
Research Article
MSIS: Multispectral Instance Segmentation Method for
Power Equipment

Jun Shu ,1 Juncheng He ,2 and Ling Li 2

1School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
2Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,
Hubei University of Technology, Wuhan 430068, China

Correspondence should be addressed to Jun Shu; 201910248@hbut.edu.cn and Juncheng He; 3410472132@qq.com

Received 20 August 2021; Revised 22 November 2021; Accepted 29 November 2021; Published 4 January 2022

Academic Editor: (ippa Reddy G

Copyright © 2022 Jun Shu et al.(is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Infrared image of power equipment is widely used in power equipment fault detection, and segmentation of infrared images is an
important step in power equipment thermal fault detection. Nevertheless, since the overlap of the equipment, the complex
background, and the low contrast of the infrared image, the current method still cannot complete the detection and segmentation
of the power equipment well. To better segment the power equipment in the infrared image, in this paper, a multispectral instance
segmentation (MSIS) based on SOLOv2 is designed, which is an end-to-end and single-stage network. First, we provide a novel
structure of multispectral feature extraction, which can simultaneously obtain rich features in visible images and infrared images.
Secondly, a module of feature fusion (MARFN) has been constructed to fully obtain fusion features. Finally, the combination of
multispectral feature extraction, the module of feature fusion (MARFN), and instance segmentation (SOLOv2) realize multi-
spectral instance segmentation of power equipment.(e experimental results show that the proposedMSISmodel has an excellent
performance in the instance segmentation of power equipment. (e MSIS based on ResNet-50 has 40.06% AP.

1. Introduction

In the fault detection of power systems, infrared imaging
technology has the characteristics of operationally simple,
fast response speed, and accurate judgment; it has become an
important tool for the systems of failure detection [1]. By
processing the collected images, the fault status of the power
equipment can be diagnosed and the fault area of the
equipment can be determined. To better process infrared
images, many scholars have used image segmentation
technology to conduct a lot of research and mainly divided
into the traditional methods, the machine learning methods,
and the deep learning methods, as shown in Table 1.

In the traditional segmentation method, Zhou et al.
extract potential regions of faults by superpixel segmenta-
tion method, and then, the residual network has used to
screen the real position of fault [2]. (e Ostu algorithm is
used to segment the image by Fan et al. To accurately
segment the overheated area, the active contour model was

used to refine the edge.(e fuzzy C-means (FCM) clustering
algorithm was used to suppress the oversegmentation, and
finally, the overheated area was accurately divided [3]. In the
machine learning method, Xu et al. proposed a fault region
extraction method based on a pulse-coupled neural network
(PCNN).(is method reduces the internal parameters of the
PCNN, and local features of the fault and nonfault regions
are combined to achieve adaptive iteration, which can ef-
fectively extract the faulty area [5]. Shanmugam and
Chandira Sekaran used the FCM clustering algorithm to
segment infrared images, and the Modified Ant Lion Op-
timization (MALO) and Region Pros function are used to
optimize the segmentation area [4]. (e instance segmen-
tation of power equipment uses the color and texture in-
formation of the equipment to segment the overall
equipment, which provides a basic image for subsequent
diagnosis of equipment failures. Qi et al. proposed a new
method of infrared image segmentation based on a multi-
information fused fuzzy clustering method. (is method
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segmented the complete power equipment by constructing a
joint domain of fuzzy clustering field (FCF) and Markov
random field (MRF) [7]. Guo et al. proposed a diagnosis
system based on the comprehensive analysis of infrared
images. (is system uses the Sobel operator and Canny
operator for preprocessing, the SIFT algorithm extracts
prefeature points, and the K-means clustering identifies
power equipment [6]. With the development of deep
learning, deep learning has been applied to more and more
tasks. Image classification [12, 13], semantic segmentation,
object detection, and instance segmentation [14, 15] have
become recent academic hotspots. Infrared image seg-
mentation based on deep learning has also been proposed by
many scholars. Wang et al. used Mask R-CNN to extract the
insulator instances in the infrared image, and the temper-
ature distribution of each insulator was obtained by function
fitting. (is method realizes the automatic diagnosis of
infrared faults of power equipment [8]. Jiang et al. used the
Mask R-CNN framework to build a target detection system,
which can accurately extract the bushing frame. (e seg-
mentation performance of the faulty area is improved by
combining it with a pulse-coupled neural network based on
linear iterative clustering [10]. Yan et al. established a
multispectral instance segmentation network model based
on Mask R-CNN and compared the fusion abilities of dif-
ferent fusion methods in detail [9]. Khalid et al. used a two-
stage method of fusion-segmentation for multispectral in-
stance segmentation. (e network first uses the encoder-
decoder architecture method to get the fused image and then
uses Mask R-CNN for instance segmentation [11].

