Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 3033920, 20 pages
https://doi.org/10.1155/2022/3033920

Research Article

@ Hindawi

A Safe and Compliant Noncontact Interactive Approach for

Wheeled Walking Aid Robot

Donghui Zhao ,! Wei Wang,l Moses Chukwuka Okonkwo,' Zihao Yang,l’2
Junyou Yang ,! and Houde Liu®

!School of Electrical Engineering, Shenyang University of Technology, Shenyang, China
2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
3Center for Artificial Intelligence and Robotics, Tsinghua University, Shenzhen, China

Correspondence should be addressed to Donghui Zhao; putongdeyu@126.com
Received 9 January 2022; Revised 16 February 2022; Accepted 25 February 2022; Published 16 March 2022
Academic Editor: Jie Liu

Copyright © 2022 Donghui Zhao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at promptly and accurately detecting falls and drag-to gaits induced by asynchronous human-robot movement speed
during assisted walking, a noncontact interactive approach with generality, compliance and safety is proposed in this paper, and is
applied to a wheeled walking aid robot. Firstly, the structure and the functions of the wheeled walking aid robot, including gait
rehabilitation robot (GRR) and walking aid robot (WAR) are illustrated, and the characteristic futures of falls and the drag-to gait
are shown by experiments. To obtain gait information, a multichannel proximity sensor array is developed, and a two-dimensional
gait information detection system is established by combining four proximity sensors groups which are installed in the robot
chassis. Additionally, a node-iterative fuzzy Petri net algorithm for abnormal gait recognition is proposed by generating the
network trigger mechanism using the fuzzy membership function. It integrates the walking intention direction vector by taking
gait deviation, frequency, and torso angle as input parameters of the system. Finally, to improve the compliance of the robot
during human-robot interaction, a PID_SC controller is designed by integrating the gait speed compensation, which enables the
WAR to track human gait closely. Abnormal gait recognition and assisted walking experiments are carried out respectively.
Experimental results show that the proposed algorithm can accurately identify abnormal gaits of different groups of users with
different walking habits, and the recognition rate of abnormal gait reaches 91.2%. Results also show that the developed method can
guarantee safety in human robot interaction because of user gate follow-up accuracy and compliant movements. The noncontact

interactive approach can be applied to robots with similar structure for usage in walking assistance and gait rehabilitation.

1. Introduction

Due to an increase in the percentage of the aging population
and the growing number of disabled people with lower limb
impairment, there is a significant rise in the demand for
walking aids or professional care attendants in the daily lives
of the affected people. But this increasing demand cannot be
sufficiently satisfied due to current shortage in supply [1, 2].
Hence, the development of a robot which can help in walking
for both the elderly and disabled during rehabilitation has
become a prominent issue in the field of robotics [3].

The compliant control of robots for assisted walking is an
important research subject regarding the medical care

needed for weak motion capability user groups. In recent
years, researcher globally, have studied this and proposed
several methods [4]. JR et al. proposed a robot walking
control method based on COR (center of rotation), which
enables physically impaired users to compliantly walk by
changing the kinematic structure of the system [5]. Jamwal
et al. proposed the impedance control method. This control
method has small computation and strong robustness, and
has been widely used in the compliant control field of WAR.
However, when there is external disturbance in the human-
robot interaction environment, this control system cannot
maintain optimal impedance control throughout the whole
process [6]. On this basis, Jiang et al. proposed a shared
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control method that takes the robot system and human-
robot interaction as inputs, which can assign a degree of
control to the user according to different use scenarios [7]
(this control method change the main control source
depending on the situation to either the user or the robot).
Xu et al. proposed a shared control method based on re-
inforcement learning algorithm, which enables the robot to
adapt to the user’s personal characteristics and gait, thus
making walking assistance more stable [8]. To improve the
safety of the user during rehabilitation, Xu et al. proposed a
compliant control method based on multisensor fusion
technology. This method improved the compliance of the
rehabilitation robot, nevertheless, the method has a poor
walking intention recognition performance in an environ-
ment containing non-Gaussian noise [9]. Han et al. pro-
posed trajectory tracking control method based on PID
neural network to enhance the compliance in human-robot
interaction [10]. Yan et al. developed a force sensor array to
measure human-robot interaction force of the user’s upper
limbs to calculate required motion intention information.
Laser sensors are then used to measure leg distance to
predict the walking intention of the user’s lower limbs. For
compliant robot movements, the above obtained data are
fused with Kalman filter algorithm to acquire the user’s
walking intention speed [11]. Hirata et al. proposed updating
the state estimation parameters of the user to realize robot
compliant motion control by observing the human-robot
physical interaction which supports the user’s assisted
walking [12]. Song et al. developed an external force observer
based on the measurement of motor current and speed. The
robot adapts by moving compliantly according to the force
applied by the user, but the robot cannot quickly process any
instantaneous data like pulls and push caused by the user’s
fall or other emergency situations, thus increasing the risk of
secondary injury during a fall [13, 14].

Although a large number of studies have been carried out
on the compliant control of walking rehabilitation robots,
extreme situations such as robot induced falls and drag-to gaits
which have not been considered in the recognition of abnormal
human walking intentions, makes it impossible to effectively
guarantee absolute safety in human-robot interaction. Re-
gardless of using robots as a walking aid or in more complex
rehabilitation scenarios, ensuring user safety is an important
factor to consider during research [15, 16]. If the robot has the
ability to detect a fall before the patient reaches the ground
thereby enabling its prevention, user safety will be ensured.

