SqueezeNet model is that it provides better
detection results with simple construction costs. Ten, the
structure of SqueezeNet is explained in the succeeding
section.

4.4.1. Structure of SqueezeNet. Te SqueezeNet [22] gen-
erally comprises of various fre modules, and the fre
modules contain a squeeze convolution layer and an expand
layer. In the fre modules, the outcome of the squeeze
convolution layer is sent to the next expand layer. Moreover,
the SqueezeNet starts with a standalone convolution layer
tracked by the 8 fre modules and ends with the fnal
convolution layer. Ten, the outcome of the SqueezeNet
model is represented as Bm. In addition, the SqueezeNet
performs the max-pooling operation in two strides, shown
in Figure 2.

4.4.2. SqueezeNet Training Using DMOA. Te SqueezeNet
used in this research is trained with the DMOA, which is
elaborated in this section. Te basic principle of DMOA is
based on the foraging characteristic of the dwarf mongoose.
DMOA [24] is a metaheuristic model for resolving opti-
mization complexities. DMOA has the ability to generate
and improve the candidate solution for the specifed opti-
mization problems. In this algorithm, the dwarf monkeys
explore the diferent areas of problem search space, as a
result, they are moving from one food source to another.
Moreover, DMO utilizes only one parameter for tuning. Te
algorithmic steps of DMOA are explained as follows:

(1) Initialization. Te algorithmic constraints and solutions
are initialized in the frst step, which is utilized to generate
the optimal solution.

(2) Fitness Measure. Te optimal solution is chosen based on
the MSE, which is formulated as

bmin �
1
w



w

m�1
B
∗
m − Bm( 

2
, (4)

where w denotes the total sample count, B∗m denotes the
expected outcome, and denotes the classifed outcome of
SqueezeNet.

(3) Alpha Group. After the population initialization, the
efectiveness of the entire solution is determined. In this step,
the alpha female is selected with respect to the likelihood
values, which are calculated by

k �
bmin( p


t
p�1 bmin( p

. (5)

Here, t specifes the mongoose count in k and bmin
specifes the ftness function. Te upgrading strategy of the
solution is given as

sp+1 � sp + αp ∗Q. (6)

Here, the distributed random number is signifed as αp,
and the vocalization of the leading female is denoted as Q,
which sustains the family and sp specifes the solution of the
present iteration. After every iteration, the sleeping mount is
computed, which is given by

Lr �
bmin( p+1 − bmin( p

max bmin( p+1 − bmin( p



 
. (7)

Moreover, the average count of the sleeping mound is
formulated as

ω �


t
p�1 Lr

t
. (8)

Here, Lr denotes the sleeping mount and t specifes the
total number of sleeping mounts. After fulflling the baby-
sitting exchange criterion, the DMOA algorithm enters into
the scouting stage.

Selected features 
Vk×z

Conv 1 Fire-2 Fire-9

Conv10Sofmax

Normal

Abnormal

Classifed 
outcome 

Bm

Figure 2: SqueezeNet design.
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(4) Scout Group. In this step, the mongoose moves in the
optimal sleeping mound while the family explores in the
long distance. Tus, the scout mongoose is formulated as

sp+1 �
sp − D∗ αp ∗ z sp − S

→

, ifωp+1 >ωp,

sp + D∗ αp ∗ z sp − S
→

, Otherwise.

⎧⎪⎨

⎪⎩
(9)

Here, z indicates the random value among (0, 1) and
then the value of D and S

→
is computed as

D � 1 −
U

HU

 

2∗U/HU( )

,

S
→

� 

t

p�1

sp∗Lr

sp

.

(10)

Babysitters are inferior group persons so they are nor-
mally youngsters and are focused on activating the female
alpha for performing the daily hunting. Algorithm 1 shows
the pseudocode of DMOA.

(5) Re-Evaluation of Feasibility.Te feasibility of the solution
is determined with respect to the ftness value computation.
Here, the smallest value of MSE is considered the best so-
lution so that the poor solution is iteratively replaced by the
best solution.

(6) Termination. All the above-mentioned processes are
performed continuously till the optimum solution is
attained. Algorithm 1 displays the pseudocode of the DMOA
algorithm.

5. Results and Discussion

Te results and discussion of the proposed DMOA-
SqueezeNet for heart disease prediction are elucidated in this
section.