Although many models have been proposed based on
infrared image segmentation, the current segmentation
methods still need to be improved. On the one hand, most of
the current segmentation methods use an infrared image
dataset with distinct equipment and a clear background.
When the equipment overlaps and the background is
complex, these methods are challenging. On the other hand,
these methods based on machine learning only use visible or
infrared for segmentation, but there is a good complement of
information between visible and infrared. In the deep
learning method, although the visible image and the infrared
image are fused by the fusion algorithm of the multispectral
image, there are many redundant structures. When these
algorithms are combined with the instance segmentation
model, it is difficult to improve network performance. For
[9], the multispectral instance segmentation based on Mask
R-CNN reduces the redundant structure, but compared with
the single-stage instance segmentation, the speed of the

Mask R-CNN segmentation has a certain gap. (is leads to
practical deployment difficulties and higher costs.

To solve the above problems, this research has collected
and set up power equipment image datasets, it is aimed that
the complete segmentation of power equipment was real-
ized, and a multispectral instance segmentation is designed
to directly complete the classification, positioning, and pixel
segmentation of power equipment. (e main contributions
of this work are as follows:

(1) We propose a multispectral single-stage instance
segmentation (MSIS) network based on SOLOv2.
(e method integrates image fusion and instance
segmentation into a single network. (e network
may ensure the real-time performance of segmen-
tation while reducing structural redundancy caused
by multitasking. It may segment infrared images
with complex backgrounds and poor quality, facil-
itating subsequent power equipment inspections.

(2) To preserve more details in the original image, a
dual-input feature extraction module is proposed,
which can better extract the features of infrared
images and visible images. It provides richer infor-
mation for subsequent feature fusion and instance
segmentation.

(3) A multifeature attention RFN (MARFN) is proposed
based on a residual fusion network (RFN), which can
fuse infrared images and visible images to get a richer
fusion feature. And a novel fusion layer is used to
solve the problem of network degradation caused by
the increase of RFN depth.

2. Related Works

2.1. Instance Segmentation. Instance segmentation is an
instance-level object segmentation method in image seg-
mentation tasks. Instance segmentation is mainly divided
into two stages and a single stage, as shown in Table 2. (e
popular instance segmentation [14, 16–19] is to find out the
area where the instance is located through the method of
object detection, and then, semantic segmentation is per-
formed in the detection box. Each segmentation result is
output as a different instance. In methods such as SGN [20]
and SSAP [21], pixel-level semantic segmentation is first
performed, and then, different instances are distinguished by
means such as clustering and metric learning. Most single-
stage instance segmentation methods [15, 22–24] are mainly
inspired by one-stage and anchor-based detection models

Table 1: (e segmentation method of infrared image.

Category Method Advantage Disadvantage

(e traditional method [2, 3] (i) Fast running (i) Sensitivity to noise
(ii) Low hardware requirements (ii) Excessive segmentation

(e machine learning methods [4–7] (i) Logical interpretability (i) Complex feature engineering(ii) Low hardware requirements

(e deep learning methods [8–11] (i) Strong learning ability (i) Large number of training samples
(ii) Good generalization ability (ii) Higher hardware requirements
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such as YOLO [27] and RetinaNet [28]. PolarMask [25] and
AdaptIS [26] are inspired by anchor-free detection models
such as FCOS [29]. Compared with the two-stage model, the
single-stage model has a natural advantage in speed [15].

2.2. Image Fusion. (ere are four categories of image fusion
algorithms based on deep learning, mainly including the
CNN method, the GAN method, the self-encoding method,
and other methods, as shown in Table 3.

(e image fusion method based on CNN mainly uses the
existing CNN network for image fusion. Li et al. proposed an
image fusion network based on VGG-19 [32], which de-
composes the source image into two parts: the basic part and
the detailed content, then the VGG-19 is used to extract
multilayer features, and the fusion image is obtained through
an appropriate fusion strategy. Li et al. used residual neural
network (ResNet) and zero-phase component analysis (ZCA)
to construct a fusion framework. (e residual neural network
was used for feature extraction, and the image was recon-
structed by zero-phase component analysis [33]. Inspired by
the transform-domain image fusion algorithms, Zhang et al.
used two convolutional layers to extract the salient image
features of multiple images, and appropriate fusion rules were
selected to fuse these features and generate images [31]. (e
shortcomings of the network are also obvious. (e structure
and fusion strategy are too simple, so the fusion performance
of the network is not optimal. In the paper [30], an unsu-
pervised and unified densely connected network (FusionDN)
is proposed. It is the main contribution that the weights of
different source images were generated by weight block, which
is to complete the fusion of different source images. Zhang
et al. proposed a fast unified image fusion network based on
proportional maintenance of gradient and intensity (PMGI),
which can fuse multisource images [35]. (e fusion result is
achieved by adjusting the texture and intensity ratio of the
image. In the network, the information is extracted through
the gradient path and the intensity path. In order to meet the
fusion task of different sources, the author also defines two loss
functions for extracted information. Xu et al. provide a fusion
network model that adapts to different source images because
themodel can retain the adaptive similarity between the fusion
result and source images [36]. Chen et al. designed amultilayer
fused convolution neural network (MLF-CNN) for pedestrian
detection; they combined image fusion and object detection
into a single network [34].

