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)is paper analyzed the three-dimensional (3D) condensation film problem over an inclined rotating disk. )e mathematical
model of the problem is governed by nonlinear partial differential equations (NPDE’s), which are reduced to the system of
nonlinear ordinary differential equations (NODE’s) using a similarity transformation. Furthermore, the system of NODEs is
solved by the supervisedmachine learning strategy of the nonlinear autoregressive exogenous (NARX) neural networkmodel with
the Levenberg–Marquardt algorithm.)e dimensionless profiles of velocity, acceleration, and temperature are investigated under
the effect of variations in the Prandtl number and normalized thickness of the film. )e results demonstrate that increasing the
Prandtl number causes an increase in the fluid’s temperature profile. )e solutions obtained by the proposed algorithm are
compared with the state-of-the-art techniques that show the accuracy of the approximate solutions by NARX-BLM. )e mean
percentage errors in the results by the proposed algorithm for Θ(η), Ψ(η), k(η), −s(η), and (θ(η)) are 0.0000180%, 0.000084%,
0.0000135%, 0.000075%, and 0.00026%, respectively. )e values of performance indicators, such as mean square error and
absolute errors, are approaching zero. )us, it validates the worth and efficiency of the design scheme.

1. Introduction

)e liquid condensate removal from cooled, saturated va-
pors is of immense significance in various domains of en-
gineering, such as coating and cooling with spray, and the
mechanisms of chemical vapor accumulation are widely
used in the production of thin film in semiconductor in-
dustries. Many researchers have conducted a well-known
study to investigate the physical model and heat transfer of
the fluid with different conditions. Nusselt [1], in 1916,
studied the condensation over a vertical plate that formed

the basis for many researchers to study the condensation of
different fluid problems. Nusselt’s solution was developed by
Koh et al. [2] under the consideration of convective terms,
inertia, and vapor resistance in the condensation of fluid
flow. )e condensation of the rotating disk in steady vapor
with a large volume is studied by Sparrow et al. [3]. )ey
extended the idea of Karman V. [4] on the rotating disk, in
which the Navier–Stokes equations are transformed into the
set of nonlinear ordinary differential equations (NODE’s)
and solved numerically for the solutions corresponding to
different values of finite film thickness. Becket et al. [5] and
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Chary and Sarma [6] further broadened the work of Nusselt
by adding vapor drag and suction on the plate.

)e flow of a liquid film is made of condensing liquid on
a disc and is nonlinear in nature. Generally, finding the exact
and analytical solutions to such a problem is a difficult task.
Different researchers have adopted various methods to find a
solution for the three-dimensional condensation film
problem. )e governing model of the 3D flow of fluid is
transformed into a set of nonlinear differential equations by
Wang C. Y. [7] using the similarity transformation and
solving the problem using the perturbation method. Several
other techniques are used to solve the condensation film
problem, such as homotopy analysis method (HAM) [8],
homotopy perturbation method (HAM) [9, 10], classical
Runge–Kutta and shooting method [11], extended optimal
homotopy asymptotic method (EOHAM) [12], variational
iteration method (VIM) [13], control volume finite element
method (CVFEM) [14], differential transformation method
(DTM) [15], spectral quasi linearization method (SQLM)
[16], optimal homotopy analysis method (OHAM) [17],
variation of parameter method (VPM) [18], and Akbari-
Ganji method (AGM) [19].

In this paper, a liquid film created by the condensing
fluid on a revolving disc under the centrifugal and gravi-
tational forces is considered. A supervised learning tech-
nique is proposed to solve the system of NODE’s effectively.
)e classical numerical approaches mostly convert the
governing equations comprising partial differential equa-
tions into a discretized model that appears in the form of a
set of algebraic linear or nonlinear equations. To solve a set
of algebraic equations, considerable computational time and
memory requirements are needed by direct solvers. In ad-
dition, such techniques are gradient-based methods with
deterministic approaches. To overcome these drawbacks,
artificial intelligence-based supervised learning techniques
are designed that are free of gradient and only require the
essential initial parameter and terminal conditions for ex-
ecution. Some recent applications of the stochastic tech-
niques include the solutions for the saturation of water and
oil [20], absorption of carbon dioxide [21], the corneal
model for eye surgery [22], and the temperature distribution
of conductive-convective and radiative fins [23]. )ese facts
inspire authors to explore and incorporate the intelligent
strength of artificial neural networks to solve the problem
formed by the condensation of 3D-fluid flow on a rotating
disk. )e novel contributions of the presented study are
summarized as follows:

(i) )e problem of a three-dimensional (3D) con-
densation layer over an inclined rotating disc is
investigated in this article. )e governing mathe-
matical model of the problem is given by nonlinear
partial differential equations (PDE’s), which are
transformed into the set of nonlinear ordinary
differential equations (ODE’s) using similarity
transformations.