Aiming at this kind of safety issue, researchers have
proposed some fall detection methods, such as wearable
sensor detection [17, 18], visual detection [19, 20], and
environmental monitoring [21, 22]. A wrist watch with built-
in accelerometer can be used for fall detection by monitoring
the amplitude of acceleration with matching support vector
machine algorithm [17]. The fall detection algorithm based
on the fusion of plantar pressure signal and surface EMG
signal achieves an average recognition rate of 91.7% in
normal day usage [23]. Huang et al. [24], Ma et al. [25], and
Qiu et al. [18] put forth the body posture estimation algo-
rithm based on wearable sensor which can effectively esti-
mate the user’s posture, detect abnormal behavior in real
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time and monitor the user online. Unfortunately, for the
wearable fall recognition methods, special sensors need to be
worn in advance to collect and store walking and fall data
incidences which increases usage complexity and poor user
experience. Consequently, Lee et al. proposed a method to
estimate the user’s walking state based on visual inspection
[19]. Kalman recursive prediction based on real-time
measurements of the knee angle actualizes effective ab-
normal gait monitoring [26]. This visual inspection method
has both low cost and ease of use advantages as there is no
need to wear any equipment. But the disadvantage is that it
can only be used in the environment where sensors are
installed. Li et al. proposed a method based on modified zero
moment point for fall predictions and used Kinect sensor to
monitor user’s movements [21]. Di et al. proposed the es-
timation of the user’s center of gravity in real time based on
COP-FD algorithm and ZMP (zero moment point) algo-
rithm [27, 28], so as to monitor the user’s state online. Yan
et al. proposed a human-robot cooperative stability algo-
rithm to measure the walking state of both the robot and
user [29]. Wakita et al. have designed a robot with a smart
cane to help the elderly and disabled during walking. The
concept of “intention direction” was proposed and various
sensors are used to detect the user’s intention. But the human-
robot interface which uses multiaxis sensors is expensive and
fragile, and not affordable for a large number of users [30]. In
the process of using a wheeled walking aid robot, a neuro-
muscular disorder in the user’s lower limb may lead to
walking ability degeneration, abnormal gait, and body im-
balance. Developments such as robot induced drag may be
observed due to the failure of the patient to follow the robot in
time. This generally led to falls causing dangerous secondary
injuries. At present, there is no research on these particular
robots induced abnormal gait which usually occurs before
users fall. Meanwhile, the noncontact interaction mode is
more convenient for the users with weak motion capability,
which could avoid cumbersome steps, such as repeated
wearing and data correction in advance [31, 32]. In particular,
for gait rehabilitation training, the noncontact interaction
mode enables users to actively master the gait rhythm and gait
phase. It helps to promote the active participation of users and
improve the effect of gait training [33].

To recognize abnormal gaits accurately, we proposed a
node-iteration fuzzy petri net algorithm (NIFPN), which is
applied in the gait rehabilitation robot (GRR) and walking aid
robot (WAR). Additionally, we developed a compliant
PID_SC controller, which can track the user’s gaits accurately.
On the whole, a noncontact interactive approach which
ensures both safety and compliant motion is proposed. The
method proposed in this paper has the following innovations:

(1) A low-cost multichannel proximity sensor is de-
veloped to effectively detect real-time gait infor-
mation by multichannel data fusion. Its unique
noncontact design has good generalization charac-
teristics, which means the sensor can be applied to
wheeled walking aid robot with similar structure.

(2) A node-iteration fuzzy petri net (NIFPN) algorithm
is proposed to recognize abnormal gait. The
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recognition rate is improved by updating nodes for
individual behavior differences of users. Compared
with the traditional experience-based threshold
method, this eliminates involved data precorrection
and storage.

(3) A PID_SC controller is proposed to adequately
follow the user’s gaits. Human gait speed compen-
sation is introduced in the calculation process of
traditional PID controller, which significantly im-
proves the stability and compliance of WAR during
assisted walking.

The rest of this paper is as follows: Section 2 analyzes the
composition structure and functions of the developed WAR
and discussed subsequent preliminary experiment processes
in details. Section 3 introduces the abnormal gait recognition
data extraction method and proposes the NIFPN algorithm
and PID_SC controller. Section 4 and 5, respectively, de-
scribes the comprehensive experiment and discusses related
conclusion.

2. Materials

Our laboratory has developed two wheeled walking aid
robots: gait rehabilitation robot (GRR) and walking aid
robot (WAR), as shown in Figure 1. WAR is specially made
for assisting the elderly and patients with walking inabilities,
while GRR mainly serves medial gait rehabilitation pur-
poses. WAR will be used for the experimental demonstration
of the above stated method in this paper.

2.1. Walking Aid Robot. WAR is composed of an operation
interface, pressure support plate and gait information de-
tection platform. Four pressure sensors are embedded in the
pressure support plate to obtain the direction intention [34].
To further improve the accuracy of information acquisition,
we established a gait information detection platform using
the multichannel proximity sensor, as shown in Figure 2.
The multichannel proximity sensor developed is shown in
Figure 2(a), which mainly consists of the laser distance
measurement sensor VL6180X, embedded microcontroller
SH74552, and CAN transceiver SN65HVD230. In placing
two sensors in the front side of the gait information de-
tection platform, we measure the distance between the legs
as they swing back and forth. Two other sensors are installed
on both sides of the platform to measure the lateral distances
of both legs, as shown in Figure 2(b). Distance data from the
multichannel proximity sensor is transmitted to the data
acquisition circuit, as shown in Figure 2(c), where they are
integrated and sent to a microcomputer. Received data are
converted form CAN communication protocol to serial
communication protocol by the MCU before being sent to
the PC. The PC controls the movement of WAR based on the
movement status of both legs.