5.1. Experimental Setup. Te introduced model is imple-
mented in the python tool on PC with windows 10 OS and
intel i3 core processor.

5.2. Description of Dataset. Te dataset used for the pro-
jected scheme is the heart disease dataset (Cleveland) [24],
and the Z-Alizadeh Sani dataset [27]. Te Cleveland dataset
contains 76 attributes. Te Z-Alizadeh Sani dataset contains
a total of 303 patients record with 54 attributes. Specifcally,
this dataset is utilized to detect heart disease, wherein the
integer values vary between 0 and 4.

5.3. Performance Metrics. Te metrics used to assess the
efciency of DMOA-SqueezeNet are accuracy, sensitivity,
and specifcity, which are given in the next section.

5.3.1. Accuracy. Testing accuracy is used to quantify the
efectiveness of detection results, which is given by

u1 �
gp + gn

gp + gn + hp + hn

, (11)

where gp defnes the true positive, gn indicates the true
negative, hp expresses the false positive, and hn states the true
negative.

5.3.2. Sensitivity. Te metrics used to measure the accu-
rateness of true positive rate, which is defned by

u2 �
gp

gp + hn

. (12)

5.3.3. Specifcity. Te metrics used to quantify the accu-
rateness of false negative rate, which is defned by

u3 �
gn

gn + hp

. (13)

5.4. Comparative Methods. Te performance of DMOA-
SqueezeNet is assessed with four comparative methods, such
as BF-PSO [20], bi-LSTM-CRF [4], XGBoost [21], RLNNC
[1], and DMOA-SqueezeNet (without feature selection).

5.5. Comparative Analysis. Te analysis of novel heart dis-
ease prediction is accomplished by adjusting the two types of
varying data, like training data and k value.

5.5.1. Analysis Regards to Cleveland Dataset

(1) Analysis Regards to Training Data. Te comparative
analysis of DMOA-SqueezeNet with varying training per-
centage data for the Cleveland dataset is specifed in Figure 3.
Figure 3(a)) displays the accuracy graph of DMOA-Squee-
zeNet. Te accuracy of DMOA-SqueezeNet is 0.925, which is
2.69% better than BF-PSO, 2.11% better than Bi-LSTM-CRF,
1.57% better than XGBoost, 0.831% better than RLNNC, and
0.692% better than DMOA-SqueezeNet (without feature
selection) when the train data% is 90. Te sensitivity graph of
DMOA-SqueezeNet is exhibited in Figure 3(b)). Here, the
sensitivity of DMOA-SqueezeNet is 0.926 for 90% of train
data, which is 9.83%, 7.50%, 4.65%, 1.96%, and 1.6% higher
than the BF-PSO, bi-LSTM-CRF, XGBoost, RLNNC, and
DMOA-SqueezeNet (without feature selection), respectively.
Te specifcity attained by the DMOA-SqueezeNet is given in
Figure 3(c)). Here, the specifcity of DMOA-SqueezeNet is
0.918 for 90% of train data, which is 4.29%, 2.88%, 1.72%,
0.12%, and 0.1% higher than the prevailing methods.

(2) Analysis Regards to k-value. Te accuracy graph of DMOA-
SqueezeNet is exhibited in Figure 4(a)). Here, the accuracy of
DMOA-SqueezeNet is 0.922 for K-Fold� 9, which is 1.66%,
1.26%, 0.80%, 0.51%, and 0.406% higher than the BF-PSO, Bi-
LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet
(without feature selection). Te sensitivity attained by the
DMOA-SqueezeNet is given in Figure 4(b)). Here, the
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Figure 3: Training data-based analysis for Cleveland dataset: (a) accuracy, (b) sensitivity, and (c) specifcity.

Initiate the algorithmic constraints
while (U<HU) do
For (p � 1 to k) do
Estimate the ftness of mongoose
Set the time counter
Estimate the value of alpha by equation (5)
Compute the best solution by equation (6)
Evaluate the sleeping mound using equation (7)
Evaluate the mean value of the sleeping mound using equation (8)
Compute the movement vector using equation (9)
Execute the scout mongoose for a successive solution using equation (10)
End for
c � c + 1
end while
Get the best solution

ALGORITHM 1: Pseudocode of DMOA.
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sensitivity of DMOA-SqueezeNet is 0.918 for K-Fold� 9,
which is 2.41%, 1.43%, 1.40%, 0.67%, and 0.382% higher than
the prevailingmethods. Figure 4(c)) shows the specifcity graph
of DMOA-SqueezeNet. Te specifcity of DMOA-SqueezeNet
is 0.90, which is 6.22% better than BF-PSO, 4.83% better than
bi-LSTM-CRF, 3.69% better than XGBoost, 2.08% better than
RLNNC, and 1.3% better than DMOA-SqueezeNet (without
feature selection) for K-Fold� 9.