(e autoencoder method uses the existing autoencoder
neural network to extract features, fuse features, and gen-
erate features. Prabhakar et al. proposed a fusion network
from the perspective of optimizing the loss function. (e
network is composed of an encoder, a fusion layer, and a
decoder [37]. Even if the network input changes and the
parameters are not adjusted, better results can be obtained.

Inspired by DeepFuse, a fusion network based on an
autoencoder neural network [38] was proposed by Li and
Wu. (e network is composed of an encoder, a fusion layer,
and a decoder. (e dense block [45] is mainly used for
feature extraction of the original image. NestFuse [39] also
uses the same structure, which is inspired by DenseFuse and
U-Net++ [46]. (e author also designed a multiscale fusion
strategy based on the attention mechanism. In 2021, Li et al.
proposed an end-to-end residual fusion architecture (RFN-
Nest). Its main contribution was to design a residual fusion
network (RFN) based on the residual architecture [40].

In the GAN-based approach, the Generative Adversarial
Network is used to train a generator that can generate fused
images. An image fusion framework based on generative
adversarial networks [41] was proposed by Ma et al. (e
generator is used to generate the fusion image, and the
discriminator is used to discriminate the result of the
generator. But the network still cannot retain the rich detail.
To preserve the rich details in the visible image, the author
improves FusionGAN [42]. (e author has improved the
generator, discriminator, and loss function of the GAN
network. (ese changes make the fused image have more
details. As a network that solves the fusion task, there are
problems such as poor real-time performance of the network
due to structural redundancy when it is combined with the
instance segmentation for multiple networks.

Other methods are different from the above methods. In
the paper [43], the input infrared image and visible image are
decomposed into three high-frequency feature images and
low-frequency feature images, then, a specific fusion strategy
is used to fuse two sets of feature images, and the fusion image
is obtained through image reconstruction. (e paper [44]
proposed an infrared and visible image fusion method based
on multiscale transformation and norm optimization. (e
fusion ability of the network as a whole was improved by
using a combination of prefusion and postfusion in the paper.

Image fusion methods based on CNN, GAN, and other
types are independent structures, which makes it relatively
difficult to combine with instance segmentation networks
and also produces structural redundancy. (e self-encoding
method can be combined with the existing instance seg-
mentation method in a modular form to avoid the above-
mentioned problems. (erefore, this paper builds our
multispectral feature fusion module based on the RFN of the
RFN-Nest method.

3. Materials and Methods

3.1. MSIS Network Architecture. (e architecture of the
MSIS model is shown in Figure 1, which consists of three
parts: feature extraction module, feature fusion module, and
the module of multiscale instance segmentation. Firstly, the
feature extraction module generates infrared image features
FMir,i 

4
i�1, visible image features FMvi,i 

4
i�1, and prefusion

features FMpf,i 
4
i�1 from the input infrared image Iir and

visible image Ivi. (en, in order to obtain the fused features
FMmi 

4
i�1, these features are input to the feature fusion

module (MARFN).

Table 2: Instance segmentation method.

Category Method Advantage Disadvantage
Two stage [14, 16–21] (i) High precision (i) Low speed
Single stage [15, 22–26] (i) High speed (i) Low precision
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In the module of multiscale instance segmentation, FPN
(Feature Pyramid Network) was used by MSIS to improve
the ability of multispectral instance segmentation and deal
with the multiscale problems of power equipment in
SOLOv2. (e FPN can fuse deep semantic features and
shallow detail features. (ese new features were input into
the prediction head of the multispectral instance for pre-
diction. Here, we use the prediction header of SOLOv2,
including the instance category branch and instance mask
branch. (e specific operation is as follows: the feature of
FPN output will be divided into S × S grids. (e branch of
the instance category will output S × S × C semantic category
probabilities, where C is the number of instance categories.
(e branch of instance mask outputs H × W × S2 prediction
masks,H × W represents the size of the output image, and S2

is the maximum number of instances predicted. When the
center position of the target object falls into a certain grid, its
corresponding category branch andmask branch will output
the object instance category and pixel segmentation, re-
spectively. Finally, MSIS realized the end-to-end feature
fusion and automatic segmentation of complete power
equipment.