2.2. Preliminary Preparation Experiment. To effectively de-
tect the abnormal gait characteristics of people with lower
limb disabilities. Multiple directional walking experiments

and long-distance linear walking experiments were con-
ducted respectively, as shown in Figure 3. More intuitive
insight of the user’s gaits is gotten by installing a pressure
sensor array in the user’s shoes, which effectively reflects the
center of gravity and gait swing phase of the user’s foot. To
illustrate the directional interaction between user and robot,
we take the forward movement of the user as the front
cardinal direction with respect to the robot. Front, right-
front and left-front walking directions are shown in
Figures 3(a), 3(b), and 3(c), respectively, and the corre-
sponding gait information are shown in Figures 3(d), 3(e),
and 3(d). In the right-front walking direction as shown in
Figures 3(b) and 3(e), the user’s body pressure is concen-
trated on his right foot, which means that the person intends
to initiate a forward right walking movement and to ap-
propriately respond to this, WAR makes a right-front
movement. At this time, if the user cannot swing the left foot
quickly, a collision may occur or the robot will drag the user
towards the corresponding direction. Also, in Figure 3(c),
the center of gravity of the user is extremely inclined to the
left leg, causing the right foot to easily collide with the side of
the robot as the user is dragged along. Falls and induced
drag-to gait may not only occur in the already discussed
direction but also can occur and be detected as well in all
directional movement of the user and robot. Through ex-
periments, it can be observed that when the intention di-
rection line of the user on the co-ordinate plane has a large
degree of deviation with respect to the running direction of
the robot, abnormal gaits will be induced if not adjusted in
time. In practical usage, because of impairment in the lower
limb muscles and nerves, or fatigue caused by long usage of
the robot, it often happens that the user fails to keep up with
the speed of the robot. Users with extreme conditions may
fall to the ground because of their inability to self-adjust their
gait speed.

3. Method

3.1. System Block Diagram. The WAR provides two opera-
tion modules, namely, assisted walking module and ab-
normal gait recognition module. As shown in Figure 4, an
active compliant control method is introduced according to
the following: first, the multichannel proximity sensor and
pressure sensor on the robot collects the user’s gait infor-
mation and the forearm pressure information respectively.
In assisted walking module, the gait information is passed
through the data processing to complete the recognition of
the user’s walking intention. Information from the center
position of the user’s body is inputted to the PID_SC
controller which outputs the driving speed used for the
control of WAR during assisted walking.

For the abnormal gait recognition module, information
obtained from the multichannel proximity sensor and
pressure sensor which includes inclination angle, walking
intention deviation angle and frequency serve as the input
parameters of NIFPN algorithm. After these parameters are
inputted to the algorithm, involved calculations and gait
evaluations are done. The algorithm involves node updates
which are essential for the optimization of abnormal gait
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FIGURE 2: Gait information detection platform. (a) Multichannel proximity sensor. (b) Sensor installation. (c) Data acquisition circuit.

recognition for individual users. When an abnormal gait is
detected, the robot immediately brakes to prevent dragging
the user. Finally, the driving speed output from the PID_SC
controller is combined with the emergency braking indicator
signal from abnormal gait recognition results to control the
movement of WAR

3.2. Walking Intention Recognition and Parameter Extraction.
When interacting with robots, walking direction intention
and gait information directly reflects movement state.

(1) Gait information recognition: firstly, error data ex-
ceeding maximum distance of multichannel prox-
imity sensor are excluded during the whole
calculation. The mean value of the effective data
obtain from the multichannel proximity sensor is
taken as the observation value. Then, the relative
distance between the foot contour and the robot is
estimated based on the Kalman filter. The commu-
nication frequency of the whole system is 10 Hz.
Figure 5 shows the proximity data of the left and
right feet during normal and restrained (user suffers
an impairment on the left foot) walking. The vertical
axis shows the distance measured by the proximity
sensor, and the horizontal axis reflects time. For

restrained walking (sensor data shown in
Figure 5(a)), the blue signal line shows the position
of the right foot with respect to the robot which is
considered to support the body weight of the user
because it has a shorter displacement. The red signal
indicates a larger displacement of the left foot with
respect to the robot. In this experiment, if the left
foot is slow the user might not be able to follow or
keep up with the speed of the robot.

Next, we propose a method to extract abnormal gait
parameters and a coordinate system is established
with its origin at the ground level of the left front
corner of the base of the robot. The height of the
robot given as h . The coordinate of the force point of
the combined upper limb pressure on the pressure
support plate is P, (x4, y4 h,), and the combined
vector U directly reflects the inclination degree of the
torso, and thus serves as a safety indicator during
assisted walking [35]. By selecting the upper left
corner pressure sensor as the point of origin and the
four sensor values as p_f1, p_fr, p_bl, and p_br, the
walking intention direction vector force F(f,0) is
obtain based on the distance type fuzzy inference
algorithm [34]. The Euclidean distance between
point P, (x,, y;) and the center point P, (x,, y,) of
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FiGURE 3: Experiment of multimodal assisted walk. (a) Front. (b) Right-front. (c) Left-front. (d) Forward gait. (e) Right front gait. (f) Left
front gait.

both feet reflects the deviation degree between the
running direction of the robot and the actual foot-
step position. Again, in the case of abnormal gait, the
user’s lower limb cannot properly indicate the user’s
directional intentions which results in large driving
angle and linear distance deviation. Three input
parameters of the abnormal gait recognition system
are as follows:

(2) Torso inclination angle 0.:

V(xa- )h toamr)

0, = arctan
S

(3) Walking intention deviation parameter dev: the rate

of change of the supporting force f,; of the arms on
the pressure plates is f;. When the pressure plates
are supported with both arms, the rate of change of
the supporting force f; will alternate irregularly with
the intensity of movement. When the user is walking
slowly, the center point P of both feet will fluctuate

in a small range near P;.With increase in walking
speed, the linear distance will also increase, and when
a fall occurs, the linear distance will rise sharply. This
value is taken as the gain of the rate of change of the
supporting force, so as to effectively enlarge the
deviation parameter of walking intention.