(ii) )e dimensionless profiles of velocity, acceleration,
and temperature of the problem are investigated
under the effect of variations in the Prandtl number
and normalized thickness by developing a super-
vised machine learning strategy using NARX neural
networks with the backpropagated Lev-
enberg–Marquardt algorithm.

(iii) )e accuracy of the results obtained by the design
algorithm is measured by comparison with the
state-of-the-art techniques.

(iv) )e results of mean percentage errors and perfor-
mance indicators in terms of mean square error
(RMSE), mean absolute deviations (MAD), absolute
errors (AE), error in Nash Sutcliffe efficiency
(ENSE), and )eil’s inequality coefficient (TIC) are
defined to validate the worth and accuracy of the
design algorithm.

2. Problem Formulation

Figure 1 illustrates the rotating disk with an angular velocity
Ω that is inclined at an angle β with a horizontal axis. A film
of fluid with thickness t is formed by spraying on the disk
with a velocity W. It is assumed that the film thickness is
negligible as compared to the radius of the disk, and
therefore, the end effects are ignored. Tw and T0 denote the
temperatures on the disk and film surface, respectively. )e
ambient pressure (p0) on the film surface is assumed to be
the function of z. )e problem is expressed mathematically
in the coordinate system (x, y, z), with the z axis being the
rotation axis. )e continuity, momentum, and energy
equation after neglecting the viscous dissipation can be
written as [7, 8] follows:

Ux + Uy + Uz � 0, (1)

UUx + VUy + wUz

− g sin β � ϑ Uxx + Uyy + Uzz ,
(2)

UVx + VVy + wVz � ϑ Vxx + Vyy + Vzz , (3)

Uwx + Vwy + wwz − ϑ wxx + wyy + wzz 

+ g cos β � −
Pz

ρ
,

(4)

UTx + VTy + wTz � α Txx + Tyy + Tzz , (5)

U, V, and w are the components of velocity in x, y, and z

directions. T is the temperature. α, ρ, and ϑ are the thermal
diffusion, density, and kinematic viscosity of the fluid. For
boundary conditions, zero shear stress on the surface of the
film and zero slip on the disk are assumed. )us, the
boundary conditions (B.C) are given as follows:
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T � Tw,

U � −Ωy,

w � 0,

V � Ωx, at z

p � p0,

Uz � 0,

w � −W,

Vz � 0,

T � T0, at z

(6)

In 2007, Wang C. Y. [7] introduced a transformation for
the abovementioned problem, which is as follows:

U − ψk(η)sin
β
Ω

� −ΩyΨ(η) +ΩxΘ′(η),

V − gs(η)sin
β
Ω

� ΩxΨ(η) +ΩyΘ′(η),

w + 2
��
Ω

√
ϑΘ(η) � 0,

T − Tw � T0 − Tw( θ(η),

(7)

where η is defined as

η � z

��
Ω
ϑ



, (8)

and (1) is satisfied identically using the above transformation
in (2) and (4), which can be written as

Θ‴ − Θ′( 
2

+ Ψ2 + 2ΘΘ″ � 0, (9)

ψ″ − 2ΨΘ′ + 2ΘΨ′ � 0, (10)

k″ − kΘ′ + sΨ + 2Θk′ + 1 � 0, (11)

s″ − kΨ − sΘ′ + 2Θs′ � 0. (12)
Temperature (θ) is assumed as a function of z alone, and

therefore, (5) can be written as

θ″ + 2PrΘθ′ � 0, (13)

where Pr � ϑ/α is the Prandtl number. Boundary conditions
for equations (9)–(13) are defined as follows:

Θ(0) � 0,

Θ′(0) � 0,

Θ″(δ) � 0,

Ψ(0) � 1,

Ψ′(δ) � 0,

k(0) � 0,

k′(δ) � 0,

s(0) � 0,

s′(δ) � 0,

θ(0) � 0,

θ(δ) � 1,

(14)

where δ � t
����
Ω/ϑ

√
is the normalized thickness, which is also

defined using the spraying velocity or condensation as,

Θ(δ) �
W

2
���
Ωϑ

√

� α.