3.2. MSIS Feature Extraction Module. Before the feature
fusion of infrared image Iir and the visible image Ivi, feature
extraction is an indispensable step. However, the difficulty in
the training of the network model is due to the limited
amount of data in the power equipment dataset. And the
pretrained ResNet-50 model on the MS COCO dataset was
used for feature extraction; the segmentation effect is not
very satisfactory. To this end, we propose the MSIS feature
extraction module, including the feature extraction branch
of the infrared image, the feature extraction branch of the
visible image, and the feature prefusion branch. Specifically,
as shown in Figure 2, the feature extraction branch of the
visible image and the feature extraction branch of the in-
frared image use the pretrained ResNet-50. (e feature
prefusion branch is composed of 2 3 × 3Conv, attention
mechanism, and residual structure (Stage 1–Stage 3). In the
structure, 3 × 3Conv is to ensure that the input feature
information is fully retained, and the number of output
channels is 512. We add 1 × 1 Conv before each residual
structure, ensuring that the output is consistent with
ResNet-50 features. And at the same time, it can effectively
reduce the computational burden, which was caused by the
increase of channels because the training parameters were
reduced by dimensionality reduction. (e residual structure
is consistent with the structure in ResNet-50. Meanwhile, the
attention module is added behind each residual structure.

(e channel attention module (CA) and the spatial attention
module (SA) are a parallel combination. (e feature FMam

generated by its attention module can be equivalent to the
expression (1).

FMam
′ � SA FMpf  + CA FMpf . (1)

3.3.MSISFeature FusionModule. (e feature fusion module
of the MSIS is responsible for the task of fusing infrared
image features FMir,i 

4
i�1 and visible image features

FMvi,i 
4
i�1. (e MSIS feature fusion module is based on the

RFN module, as shown in Figure 3. In the original RFN
structure, the convolution size is 3 × 3 Conv.

(e original intention of RFN’s fusion layer fusion
convolutional layer (Conv3∼Conv6) is to fuse features from
different sources through the convolutional layer, but the
convolutional fusion ability of the fusion layer is not very
good; see ablation experiment of fusion layer for details. We
try to increase the number of convolutional layers and
modify the convolutional layer to improve the fusion ability
of the fusion layer. In the case of enhancing the ability of
feature fusion and ensuring fewer module parameters, we
construct a novel multifeature attention RFN (MARFN), as
shown in Figure 4. (e features of the infrared image FMir

and the features of the visible image FMvi are spliced by
channels through Conv1 and Conv2, and Space Attention is
arranged after Conv1 and Conv2.

(en, they are input into the fusion convolutional layer
(Conv3∼Conv6). (e increase in the number of convolu-
tional layers will cause degradation. In order to solve this
problem, we design a new convolutional layer. As shown in
Figure 5, this structure can well solve the phenomenon of
degradation caused by the increase in the number of layers in
the module.

Finally, the prefusion features FMpf in the MARFN-A
will be input into Conv7, and Conv7 will combine the output
of Conv3∼Conv6 into the next layer and get the fusion
feature FMm. After Conv3∼Conv7, the channel attention
(CA) will be placed. According to Figure 4(a), the feature
fusion formula is defined as shown in

FMm � F FMvi, FMir, FMpf . (2)

(e MARFN-B is different from the MARFN-A; FMvi

and FMir will be input into Conv7 at the same time.
According to Figure 4(b), the feature fusion formula is
defined as shown in

FMm � F FMvi, FMir( . (3)

Table 3: Segmentation method of infrared image.

Category Method Advantage Disadvantage
(e CNN method [30–36] (i) Richer features (i) Poor fusion ability

(e self-encoding method [37–40] (i) End-to-end approach
(ii) Modular structure (i) Complex loss function design

(e GAN method [41, 42] (i) Special method (i) Difficulty in optimization
Other methods [43, 44] (i) Higher accuracy (i) Poor commonality
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3.4. Loss Function. In order to accelerate the convergence of
the fusion module, we have added a new branch to calculate
the loss of feature fusion. (e loss is defined as follows:

Lfusion �  wl wvi FMm − FMvi

����
����
2
F

+ wir FMm − FMir

����
����
2
F

 .