Dev = f;- \/(xé—xf)+(y§—yf). (2)

(4) The fluctuation frequency f of walking intention

deviation parameters: this is the sum of all fre-
quencies of intention deviation within a certain
range e in a period of time t. As shown in Figure 6. If
the frequency is within this range, it means that the
position of both feet still has a large deviation range
from the intended direction. From this, we know that
both legs did not swing in time and failed to follow
the intention of walking direction.

According to the assisted walking experiment, the de-
viation between the extension line of the actual position and
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FIGURE 5: Gait information. (a) Normal walking. (b) Restrained walking.

the direction intention is determined by the deviation
amount Dev, and the inclination degree of the user’s body is
determined by the z-axis acceleration value. The frequency f
reflects whether the user’s gait can stably follow the intended
direction in a given period of time.

3.3. Node-1Iterative Fuzzy Petri Net Algorithm. Petri net has
been widely used in fault diagnosis and other fields. It can
effectively describe the dynamic process of abnormal phe-
nomena and has the characteristic advantages of structured
expression, quick inference, quick search and mathematical
adaptation of diagnosis. The abnormal gait recognition

process of a user while walking is a typical example of a
dynamic process.

3.3.1. Fuzzy Petri Net (FPN). FPN is formed from the ex-
tension of the basic Petri net idea in [35, 36]. Each library of
FPN is assigned a real value on [0,1] as its identification value
and each transition is given a definite factor to represent the
probability of transition occurrence. The input and output
functions are also specified. Here FPN is defined with nine
tuples:

FPN ={P,T,D,I,0,af,Th,U}. 3)
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Deviation of walking intention

FIGURE 6: The definition of frequency parameter f.

Here, P = {py, Ps>---> P} is a finite set of repository
nodes; T = {t,t,,...,t,,} is a finite set of transition nodes;
D ={d,,d,,...,d,,} is a finite set of propositions, and
[Pl =|D|, PNTND =¢; I: P— T is the input matrix;
reflects the mapping from library to transition. I = {51‘]'}: 8;;
is a logical quantity, §;; € {0, 1}, When P; is the input of T
(that is, there is a directional arc from P; to Tj), é}j =1
otherwise §;;=0, where i=12...n,j=12...m
O: T — P, is an output matrix, O = {yij}, ¥;; is a logical
quantity, y;; € {0,1}, when P; is the output of T; (that is,
there is a directional arc from P; to T'), y;; = 1; otherwise
yij=0, where i=1,2...n, j=12...m a: P — [0,1],
indicates the confidence of the proposition corresponding to
the library; f: P — D, is a mapping; reflects the corre-
sponding relationship between the nodes of the library and
the proposition; If a (p;) = y;, y; € [0,1],and B(p;) = d,, the
confidence of proposition d; is y;. Th: Th — [0, 1], defines
the domain value A; for transition node f;(t; €T),
Th={A,A,,...4,}. U: rule confidence (CF) matrix,
U = diag(py> ... fhy,), p; is the confidence of rule T,
W€ [0, 1].

FPN is a rule-based system, and its rules can be expressed
with the corresponding FPN models. In the reasoning of
abnormal gait during detection, the rules follow a
MISO (multiple-input-single-output) FPN model, as shown
in the formula: R;: IF p, OR p,OR---ORp,,; THEN p,
(CF =,y ... 4,), because of the possible individual
differences between the fuzzy base rule system established
for a particular user group and a single patient with
mobility difficulties, reasoning accuracy of our algorithm
could be reduced. Therefore, it is necessary to modify the
base nodes and transition nodes in the original FPN model
with nodes that are individual user centered. Please refer
to next section for details of the specific node update
methods. The corresponding node iterative FPN model is
shown in Figure 7.

Among them, the confidence of proposition py, p, ... p,
isa(py), a(p,)...a(p,). In the fuzzy reasoning method, the
fuzzy product rule is adopted, which describes the fuzzy
relationship between the antecedent and result. R is a fuzzy set
rule base, R = {R},R,,...R,}, i order of the fuzzy rule is R;.

7
P Lt
atp) (O—>
)23 b _
«(py) ( ) g a(p,)
[ ] L]
[ ]
S e S
/// tnl ﬂ_n[ \\\\
'/ Pm \
th bn
P2 ]

If the reasoning result of node p,,; is wrong, delete it;

Pu1 — New Rule

| w0 (> i

New repository node and transition node :

FiGure 7: The NIFPN model.

3.3.2. Reasoning Flow of the NIFPN. The system input
Mem (p;)Vp; € IP, IP is set by the input library while the
system output is Mem (p;)Vp; € OP, and OP is set by the
output library. Calculation steps involved in node iterative
FPN reasoning of abnormal gait are as follows:

Step 1. Initialization: fuzzy set is defined by membership
degree where the initial labeling function is

M(p;) =0, if p; ¢ IP,

4
M (p;) = the number of data tokens, if p; € IP. @

Step 2. Calculate the fuzzy relation matrix, ie, Vi; €T,
V() =W xW, = (Wa1, Wy, .wam)T/\(wcl,wcz, c W),
V(t)) is the fuzzy relation matrix between antecedent and
resultin a given timet;, W, = {w,;,w,,,...w,, } is the weight
fuzzy set of the antecedent while W, ={w_,w,...w,,} is
the weight fuzzy set of the result. Each element in a fuzzy set
is represented by a fuzzy weight interval.

Step 3. Input the data for detection W

a-input*

Step 4. Initiate transition, i.e., calculate

T
. € —y
TV
5
Wr; = Wa—input’ ( )

W =W, oV(t;)orW, e V(t)).



Step 5. Output: for the output variable O, its associated
membership function is W, = {w.} = vw/,i=1,2,... [ W,
is the system’s output value.