(15)

After the flow field is found, various quantities of the
fluid flow can be measured. Integrating (4) will result in the
desired equation for pressure distribution of the fluid, which
is given as follows:

p(z) � p0 − ρ V
zw

zz
|z�t −

zw

zz
 

+
1
2

w
2
(t) − w

2
(z)  − g cos β(z − t).

(16)

If the force on the net area along x and y directions are
normalized by gρ

����
ϑ/Ω

√
sin β, then it is equal to the values of

k′(0) and s′(0), respectively.

3. Design Methodology

3.1. Artificial Neural Networks and NARXModel. Before the
1980s, the linear parametric autoregressive (AR), the moving
average (MA), and the autoregressive moving average
(ARMA) were the most common approaches used by re-
searchers to handle different types of problems [24]. )ese
models were linear and could not be used to forecast
nonlinear time-series problems. In addition, artificial neural
networks (ANNs) have attracted a lot of attention because of
their nonlinear and nonparametric characteristics. ANN’s
models are adaptive approaches based on data that can learn
a system’s nonlinear behavior from its historical data
without having any prior knowledge of the problem. )ey
are universal approximators for functions. Some recent
applications of ANN can be found in [25]. )e above-
mentioned articles motivate the authors to extend the idea of

z w

w–

t

U

x

Ω

g

β

Figure 1: Geometric interpretation of condensation film problem
over an inclined rotating disk.
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ANNs to solve a nonlinear problem arising in various fields.
)e NARX model is a nonlinear version of the autore-
gressive exogenous (ARX) model that has been widely used
in various applications and for modeling a variety of non-
linear dynamical systems. )e NARX model is a time-series
prediction model based on artificial neural networks. It
learns a system’s behavior more effectively than other NN’s
(i.e., the learning gradient method in NARX is superior).
Compared to other neural networks, it converges much
faster and generalizes the solutions in a much better way
[26].

)e multilayered perceptron (MLP) architecture un-
derpins the NARX model [27] because of its versatility and
simplicity. It is one of the most widely utilized ANNmodels.
Input, hidden, and output layers are present in the MLP and
NARXmodels, however, the NARXmodel includes the time
history of the output signal as one of the inputs. )e present
input signal and its time history serve as the model’s other
inputs. )e number of output neurons and variables in the
problem is equal. Let h(·) be a nonlinear mapping function
of NARX. It relates the input and output of the system by
(17),

Y[x] � h y[x − 1], . . . , y x − xy , u

x − 1], . . . , u x − xu   + e[x],
(17)

u[x] and Y[x] represent the input and output of a system. xu

and xy are the maximum lags for input and output, re-
spectively. e[x] is a noise or prediction error.

3.2. Learning Strategy and Performance Measures. Based on
the representation of the NARX neural network model by
equation (17), a data set of inputs and outputs are presented
to the model during the training phase. A reference solution
of 1001 points for the different cases of the 3D condensation
film problem is generated using the Runge–Kutta method
(RK-4) with the “NDSolve” package in mathematica. After
that, an MLP is created with “nntool” in MATLAB using
multiple layers of interconnected neurons with one or more
hidden layers and nodes, which are connected in a feed-
forward manner between the input and output layers, as
shown in Figure 2. )e predicted output of the multilayered
perceptron is given as

yMLP � f2 W
T
2 f1(η) + b2 ,

N � W
T
1 (u) + b1,

(18)

u is the input element of a model, b1 and b2 are biased terms
in the hidden and output layers. W1 and W2 represent the
synaptic weights that connect the input to the hidden and
the hidden to the output layers. f1 and f2 represent the
activation functions. In this study, the Log-Sigmoid acti-
vation function is used for neurons in the input and output
layers. Once the number of weights is determined, a con-
ventional training algorithm, such as the backpropagated
Levenberg–Marquardt (BLM) algorithm, can be directly
applied. To avoid the overfitting of data during the training
phase, 15% of the data is reserved for cross-validation and

testing. )e flow chart of the problem and working strategy
of the NARX-BLM algorithm is shown in Figure 3.