(4)

wl is the loss coefficient of different feature layers, and
wvi and wir are used to balance the loss of each scale in the
multiscale features. FMvi and FMir control the relative in-
fluence of visible and infrared features in the fusion feature
map FMm. (e MARFN fuses the features of the infrared
image FMir and the visible image FMvi to generate the
features FMm required by the FPN. (e multiscale instance
segmentation module can obtain the final instance seg-
mentation results. We use the SOLOV2 single-stage pre-
diction head, so the loss definition of the multiscale instance
segmentation module is consistent with SOLOv2, and its
definition is as follows:

L � Lcate + Lmask. (5)

Lcate means focal loss, Lmask means dice loss, and more
details about loss function can be found in SOLOV2.
(erefore, our total loss is defined as follows:

L � αLcate + βLmask + cLfusion. (6)

4. Results and Discussion

4.1. ImageDataset of Power Equipment. (e image dataset of
power equipment comes from a medium-sized converter
station in Huanggang City, Hubei Province, China. In the
experiment, we constructed and used this dataset, and all
infrared images and visible images were obtained by an
infrared thermal camera (Fluke Ti480 PRO). (e shooting
time is from 8 : 00 am to 5 : 00 pm, and the weather is mainly
cloudy and sunny. (e image mainly contains common
power equipment such as transformers and lightning ar-
resters. (e power equipment dataset is shown in Figure 6.

(e power equipment dataset is mainly used for image
processing tasks such as object detection and instance
segmentation. In the experiment of the multispectral in-
stance segmentation, we used the method [47] to obtain the
final registration image. (e multispectral image consists of
2940 pairs of arresters and 2998 pairs of transformers. (e
division ratio of the training set, validation set, and test set is
6 : 2 : 2, and the distribution results of the power equipment
dataset during training are shown in Table 4. (e dataset is
manually labeled by LabelMe. And according to the MS
COCO dataset style, we constructed a dataset of instance
segmentation.

4.2. Experiment Setup. (e experiment was completed on a
deep learning server, which was configured with NVIDIA
Tesla V100 GPU and Intel(R) Xeon(R) CPU E5-2673 v3 @
2.40GHz, the OS was 64-bit Ubuntu 18.04, and the network
was implemented based on Pytorch 1.3.0. In model training,
it is Lfusion that the loss function is used by the multispectral
fusion network, and Lcate and Lmask are used by the loss
functions of the multispectral instance segmentation net-
work. We use stochastic gradient descent (SGD) as the
optimizer during network training, and its learning rate (lr)
is 0.01, the momentum parameter (momentum) is 0.9, and
the decay value (decay) of the learning rate for each update is
0.0001. (e evaluation index is the detection evaluation
index of COCO [48], including AP, AP50, AP75, APS, APM,
and APL.

4.3. Our Results. To validate the proposed MSIS model, we
quantitatively and qualitatively evaluate the MSIS model
with existing state-of-the-art methods on multispectral
datasets of electrical devices, which include two-stage, sin-
gle-stage, and multispectral instance segmentation.(e two-
stage instance segmentation contains Mask R-CNN [14], MS
R-CNN [17], TensorMask [18], and PANet [16]. (e single-
stage instance segmentation has PolarMask [25],
YOLACT++ [24], and SOLOv2 [15], and multispectral has
Mask R-CNN (RFN) [11], SOLOv2 (RFN), and Mask

Infrared image

Visible image

ResNet-50

ResNet-50

Pre-fusion

Feature fusion

FPN

Category Branch

Mask Branch

Instance segmentation

(a)

(b)
(c)

MARFN1

MARFN2

MARFN3

MARFN4

FMvi1

FMir1

{FMiri}
4
i=1

{FMpfi}
4
i=1

{FMvii}
4
i=1

{FMmi}
4
i=1

Iir

Ivi

Figure 1: MSIS model architecture. (a) MSIS feature extraction module. (b) MSIS feature fusion module. (c) MSIS multiscale instance
segmentation module.
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R-CNN (∗) [43]. In the above instance segmentation net-
work, the two-stage and single-stage instance segmentation
methods only use infrared light images. Multispectral in-
stance segmentation includes instance segmentation based
on image fusion (Mask R-CNN (RFN) and SOLOv2 (RFN))
and instance segmentation based on feature fusion (Mask
R-CNN (∗) and MSIS). In instance segmentation based on
image fusion, the RFN-Nest method is used for image fu-
sion, and then, the fused image will be input to the instance
segmentation. In instance segmentation based on feature
fusion, different fusion strategies are used to fuse features,
and then, instance segmentation is performed based on the
fusion features. (e quantitative evaluation results of the
above network are shown in Table 5.

In Table 5, the AP value of the MSIS model based on
ResNet-101 reaches 42.20%, which is better than the other
methods above to achieve the segmentation of power
equipment. Compared with SOLOv2, which only uses

infrared images, the effect is significantly improved, and the
AP value is increased by 7.5%. (e reason is that MSIS can
obtain information of infrared images and visible light
images at the same time, and the complementarity of in-
formation improves the semantic information processing
capabilities of the network. Compared with SOLOv2 (RFN),
the AP value of MSIS has increased by 3.4%. (is shows that
the proposed prefusion network and MARFN module can
obtain richer fusion features than the RFN module. We also
evaluated the FPS of MSIS on the NVIDIA Tesla V100 GPU,
as shown in Table 6. (e MSIS based on Res-50-PFN can
reach 12 FPS, and the lightweight model based on SOLOv2
can reach 23 FPS.