Step 6. When the transition initiation conditions are met,
return to Step 4, i.e., meet the following requirements:

T
3t

j (S W = 1, Vp] [S I(t]) (6)

Step 7. Calculate the real operation value by using the
maximum defuzzification method.

Step 8. If the reasoning result is wrong, delete the original
node and regenerate it based on collected data and current
state.

3.4. PID_SC Controller. Using the direct distance controller
results to a rough, unstable and unsafe movement in the
robot [37]. This is caused by an intermittent or discrete
motion of the robot in the vy and y relative position axes.
The PID_SC controller proposed serves the purpose of
making the motion of robot controller more compliant. As
shown in Figure 8, two-dimensional cartesian coordinate
system is constructed based on mutually perpendicular
multichannel proximity sensors to improve the human-
robot interaction process. The geometric center of the
robotis P (x,, y.), the coordinates of the user’s left tibia is
Py(x, ), right tibia is P, (x,,y,), P, is the next gait
position. According to the line from point P; and P,, and
its midpoint P,, we defined the body’s center of gravity as
Py (x4, y3,). During assisted walking, we expect P;. and Py,
to stay overlapped with each other, that is, the center of the
user’s body is always near the geometric center of the
robot, so as to avoid collision, drag-to gait or overall torso
tilt.

First, the PID controller enables the robot to calculate the
difference between P, and P,.. In the process of moving
forward or backward, the position error with respect to
Py (x3, yp) is represented as e,, e, and e,,, (with directions
x;and y; as reference). They are defined as e, = x; — x;, and
e, = y; — yp respectively. In order to minimize the error, the
controller is designed as

sty = Koot ki [ edt i 6o
(7)

o =Knye, + iy [t ki,

where x;, and y, are the input velocity of the system and kp,
k;, and k; represent the proportional gain, integral gain and
differential gain, respectively. Although the PID is adopted
for movement control in this paper, it is yet necessary to
input the gait speed of the user to ensure compliance in
motion. Reasons being that relative position error changes
continuously due to the influence of continuous and unequal
gait of the user. That is, during human-robot interaction,
geometric relative positions are directly affected by all
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FiGURE 8: Motion information detection.

intermittent motions. Hence, we propose the addition of
gait speed compensation in the originally established
controller.

Gate speed compensation is mathematically expressed as
follows: the user moves the right leg from the initial position
to the next position at a distance of d; and time ft,
throughout which the left leg is fixed. The rule of thumb is
that the step is about twice the displacement of Py, that is,
the absolute velocity v, = d;/1.5t. The estimated position is
PP (xpc, ypc), and then the error in the y direction is ey te,.
In the right leg movement, the estimated speed v, is

e, +e
vp = (8)
Gait speed compensation vy is calculated by combining
the estimated gait speed v, and the absolute speed v,
expressed as

dg+3e,, +3e
VSC = —Sl 6};"0 y. (9)

For forward or backward movement, the PID_SC
controller output is expressed as

By = kne, + ki, J e, dt +kp i, +ve. (1)

4. Experiment and Analysis

The effectiveness of the proposed method is investigated by
carrying out comprehensive experiments. 30 subjects with
limited mobility (15 males and 15 females) were invited to
carry out abnormal gait recognition experiments and
assisted walking experiment. Then, the proposed method
was tested in smart house to evaluate the safety and comfort
of users. Finally, a comparative analysis was carried out to
prove the superiority of the proposed method.



Computational Intelligence and Neuroscience 9
TaBLE 1: Parameters of the membership function.

Input parameter Low Middle High

Dev 12 16 14 20 26 22 28

z 5 16 11 18 24 21 27

f 1 3 2 4 6 5 6

4.1. Abnormal Gait FPN Model. According to the walking
intention recognition and parameter extraction, the mem-
bership function is defined by the deviation Dev, z-axis
acceleration, and frequency f. The function is divided into
three states: high, medium, and low. To meet actual re-
quirements high, medium, and low membership function
parameters are divided according to the average deviation, as
shown in Table 1, and their corresponding membership
functions are shown in Figure 9.

In this paper, the logical relationships among the gait
information, position and movement direction deviations,
and parameters with self-adjustment capabilities are sim-
plified based on FPN and represented with “library” and
“transition” nodes which are connected by directional arcs.
Experimental analysis shows that the value of Dev is usually
between 8 and 30, the body inclination angle z decreases to
values between 3 and 28, and the frequency f is between 1
and 10. When walking occurs slowly, Dev is usually between
10 and 16, inclination angle z, between 5 and 16, and fre-
quency f, and between 5 and 6. During a fall, De v usually
has values of range 22 ~ 28, the torso inclination angle z will
be between 21 and 27 and the frequency f decrease to a
range of 1 ~ 3. Because the member function is required to be
between 0 and 1, the three input parameters are normalized
to the range of 0 to 1. &, 3, and y represent Dev, z-axis
acceleration and frequency parameter f, respectively. H, M,
and L represent the membership functions of “high,”
“medium,” and “low.”

The fuzzification process is defined as follows: three
fuzzy rules are formulated to correspond with three fuzzy
results: normal, fast and abnormal walking gait. Next, we
setup and configure input language variables, deviation Dev,
torso inclination angle z and frequency parameter f. The
different language variables are defined as high, medium and
low. Fuzzy rules are

R,:if DevisLand zis Land f is H Then Dis NA,

(11)
R;: if DevisHandzis H and fis L Then DisF.

FPN transformation result based on the above fuzzy
rules is shown in Figure 10.

4.2. Case Analysis of Abnormal Gait. For illustrative pur-
poses, we use the above mention FPN calculation steps to
analyze abnormal gaits. The matrix of Dev, z and F pa-
rameters in the reasoning process is Dev, z, and F,
respectively.