To examine the accuracy and effectiveness of the results
obtained by the NARX-BLM algorithm for the 3D con-
densation film problem, performance indices are defined in
terms of mean square error (MSE), mean absolute deviations
(MAD), absolute errors (AE), root mean square error
(RMSE), error in Nash Sutcliffe efficiency (ENSE), and
)eil’s inequality coefficient (TIC). Mathematical forms of
these indices are given as follows:

MSE �
1
k



k

j�1
θj(t) − θj(t) 

2
,

AE � θj(t) − θj(t)


,

MAD �
1
k



k

j�1

θj(t) − θj(t)


,

TIC �

�������������������

(1/k) 
k
j�1 θj(t) − θj 

2


����������������

(1/k) 
k
j�1 θj(t) 

2


+

�������������

(1/k) 
k
j�1

θj 
2



NSE � 1 −


k
j�1 θj(t) − θj(t) 

2


k
j�1 θj(t) − θj(t) 

2,
⎧⎪⎨

⎪⎩

θ(x) �
1
k



k

j�1
θj(t), ENSE � 1 − NSE,

(19)

where θj, θj, and θj denote the approximate, reference, and
mean solution at j th input. k denotes the number of grid
points. For perfect modeling of the solutions, the desired
values of AE, MAD, MSE, RMSE, and ENSE are equal to
zero, while the value NSE is one.

4. Numerical Experimentation and Discussion

In this section, an artificial intelligence-based machine
leaning algorithm is implemented to study the dimen-
sionless profiles of velocity, acceleration, and temperature of
the 3D condensation film problem with an inclined rotating

Input Weights

Net Function

Bias

Output

Activation 
Function

ηN

wN

bN

ηN–1

wN–1

η2

w2

w1
η1

Figure 2: Details of a neuron in MLP network.
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THREE-DIMENSIONAL CONDENSATION FILM PROBLEM OVER AN INCLINED
ROTATING DISK

Mathematical
Model

Gematrical
Interpretation

NARX Model

Learning Phase

In first phase, a reference solution or target
data of 1001 points for supervised learning

strategy of NARX model is generated
by using Runge-Kutta Method (RK-4)

with NDSOLVE package in Mathematica.

In second phase, an MLP is constructed
with 60 hidden neurons and Log-Sigmoid

as an activation function. The model is
trained by Levenberg Marquardt algorithm
for training, testing and validation of data.

Results Approximate
Solutions

Absolute
Errors

Mean Square
Error

MAD, TIC,
RMSE, ENSE

Θ‴ – (Θ′)2 + ψ2 + 2ΘΘ″ = 0,
ψ″ – 2ψΘ′ + 2ΘΨ′ = 0,

k″ – kΘ′ + sψ + 2Θk′ + 1 = 0,
s″ – kψ – sΘ′ + 2Θs′ = 0,

θ″ + 2Pr Θθ′ = 0
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Figure 3: Governing equations of 3D condensation film problem, the NARX model, and working procedure of the proposed algorithm.
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Figure 4: Continued.
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disk under the effect of variations in the Prandtl number and
Normalized thickness.

Approximate solutions obtained by the proposed
technique for the displacement and velocity profiles of the
liquid are shown in Figure 4. Table 1 shows the comparison
of the exact solutions with approximate solutions for
Θ,Ψ, k, −s, and θ. Table 2 shows that the results obtained by
the NARX-BLM algorithm overlaps the exact and

Akbari–Ganji method solutions with minimum absolute
errors (AE) that lie around 3.58 × 10− 05 to 1.018 × 10− 08,
1.368 × 10− 05 to 1.938 × 10− 09, 1.848 × 10− 04 to
2.708 × 10− 08, 1.22 × 10− 05 to 9.868 × 10− 10, and
4.23 × 10− 04 to 4.23 × 10− 09. )e mean percentage error in
the approximate solutions by the NARX-BLM algorithm
are 0.0000180%, 0.000084%, 0.0000135%, 0.000075%, re-
spectively. )ese facts demonstrates the accuracy of the
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Figure 4: )e change of nondimensional radial velocity and temperature profiles for condensation film problem over an inclined rotating
disk with Pr � 0.7 and δ � 1.0.