For further explanation, Figure 7 shows the segmenta-
tion results of the above method on the power equipment
multispectral dataset. (c) and (d) represent instance seg-
mentation using only infrared light images, and they show
the phenomenon of incorrect segmentation of overlapping

(b)

(a)
ResNet-50

ResNet-50

Pre-fusion

St
ag

e1 SA
CA1x

1 
Co

nv

St
ag

e2 SA
CA1x

1 
Co

nv

St
ag

e3 SA
CA1x

1 
Co

nv

3x
3 

Co
nv

3x
3 

Co
nv

Infrared image

Visible image

(c) {FMiri}
4
i=1

{FMvii}
4
i=1

{FMpfi}
4
i=1

FMvi1

Ivi

FMir1

Iir

Figure 2: (e feature extraction module. (a) (e feature extraction branch of the infrared image. (b) (e feature extraction branch of the
visible image. (c)(e prefused feature extraction branch.(e feature extraction branch of prefusion is composed of 3 × 3Conv, 1 × 1Conv,
residual structure (Stage 1–Stage 3), spatial attention (SA), and channel attention (CA).

Co
nv

1
Co

nv
2

Co
nv

3

Co
nv

4

Co
nv

6

Co
nv

5FMir

FMvi

FMm

Figure 3: (e architecture of RFN. Conv1∼Conv5 represents convolutional layers.
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objects. (e reason is that the lower resolution results in no
clear boundary between overlapping objects. (e) and (f)
represent the result of segmentation RFN fusion. Although
the problem of incorrect segmentation in (c) and (d) is
solved, the accuracy of object boundary segmentation is not
very high because the fusion capability of the RFNmodule is
poor. At the same time, the large network and redundant
structure make it difficult to improve network speed. (g) and
(h) are the fusion of the feature-level, which reduces the
redundancy of the network structure and improves the
performance at the same time. (e MSIS model fuses the
feature of the infrared image and the feature of the visible
image, which makes the object boundary more accurate.

Compared with theMask R-CNN (∗), the single-stage model
based on SOLOv2 has certain advantages in speed. (e
segmentation results show that the segmentation accuracy of
the MSIS model is improved under complex backgrounds,
multiple targets, and changes in illumination circumstances.

(is article provides generalization experiments to prove
the effectiveness of the proposedmethod.(eMSISmethod is
tested on the FLIR thermal imaging dataset.(e FLIR thermal
imaging dataset was provided by FLIR for ADAS and driv-
erless technology, which mainly includes thermal images and
RGB images. Since the FLIR thermal imaging dataset provides
annotation information for target detection, the object de-
tection prediction head will be used to complete the gener-
alization experiment. In Table 7, Faster R-CNN represents the
original network. Faster R-CNN (MSIS) uses the proposed
MISS method and replaces the prediction head with the
prediction head of Faster R-CNN. As shown in Table 7, the
mAP of Faster R-CNN (MSIS) is 58.56, which is 5.22% higher
than Faster R-CNN.(is result is basically consistent with the
result of the MS COCO dataset.

4.4. Ablation Experiment. In this section, in order to verify
the superiority of the proposed MSIS method, we provide
four sets of ablation experiments. (ey are the ablation
experiment of the feature fusion module, the ablation
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Figure 5: Fusion convolutional layer (FCL). FMn−1 represents the
output feature of the previous layer, and FMn represents the output
feature of this layer.
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experiment of the fusion layer, the ablation experiment of
the backbone, and the ablation experiment of the prefusion
network. (e experimental process is as follows. First, the
ablation experiment of the fusion layer and the ablation
experiment of the feature fusion module are executed. Next,
the best fusion layer and feature fusion module are used for
ablation verification of the prefusion network. When the
above-mentioned ablation experiment is completed, the
main ablation experiment is finally carried out.

4.4.1. Ablation Experiment of Fusion Layer. In the fusion
layer ablation experiment, we consider the fusion con-
volutional layer from two perspectives: the number of
convolutional layers and the structure of the convolutional
layer. RFN (Conv× 3) represents the original fusion con-
volution layer, whichmeans that only 3 layers of convolution
are provided. RFN (Conv× 4) to RFN (Conv× 6) indicate
that 4, 5, and 6 layers of convolution are provided, re-
spectively. Fusion Convolutional Layer (Conv× 6) repre-
sents the proposed fusion layer convolution. (e
comparison results are shown in Table 8.