Step 9. Set the fuzzy set according to the experiment:

De 0.35 0 0
Vi = )
L deVll deVlm deVlh
027 0 0
7y =—+—+—,
2 Zim R
Fo- 0.42 N 0 N 0
M~ [ —V ~ >
fml fmm fmh
D 0 N 0.58 N 0
evy = >
M~ dev,,  dev,, dev,,
0 049 0
Zy=—+—+—:,
Zml Zmm Zmh ( )
12
F. = 0 N 0.60 . 0
" S fum fhh)
D 0 . 0 N 0.81
evy = ,
H ™ devy, " dev, devy,
0 0 071
Zy=—+—+—7
Zn Zpm Zhh
0 0 0.76
Fi=—+—+——
S fm fu
0.35 0.5 0.75
Status = —+ —+ —.
S Sm Sh

Step 10. Calculate the Cartesian product of the antecedent
and the result to obtain the fuzzy relation matrix;

P, =Dev, x Z; x Fpy =((0.35 0 0)'A(0.27 0 o))T/\(o.42 00)

0.27 0 077
= 0 00| A(04200)=
0 00

027 0 0
0 00
0 00
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FIGURE 9: Membership function for input parameter. (a) Membership function for Dev. (b) Membership function for z. (c) Membership
function for f.

Vi(y)

Normal walking (NA)

Py : Dev

Fast walking (S)

Py:f

F1GUrE 10: The fuzzy Petri model of abnormal gait detection.

P, =Devy x Zy x Fiy =((0 0.58 0)'A(0 0.49 0))T/\(0 0.6 0)

0 0 07" 0 0 0
=10 049 0| A(0 0.6 0)=[0 0.49 0|,
L0 0 o] 0 0 0
Py =Devy x Zy x FL =((0 0 0.81)'A(0 0 0.71))T/\(0 0 0.76)
00 0 7" 00 0
=loo 0 | A(00076)=|00 0
L0 0 0.71] 00 071

(13)
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Vt; € T, T is the transition set. Calculate fuzzy relation
matrix V (¢;), which is the matrix of fuzzy antecedent and
rule £, as follows:

[0.27 0 07
0 00
L 0 00
[0 0 0]
V(t,)=]0 049 0
[0 0 O
(00 0 7
V(t;)={00 0
[0 0 0.71

V(t) = € P, x Status x s;,

€ P, x Status x s,,,, (14)

€ P; x Status X s,.

Step 11. Enter the set to be detected
0 0.02 0.65

Dev! = —+ +—
dev, dev,, dev,
0 0 063
Zl=—+—+—, (15)
2L Zm %
Fr = 0 + 0 + !
S fu fr

Step 12. Transition trigger changes
S;=DevioV(t,)eZ oF

[0.27 0 07
=[0 0.02 0.65]o| 0 00|o[00 0.63][0 0 1]
L 0 0 0J
Sy =DevioV(t,)oZ oF
[0 0 07
=[0 0.02 0.65]|0 0.49 0|o[0 0 0.63]-[0 0 1]
LO 0 OJ
Sy=DevioV(ty)oZ oF
[0 0 0 7
=[0 0.02 065]2[00 0 [o[0 0 0.63]-[0 0 1]
LO 0 0.71 ]
(16)
Step 13. The results of fuzzy reasoning are as follows:
D:s;us;us;:%+%+%. (17)

Step 14. The actual selected value is determined by using the
maximum defuzzification method. Because d,; has

the maximum membership degree, the case is regarded as a
fall.

11

Step 15. Collect the abnormal gait of a subject whose right
knee is fixed when he or she falls. The system’s input data set
to be analyzed for detection is

0 0.5 0.17

Dev' = —+ +—
dev, dev,, dev,’

0 0.17 0.33

Z’ = — + > (18)
2] Zm Zp

p_ 0,0 1
fm fh fl.

According to the same reasoning method, the result of
the system is
0 017 0.17

D=S/USUS; =—+

4t + i (19)

That is to say, fall and fast walking inference probability
obtained by the system is obviously inconsistent with the
falling situations of the subject. The reason is that the Dev
value of 22.98 of an abnormal gait is more similar to the fast
gait of healthy subjects. Because the knee is limited and the
gait state is different from that of healthy people, the in-
ference accuracy will be reduced by using the same inference
parameters. Therefore, it is necessary to adaptively update
the transition trigger parameters in FPN. The updating
method is shown in Figure 11. The membership degree of
22.98 in de v, is set as 1, and the membership degree of
de v,, in 22 is set as 0, so that the membership degree of
de v,, moves to the left as a whole with 18 as the center. That
is, the membership degree corresponding to different values
is replanned, thus updating the nodes confidence. The
reasoning result after node update is

0 017 0.33

D=8/USUS;=—+

4 a (20)

That is, the actual value determined by the maximum
defuzzification method is of an actual fall situation.

4.3. Abnormal Gait Recognition Experiment. Ten subjects
wore devices at their knees to imitate the daily gait of pa-
tients with lower limb impairment to conducted indoor
normal speed (0.27 m/s), fast speed (0.58 m/s), and abnor-
mal gait walking experiments. The values e =4 and t =3
were constant. Figure 12 shows the deviation parameters of
walking intention of the subject when using the robot to
perform experiment in the above listed conditions. When a
subject is walking normally, the deviation parameters of the
walking intention were consistent. As shown in
Figures 12(b) and 12(e), the five peaks of Dev are 19.32,
18.79, 17.53, 15.26, and 17.88, which occur at 2.6s, 3.2,
3.9s, 4.6s, and 5.2 s respectively. Therefore, the maximum
value, 19.32, of Dev, and the maximum value, 13, of the torso
inclination angle Z within 3 seconds period, both serves as
the system input. Hence, the system inputs are Dev = 19.32,
z =13, and F =5, the reasoning results of the system are
§,=0,5, =045, and S; =0. Final results obtained from
maximum defuzzification method indicates that it was a fast
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FIGURE 12: Normal walk, fast walk and fall of subject. (a) Dev of normal walk. (b) Dev of fast walk. (c) Dev of fall. (d) Z of normal walk. (e) Z

of fast walk. (f) Z of fall.