Table 1: Comparison of solutions obtained by the NARX-BLM algorithm with RK-4 method for Pr � 0.7 and δ � 0.5.

Θ(η) Ψ(η) k(η) −s(η) θ(η)

η Exact NARX-BLM Exact NARX-BLM Exact NARX-BLM Exact NARX-BLM Exact NARX-BLM
0.00 0 0.000001 1 0.999993 0 0.000340 0 0.000073 0 0.000320
0.05 0.000582 0.000582 0.996086 0.996086 0.023457 0.023457 0.001995 0.001995 0.100279 0.100279
0.10 0.002247 0.002247 0.992286 0.992286 0.044418 0.044418 0.003932 0.003932 0.200554 0.200554
0.15 0.004869 0.004869 0.988700 0.988700 0.062890 0.062890 0.005760 0.005760 0.300813 0.300813
0.20 0.008328 0.008328 0.985417 0.985417 0.078877 0.078877 0.007431 0.007431 0.401036 0.401036
0.25 0.012500 0.012500 0.982514 0.982514 0.092385 0.092385 0.008910 0.008910 0.501201 0.501201
0.30 0.017266 0.017266 0.980055 0.980055 0.103421 0.103421 0.010163 0.010163 0.601278 0.601278
0.35 0.022505 0.022505 0.978090 0.978090 0.111991 0.111991 0.011163 0.011163 0.701234 0.701234
0.40 0.028099 0.028098 0.976660 0.976660 0.118102 0.118102 0.011891 0.011891 0.801032 0.801032
0.45 0.033927 0.033927 0.975792 0.975792 0.121762 0.121762 0.012333 0.012333 0.900634 0.900634
0.50 0.039873 0.039867 0.975501 0.975505 0.122980 0.122980 0.012481 0.012481 1 1

Table 2: Comparison of absolute errors in the solutions of the NARX-BLM algorithm and AG method for Pr � 0.7 and δ � 0.5.

Θ(η) Ψ(η) k(η) −s(η) θ(η)

η AGM NARX-BLM AGM NARX-BLM AGM NARX-BLM AGM NARX-BLM AGM NARX-BLM
0.00 0 1.45E− 06 0 1.36E− 05 0 1.86E− 04 0 1.22E− 05 0 6.59E− 04
0.05 8.39E− 04 2.57E− 07 1.06E− 06 8.14E − 08 6.61E− 06 2.51E− 07 1.99E− 04 1.32E − 08 3.40E− 05 8.63E− 07
0.10 1.43E− 04 1.27E− 07 5.70E− 07 4.11E − 08 8.13E− 06 6.75E− 08 8.32E− 05 2.52E − 08 5.20E− 06 1.51E− 07
0.15 7.13E− 05 6.36E− 08 4.44E− 07 1.11E − 08 9.26E− 06 2.70E− 08 6.74E− 05 1.57E − 08 1.80E− 07 8.76E− 09
0.20 7.77E− 05 9.79E− 08 7.10E− 07 9.70E − 09 1.09E− 05 6.04E− 08 8.21E− 05 9.86E − 10 6.47E− 07 2.69E− 07
0.25 7.01E− 05 1.59E− 08 7.27E− 07 1.93E − 09 1.28E− 05 8.26E− 08 8.61E− 05 1.59E − 08 5.23E− 07 2.10E− 07
0.30 6.84E− 05 1.03E− 07 8.35E− 07 2.95E − 09 1.48E− 05 4.77E− 08 9.52E− 05 4.60E − 09 6.53E− 07 3.91E− 08
0.35 7.20E− 05 1.01E− 08 1.00E− 06 1.09E − 08 1.75E− 05 7.38E− 08 1.09E− 04 1.46E − 08 1.80E− 07 2.89E− 07
0.40 6.32E− 05 1.24E− 07 7.52E− 07 1.56E − 08 1.98E− 05 9.77E− 08 1.09E− 04 2.19E − 08 1.61E− 06 2.85E− 07
0.45 4.77E− 05 4.97E− 07 1.68E− 07 6.17E − 08 2.09E− 05 2.42E− 07 9.93E− 05 6.84E − 09 4.16E− 06 4.96E− 08
0.50 6.99E− 05 3.58E− 05 1.09E− 06 4.20E − 07 2.57E− 05 1.85E− 06 1.36E− 04 3.65E − 07 2.52E− 08 4.23E− 04
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solutions when compared with state-of-the-art techniques,
such as homotopy perturbation method [9], differential
transformation method (DTM) [15], and Akbari–Ganji’s
method [19]. )e sensitivity analysis of the design algo-
rithm in terms of different activation functions (Log-Sig-
moid and Tangent Hyperbolic) and for different number of
hidden neurons (n) in the NARX structure are shown in
Tables 3 and 4. )e results show that the convergence speed
of solutions with Log-sigmoid is much higher than other
activation functions.