5.5.2. Analysis Regards to Z-Alizadeh Sani Dataset

(1) Analysis Regards to Training Data. Figure 5 shows the
comparative analysis of DMOA-SqueezeNet with varying
training percentage data for the Z-Alizadeh Sani dataset.
Figure 5(a)) displays the accuracy graph of DMOA-
SqueezeNet. Te accuracy of DMOA-SqueezeNet is 0.911,
whereas the existing BF-PSO, bi-LSTM-CRF, XGBoost,

RLNNC, and DMOA-SqueezeNet (without feature selec-
tion) have an accuracy of 0.886, 0.892, 0.897, 0.903, and
0.904 when the train data% is 90. Te sensitivity graph of
DMOA-SqueezeNet is exhibited in Figure 5(b)). Here, the
sensitivity of DMOA-SqueezeNet is 0.917 for 90% of train
data, and 0.827, 0.848, 0.874, 0.899, and 0.902 for BF-PSO,
bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet
(without feature selection), respectively. Te specifcity
attained by the DMOA-SqueezeNet is given in Figure 5(c)).
Here, the specifcity of DMOA-SqueezeNet is 0.908 for 90%
of train data, and 0.870, 0.882, 0.893, 0.907, and 0.907 for BF-
PSO, bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-
SqueezeNet (without feature selection), respectively.

(2) Analysis Regards to k-fold. Te K-Fold analysis using the
Z-Alizadeh Sani dataset is shown in Figure 6. Te accuracy
graph of DMOA-SqueezeNet is exhibited in Figure 6(a)).
Here, the accuracy of DMOA-SqueezeNet is 0.902 for
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Figure 4: K-fold-based analysis for Cleveland dataset: (a) accuracy, (b) sensitivity, and (c) specifcity.
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K-Fold� 9, and the existing BF-PSO, bi-LSTM-CRF,
XGBoost, RLNNC, and DMOA-SqueezeNet (without feature
selection) have the accuracy of 0.887, 0.890, 0.894, 0.897, and
0.898, respectively. Te sensitivity attained by the DMOA-
SqueezeNet is given in Figure 6(b)). Here, the sensitivity of
DMOA-SqueezeNet is 0.907 for K-Fold� 9, and 0.885, 0.894,
0.894, 0.901, and 0.903 for BF-PSO, bi-LSTM-CRF, XGBoost,
RLNNC, and DMOA-SqueezeNet (without feature selection).
Figure 6(c)) shows the specifcity graph of DMOA-Squee-
zeNet. Te specifcity of DMOA-SqueezeNet is 0.903, and
0.846, 0.859, 0.869, 0.884, and 0.891 for BF-PSO, bi-LSTM-
CRF, XGBoost, RLNNC, and DMOA-SqueezeNet (without
feature selection) when K-Fold� 9.

5.6. Comparative Discussion. Te comparative discussion of
DMOA-SqueezeNet with prevailing techniques for heart
disease prediction is defned in Table 1. Here, the analysis is
done by varying the training data and k-value using the

Cleveland dataset and Z-Alizadeh Sani dataset. In this re-
search, for the Cleveland dataset, the DMOA-SqueezeNet
acquired a superior performance than the prevailing
methods based on the training data. Te accuracy, sensi-
tivity, and specifcity of DMOA-SqueezeNet are 0.925, 0.926,
and 0.918, whereas the prevailing methods, such as BF-PSO,
are 0.900, 0.835, and 0.879, bi-LSTM-CRF is 0.906, 0.857 and
0.891, XGBoost is 0.911, 0.883 and 0.902 and RLNNC is
0.918, 0.908 and 0.917. By considering the Z-Alizadeh Sani
dataset the accuracy, sensitivity, and specifcity obtained by
the proposed method are 0.911, 0.917, and 0.908, respec-
tively, for varying the training data.