speed walking case. Similarly, as shown in Figures 12(c) and
12(f), when a drag-to gait occurred, the two peaks of Dev are
26.91 and 25.01, which happen at time 3.9s and 4.3, re-
spectively. Again, the maximum value of Dev which is 26.91
and the maximum value of body torso inclination angle Z
within 1 second period which is 27, both serve as the sys-
tem’s input. With Dev =26.91, z =27, and F =2, the
reasoning result of the system is S, =0,S, =0.2, and
S; = 0.43. Final results obtain from maximum defuzzifica-
tion method indicates that this is an abnormal gait walking
case.

Figure 13 shows the abnormal gait recognition experi-
mental data result process of a subject with a fixed right knee.
The experiment begins when the subject is at a standstill
position. From ¢, to t,, the distance between both legs
changes abruptly. Also, the intention direction deviation
degree changes greatly because the subject is constantly
adjusting his gait to balance the upper body from the start to
the end of the test process with the robot. Hence, data from
the first 2 seconds of the experiment were not passed to the
system as input until £, when the subject begins to walk
normally. The drag-to gait occurring within ¢, to t; was
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FIGURE 13: Parameter’s variation of normal walk of health people. (a) Gait information and robot displacement. (b) Deviation parameter

Dev of walking intention. (c) Slope angle Z of body.

recognized by the system. Here, the peak value of Dev is
28.93, time at 10.Is. So, the input of the system are
Dev = 28.03, z = 29, and F = 1. The system’s reasoning are
$,=0,5, =0, and S; = 0.78. After maximum defuzzifica-
tion, reasoning results indicate that it is an abnormal walking
gait. Thus, at t;, the robot brakes urgently and rings a rescue
alarm while the subject waits for rescue.

We comprehensively compare the NIFPN algorithm
with SVM algorithm[38, 39]. Taking the falls and daily
routines of general users into consideration, the abnormal
gait test was conducted. To ensure the safety of the whole
experiment, an elastic bandage is fixed between the subject
and the robot to ensure that all the subject will not fall
completely. The abnormal gait are categorized into forward
falls, backward falls, vertical falls, and sideway falls, and
drag-to gaits. We compare the two algorithms using the
accuracy rate and misidentification rate. The conducted
experiments and results are summarized in Table 2.

The accuracy percentage of abnormal gait of NIFPN is up
to 91.2%, and the recognition rate of drag-to gait is much
higher than SVM algorithm particularly. The misidentifi-
cation percentage of daily routines is 6.27%. The majority of
fall misjudgment is more likely to occur with sideway fall due
to the relatively lower SVM generated at sideway fall, and
therefore more easily to lead to misjudgment. Through the
above experiments, the advantages of NIFPN algorithm are
summarized as follows:

(1) The input parameters of the algorithm reflect the
relative position information between the user
and the robot, and it replaces the experience-
based threshold in traditional fall recognition
methods. Therefore, this algorithm does not need
to store the abnormal behavior gait data of users
in advance, which improves the universality of the
algorithm.
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TaBLE 2: The contrast results of the NIFPN and SVM.

Action times Detected abnormal Detected Accuracy rate

Events gait nonabnormal Y

NIFPN SVM NIFPN SVM NIFPN SVM NIFPN SVM
Forward falling 30 25 25 0 0 100% 100%
Backward falling 30 29 25 1 0 96.7% 100%
Sideway falling 30 25 27 5 3 83.3% 90%
Vertical falling 30 27 29 3 1 90% 96.7%
Walking 30 0 0 7 1 100% 100%
Drag to gait 30 26 12 4 18 86.7% 40%

(2) The algorithm introduces node iteration algorithm,
which can effectively solve the differences of user
with different gait habit. The recognition rate is
improved by adaptive updating of nodes.

(3) The algorithm can effectively recognize the drag-to
gait, which is more suitable for the real use scenario.

4.4. Assisted Walking Experiment. To better serve the elderly
and disabled, the laboratory setup a smart house environ-
ment [40] with a variety of welfare robots, such as gait
rehabilitation robot, walking aid robot, intelligent wheel-
chair robot, transport robot, and excretion support robot as
shown in Figure 14. It consists of 3 areas: recreation area,
living area, and rehabilitation area. The control methods
proposed in this paper are integrated in these robots.

To verify the effectiveness of the proposed noncontact
compliant control method, 4 subjects conducted a multi-
directional trajectory tracking experiment. The subjects
walked in 8 directions assisted by the WAR according to
preset trajectory. The walking path are made in square and
diamond shapes with side length of 2 meters each. At the
same time, some areas were marked with yellow markers,
indicating that subjects should slow down when crossing
these areas.

Figure 15 comparatively shows the path results of the
four subjects while using WAR with respect to the target
walking path. Although there are slight differences between
the walking trajectory of the subjects and the preset tra-
jectory, experimental results show that the method can
accurately identify the subjects’ walking intention direction
and thus is able to satisfy rehabilitative needs.

Figure 16 shows the “slow-fast-slow” walking gait results
of two subjects along the preset path. Although the subjects
have individual differences, the robot can closely follow their
walking gait.

To verify the superiority of the proposed method, the
contrast experiments between the PID_SC controller, tra-
ditional PID controller and DDC (direct detection controller
[37]) were implemented, as shown in Figure 17. Before the
experiment, subjects were first allowed to use the robot for
half an hour to ensure that they were fully familiar with the
WAR operation mode. To ensure safety the maximum
driving speed of WAR was set to 1.1 m/s. Then, all subjects
were asked to walk a distance of 20 meters along the preset
path using three compared control methods, respectively.
The gait data and robot displacement data were recorded.