In Table 8, after the fusion convolutional layer is increased
to 5 layers, the fusion ability of the network decreases.(is also
causes the AP value to drop further.(emain reason is that the
network is degraded. In the process of forward transmission, as
the number of convolutional layers increases, the image in-
formation contained in the feature map will decrease layer by
layer.(e deep networkmay get a worse training effect than the
shallow network. Based on this analysis, we propose a new
fusion layer structure, as shown in Figure 7. In Table 8, we
compare the performance brought by different fusion layers.
When the number of FCL increases to 6, the network seg-
mentation ability still maintains good fusion performance.

4.4.2. Ablation Experiment of Feature Fusion Module.
(is section compares the MSIS feature fusion module with
the existing fusionmethods (Add,Max, l1 − norm, l∗ − norm,

SCA and RFN). In the existing fusion module, add refers to
directly adding different features. Max selects the maximum
value of the element as the fusion feature. (e method based
on l1 − norm refers to calculating the weight based on
l1 − norm. (e l∗ − norm (known as nuclear-norm) method
refers to obtaining the fusion weight by calculating the sum of
singular values of a matrix involved in the global pooling
operation of deep features. SCA represents the spatial/channel
attention fusion strategy used in NestFuse [39]. RFN repre-
sents the residual fusion strategy used in RFN-Nest. (e
expression definition is shown in Table 9.

We use 6 evaluation indicators for evaluation. (ey
include Entropy (En) [49], Standard Deviation (SD) [50],
Mutual Information (MI) [51], Improved Fusion Artifact
Measurement (Nabf) [52], Sum of Difference Correlation
(SCD) [53], and Multiscale Structural Similarity (MS-SSIM)
[54]. At the same time, in order to evaluate the indicators,
Nest-RFN will be used as the basic fusion network. (e
different fusion images are obtained by replacing the strategy
fusion of the Nest-RFN. Finally, the fusion result quality
index evaluation table is shown in Table 10.

In Table 10, the fusion methods based on convolution
(SCA, RFN, MARFN-A, and MARFN-B) get better fusion
effects than other classic fusion methods. From the per-
spective of information retention (En, SD), the fusion
methods based on convolution extract rich image features
through convolution, and these features are used by the
fusion convolution structure to generate fused features.
Finally, a better result than the classic fusion method is
obtained. Although both MARFN-B and RFN are fusion
methods based on convolution, the MARFN-B method is
better than RFN. (e main reason is that FCL can further
improve the fusion of features and retain richer information.
In addition, MARFN-A has a significant improvement in the
evaluation indicators. From the perspective of feature
preservation (MS-SSIM, MI), the prefusion network and
MARFN-A construct deeper feature extraction and fusion,
thereby enhancing the fusion capability.

Figure 6: Power equipment dataset.

Table 4: (e distribution result of the power equipment dataset during training.

Class name Training set Validation set Test set Total
MOA 1764 588 588 2940
CT 1800 599 599 2998
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4.4.3. Ablation Experiment of Prefusion Network. In the
ablation experiment of the prefusion network, two sets of
experiments are provided; they are MARFN-B, and
MARFN-A based on the prefusion network. (e experi-
mental results are shown in Table 11. “✓” means that the
prefusion network is enabled.(eMARFN-Amodule with a
prefusion network has been significantly improved, and its
AP value has increased by 5%. (e prefusion network
provides richer features and enhances the fusion capability
of the MARFNmodule, and finally, the overall segmentation
performance of the network is improved.

4.4.4. Ablation Experiment of Backbone. To explore the
feature extraction module in the MSIS, in the ablation ex-
periment of the MSIS backbone, we provide two backbones.
(ey are dual-input backbone based on the traditional
backbone and dual-input backbone based on the feature
extraction module of the MSIS, respectively. Dual-input
backbone based on traditional backbone uses the classic
backbone (ResNet-101 or ResNeXt-101), whose structure is
shown in Figure 8. Dual-input backbone based on the
feature extraction module of the MSIS is a combination of
the MSIS feature extraction network and the classic back-
bone (MSSISResNet−101 or MSSISResNeXt−101), as shown in
Figure 2.

Table 12 shows the performance of network seg-
mentation for different backbones. Compared with
ResNet-101, the AP value has increased by 4.54%. (e AP
of the MSSISResNeXt−101 reached 43.61%. From the

Table 5: (e quantitative evaluation results of the above network.