Effect of variations in the Prandtl number on the tem-
perature profile of the fluid are illustrated in Figure 5(a). It
can be seen that the normalized temperature profile (θ(η))

for different liquid metals starting from sodium, water, and
other higher fluids increases with an increase in the Prandtl
number Pr. Figure 5(b) illustrates the normalized shear
stress along the x and y axis with different normalized film
thickness δ. When film thickness increases, k′(0) increases

linearly with high intensity than −s′(0). Figure 6(a) shows
the results of Θ″(0) and Ψ″(0) against δ. )e results shows
that Θ″(0) has a maximum value of 0.7085 at δ � 1.08 and
asymptotic to the value at 0.51023. In addition, Ψ(0) pos-
sesses a minimum value at δ � 2.82 and asymptotic to the
value at δ � 6.2.

Furthermore, to validate the efficiency, accuracy, and
robustness of the proposed technique, the NARX-BLM
algorithm is executed for multiple runs. )e results of the
mean absolute deviations (MAD), root mean square error
(RMSE), )eil’s inequality coefficient (TIC), and error in
Nash Sutcliffe efficiency (ENSE) in terms of minimum
(min), mean, and standard deviations (std.) with different
activation functions and the number of neuron archi-
tecture of NARX are given in Table 5. )e minimum value
of MAD, ENSE, RMSE, and TIC with Log-Sigmoid
function for Θ(η), Ψ(η), k(η), −s(η), and θ(η) lies around
10− 5 to 10− 6, 10− 12 to 10− 16, 10− 4 to 10− 6, 10− 5 to 10− 6, and
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Figure 5: (a) Effect of Prandtl number on the temperature profile of the fluid. (b) Illustrates the normalized shear stress along x and y axis
with different values of normalized film thickness δ and Pr � 0.7.
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Figure 6: (a) Influence of changes in the thickness of film on Θ′(0) and Ψ′(0). (b) )e results of temperature gradient θ′(0) on the disk
obtained by the design algorithm with Pr � 0.7 against δ.
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10− 6 to 10− 8, respectively. )e results of the mean square
error and gradient for solutions in equations (9)–(13) are
given in Table 6. It can be seen that the results obtained
with log-sigmoid activation function are more accurate
than the tan-hyperbolic function. )e value of MSE for
each function lies around 10− 10 to 10− 15 as shown in
Figure 7.

5. Conclusion

)e important outcomes of this study are summarized as
follows:

(i) In this paper, we have analyzed the mathematical
model of a three-dimensional (3D) condensation
film problem over an inclined rotating disk by in-
corporating the computational strength of the su-
pervised learning method NARX-BLM.

(ii) )e designed algorithm is exploited to calculate the
numerical solutions for the film problem under the
influence of variations in the Prandtl number and
normalized thickness.

(iii) )e results demonstrate that the increase in the
Prandtl number causes an increase in the temper-
ature profile of the film. In addition, k′(0) increases
linearly with high intensity than −s′(0) when the
film thickness increases.

(iv) )e results obtained by the design algorithm are
compared with state-of-the-art techniques, such as
the Runge–Kutta method (RK-4), homotopy per-
turbation method, differential transformation
method (DTM), and Akbari–Ganji’s method. )e
statistics of mean percentage error in solutions by
the NARX-BLM algorithm establishes the accuracy
of the design algorithm.

(v) Extensive graphical, statistical, and sensitivity an-
alyses are conducted based on performance mea-
sures, such as MAD, ENSE, TIC, RMSE, and MSE,
which show that the design algorithm is smooth,
easy, and efficient for calculating the solutions to
real-world problems.
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