Te reasons for the better performance of the proposed
method are discussed as follows: In the proposed method,
the redundant data is removed in the preprocessing step,
which reduces the running time of the process. Also, the
prediction process required meaningful features, which is
done by the hybrid congruence coefcient
Kumar–Hassebrook similarity. Moreover, the SqueezeNet
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Figure 5: Training data-based analysis for Z-Alizadeh Sani dataset: (a) accuracy, (b) sensitivity, and (c) specifcity.

8 Computational Intelligence and Neuroscience



Ac
cu

ra
cy

0.90

0.88

0.86

0.84

0.82

0.80

0.78

5.0 6.0 7.0
K-value

8.0 9.0

BF-PSO
Bi-LSTM-CRF

XGBoost

RLNNC
DMOA-SqueezeNet (without
feature selection)
Proposed DMOA
-SqueezeNet

(a)

0.90

0.88

0.86

0.84

0.82

0.80

5.0 6.0 7.0
K-value

8.0 9.0

BF-PSO
Bi-LSTM-CRF

XGBoost

RLNNC
DMOA-SqueezeNet (without
feature selection)
Proposed DMOA
-SqueezeNet

Se
ns

iti
vi

ty

(b)

Sp
ec

ifi
ci

ty

0.900

0.875

0.850

0.825

0.800

0.775

0.750

0.725
5.0 6.0 7.0

K-value
8.0 9.0

BF-PSO
Bi-LSTM-CRF

XGBoost

RLNNC
DMOA-SqueezeNet (without
feature selection)
Proposed DMOA
-SqueezeNet

(c)

Figure 6: K-fold-based analysis for Z-Alizadeh Sani dataset: (a) accuracy, (b) sensitivity, (c) specifcity.

Table 1: Comparative discussion.

Variations Metrics BF-PSO Bi-LSTM-CRF XGBoost RLNNC DMOA-SqueezeNet
(without feature selection) Proposed DMOA-SqueezeNet

Cleveland dataset

Training data
Accuracy 0.900 0.906 0.911 0.918 0.919 0. 25
Sensitivity 0.835 0.857 0.883 0.908 0.912 0. 26
Specifcity 0.879 0.891 0.902 0.917 0.915 0. 18

K value
Accuracy 0.907 0.911 0.915 0.918 0.919 0.922
Sensitivity 0.896 0.905 0.905 0.912 0.915 0.918
Specifcity 0.853 0.865 0.876 0.890 0.898 0.909

Z-Alizadeh Sani dataset

Training data
Accuracy 0.886 0.892 0.897 0.903 0.904 0.911
Sensitivity 0.827 0.848 0.874 0.899 0.902 0.917
Specifcity 0.870 0.882 0.893 0.907 0.907 0.908

K value
Accuracy 0.887 0.890 0.894 0.897 0.898 0.902
Sensitivity 0.885 0.894 0.894 0.901 0.903 0.907
Specifcity 0.846 0.859 0.869 0.884 0.891 0.903
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model used for the prediction provides a better detection
result with a simple construction cost. Tus, the perfor-
mance of the proposed method is better than the conven-
tional approaches.

 . Conclusion and Future Directions

Te heart disease prediction technique, namely, DMOA-
SqueezeNet is explicated in this research. For heart disease
prediction, the input data is preprocessed, and the various
methods select the appropriate features. Here, the heart
disease prediction is done by the SqueezeNet model,
wherein the DMOA trains the weight and bias of
SqueezeNet. DMOA is modeled by adapting the feeding
behavior of dwarf mongooses. Moreover, DMOA contains
only one parameter for fnding the optimal solution.
Moreover, the preprocessing method uses quantile nor-
malization and missing data imputation. Te feature se-
lection is done by the hybrid congruence coefcient
Kumar–Hassebrook similarity. Here, the selected feature
from the congruence coefcient is passed to the
Kumar–Hassebrook similarity, again selecting the higher
score features for heart disease prediction. Moreover, the
experimental result reveals that the DMOA-SqueezeNet
method attained a higher accuracy of 0.925, a sensitivity of
0.926, and a specifcity of 0.918. However, the perfor-
mance of the proposed method is evaluated by using some
limited metrics. In the future, the efectiveness of the
invented model can be progressed by adapting various
optimization techniques for designing an efcient hybrid
optimization scheme. Also, it will be further enhanced to
classify heart diseases and the performance will be eval-
uated by considering more metrics.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.
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