Method Backbone AP AP50 AP75 APS APM APL

Mask R-CNN Res-101-FPN 32.67 51.63 34.76 — 10.45 33.52
MS R-CNN Res-101-FPN 35.21 55.76 38.43 — 11.55 32.51
TensorMask Res-101-FPN 34.04 56.26 36.36 — 11.26 29.76
PANet Res-50-FPN 33.54 54.93 36.21 — 11.26 31.23
PolarMask Res-101-FPN 27.34 48.84 27.94 — 10.54 30.96
YPLACT++ Res-101-FPN 31.53 50.74 33.84 — 14.90 33.23
SOLOv2 Res-101-FPN 34.63 52.66 35.84 — 11.01 46.57
Mask R-CNN (RFN) Res-101-FPN 37.81 61.51 38.54 — 13.20 39.41
SOLOv2 (RFN) Res-101-FPN 38.77 62.77 42.14 — 16.44 49.52
Mask R-CNN (∗) Res-101-FPN 37.97 61.46 39.05 — 15.20 52.70
MSIS Res-50-FPN 40.06 63.26 45.62 — 17.61 62.37

Table 6: (e FPS results of MSIS.

Model FPS
MSIS (Res-50-PFN) 12
MSIS (lightweight) 23

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7: (e segmentation results of different methods in the power equipment dataset, where (a) represents the visible light image,
(b) represents the infrared light image, (c) represents segmentation results of theMS R-CNNmethod, (d) represents segmentation results of
SOLOv2 method, (e) represents segmentation results of Mask R-CNN(RFN) method, (f ) represents segmentation results of SOLOv2(RFN)
method, (g) represents segmentation results of Mask R-CNN(∗) method, and (h) indicates segmentation results of MSIS method.

Table 7: (e MSIS results on FLIR thermal dataset.

Model mAP
Faster R-CNN 58.56
Faster R-CNN(MSIS) 63.34
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perspective of feature extraction, the backbone based on
the feature extraction module of the MSIS provides rich
features for the MARFN module. (ey include not only

infrared light image features and visible light image
features but also prefusion features. From the perspective
of feature fusion, the combination of prefusion network

Table 8: (e results of experiments with different fusion layers.

Fusion layer AP AP50 AP75

RFN (Conv× 3) 37.16 60.37 42.78
RFN (Conv× 4) 38.21 61.39 43.74
RFN (Conv× 5) 36.23 59.42 41.73
RFN (Conv× 6) 35.20 58.39 40.74
FCL (Conv×6 ) 40.22 63.37 45.72

Table 9: Ablation experiment of feature extraction module in MSIS network.

Fusion module Expression
Add FMf � FMir + FMvi

Max FMf � max(FMir, FMvi)

l1 − norm FMf � l1(FMir, FMvi)

l∗ − norm FMf � l∗(FMir, FMvi)

SCA FMf � SCA(FMir, FMvi)

RFN FMf � RFN(FMir, FMvi)

MARFN-A FMm � MARFN − A(FMir, FMvi, FMpf)

MARFN-B FMm � MARFN − B(FMir, FMvi)

Table 10: Ablation experiment of MSIS feature fusion module.

Fusion module En SD MI Nabf SCD MS-SSIM

Add 6.799 67.56 13.5 0.204 1.965 1.062
Max 6.834 92.621 13.565 0.332 1.707 0.915
l1 − norm 6.953 93.336 13.774 0.339 1.691 0.874
l∗ − norm 6.918 73.799 13.753 0.209 1.911 1.038
SCA 7.027 82.877 13.948 0.25 1.853 0.989
RFN 6.978 72.031 13.821 0.21 1.976 1.028
MARFN-A 7.182 74.154 14.142 0.342 2.195 1.345
MARFN-B 7.055 74.014 14.008 0.201 2.057 1.242

Table 11: (e refusion network ablation experiment results.

Prefusion network AP AP50 AP75

✓ 35.38 58.53 40.85
40.38 63.49 45.84

(b)

(a)

ResNet-101

ResNet-101

Infrared image

Visible image

{FMiri}
4
i=1

{FMvii}
4
i=1

Figure 8: Structure diagram of multispectral feature extraction based on the traditional backbone.
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and MARFN extracts more complex features and provides
deeper feature fusion, thereby enhancing the fusion ca-
pability of the fusion network.

5. Conclusions

In this work, we designed an end-to-end multispectral in-
stance segmentation model, which can achieve complete
segmentation of power equipment andmeet the requirements
of the preliminary work of power fault detection and seg-
mentation for nonfaulty equipment. Compared with ordinary
instance segmentation, the proposed network adds a multi-
spectral feature fusion network to fuse the features of infrared
images and visible images. For the MSIS network model, we
have done enough experiments and adopted the best solution
to greatly improve the accuracy of segmentation. To better
process infrared images and visible images, we propose a
dual-input method, which takes advantage of the advantages
of infrared images and visible light images at the same time.
Finally, the AP of the MSIS model reached 40.06%, and the
segmentation results can be seen in Figure 7. (e multi-
spectral instance segmentation can achieve complete seg-
mentation of power equipment and help with power
equipment fault detection, however, there is no segmentation
of faults, and the model itself belongs to a large model to be
further optimized. (erefore, in future research, the model
will be further improved for fault detection.
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