The comparative data of all the subjects with three
control methods are shown in Figure 18. The displacement
differences of all healthy subjects by PID_SC, PID, and DDC
are 2.63cm, 4.19cm, and 4.96 cm, respectively. The dis-
placement differences of subjects with limited mobility are
3.34cm, 4.72 cm, and 5.63 cm, respectively.

The experimental results show that the displacement
error of the compliant control method proposed in this
paper is smaller than that of the traditional PID controller
and direct distance controller. Faced with subjects with
different motion capabilities, the proposed controller can
control the WAR to produce movement closely corre-
sponding to the user’s walking gait. It is observed that the
gait length and frequency of the healthy subjects can
maintain a high consistency (almost uniform in speed),
while the gait length and frequency of the subjects with
limited mobility have more observable changes (long or
short gait, and frequency fluctuation). Therefore, the overall
displacement error of the subjects with limited mobility is
slightly larger than that of the healthy subjects. Compared
with the traditional control method, the controller intro-
duces human gait speed compensation to reduce the relative
displacement error between the robot and the user.
Meanwhile, it also reduces the motion jam phenomenon and
makes the motion process more flexible.

4.5. Comparison Analysis Experiment. To test the effective-
ness of walking intention-based compliant control in gait
rehabilitation, Tekscan Walkway footpath detection system
was used to conduct assisted walking gait phase analysis
experiment on test subjects [41]. We selected 20 subjects to
participate in this experiment. All subjects were informed in
advance and they agreed to all the test procedures of the
experiment. In common practice gait phase is divided into
eight. Since the subject’s foot does not bear any pressure
during the initial swing phase, the middle swing phase and
the final swing phase while walking, these three phases were
uniformly referred to as the swing phase for convenience in
subsequent work. Table 3 shows the data results of the
subjects when performing compliant assisted walking
compared to the passive assisted walking with the robot.
The data in the table are expressed in mean + standard
deviation. Perform difference analysis on the data in
the table. *P<0.05 indicates significant difference, and
**P<0.01 indicates extremely significant difference. For
passive assisted walking, the movement path and speed of
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the robot are set in advance while the subject follows the
robot to complete the rehabilitative walking exercise. The
experimental results showed that the single leg support time
and double leg support time of the subject were significantly
increased when the compliant walking aid was used.
Compared with passive assisted walking, the initial leg
support time and swing time of the nonaffected leg increased
significantly, while other time parameters showed no sig-
nificant difference. The contact area, pressure and peak
pressure of the two assistance methods are shown in Table 4.

The contact area between the midfoot and the full foot of
the affected side increased significantly when the subject
used robotic assisted compliant walking, but there was no
significant difference between the forefoot and the rear foot.

Computational Intelligence and Neuroscience

At the same time, there was a significant increase in the
subject’s midfoot and full foot contact pressure value. The
nonaffected midfoot pressure and the peak pressure was
higher in the compliant assisted walking than in the passive
assisted walking through this index was not obvious on the
affected side. These results indicated that subjects can ac-
tively walk and master their own gait rhythm during walking
rehabilitation which significantly improves the symmetry
and stability of the user’s gait. Additionally, the improved
safety protective measures in human-robot interaction
provides psychological guarantee and reduces the mental
and physical burden associated in using the robot for passive
assisted walking. Overall, subjects show a boost in confi-
dence while using GRR in walking which is necessary for
medical rehabilitative recovery [42].

The asymmetrical analysis of all subjects’ gaits is shown
in Table 5. When subjects are assisted with robot compli-
ance, the asymmetrical index of contact area, standing time,
and swing time of both lower limbs were significantly im-
proved compared to that of the passive assistance, given that
the asymmetry index of contact pressure and track length
has no significant difference. Results shows that robot-
assisted gait training meets rehabilitation requirement and
can significantly improve the user’s gaits symmetry and
stability.

Because the gait information detection system developed
in this paper can be directly integrated into the mobile
chassis and support plate, it can be directly applied to the
wheeled walking aid robot with similar structure, and has
good universality. The method proposed in this paper was
compared with traditional identification methods which
require special wearable motion detection device such as
pressure sensor and gyroscope, as shown in Table 6.

The approach used in this paper which is based on
proximity sensor and pressure sensor basically has the same
recognition rate as other abnormal gait recognition
methods. Again, it is worth mentioning that this method can
recognize all occurring drag-to gaits, and since this method
does not require the user to wear any sensor, it increases the
user’s comfort and convenience. From the subjective point
of view of users, this section makes a quantitative investi-
gation on the comfort and acceptability of noncontact in-
teraction methods. Aiming at measuring the robot-induced
stress on humans during coexistence, subjective evaluation is
usually acquired [43, 44]. During the comprehensive ex-
periment, the comfortable feeling of different interaction
methods is evaluated by a questionnaire result from all the
subjects, which verifies the effectiveness and comfort of the
proposed method. In the one-to-six scale, a higher score
means a better comfortable feeling. Table 7 shows the score
change of comfortable feeling from the questionnaire survey.
The “7” represents an improvement in comfort, and the “="
and “|” represent no significant change in comfort or less
comfort than the previous methods. From this survey, we
can find that most subjects felt more comfortable after an
adjustment than traditional wearable methods before. This is
because the proposed algorithm is based on the noncontact
interaction method. The user can control the robot naturally
without the repeated steps of placing the wearable sensor.
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TaBLE 3: Comparison of gait phase between compliant robotic-assisted walking and passive walking.

Affected side

Parameter . .
Compliant assisted

Passive assisted

Nonaffected side

Compliant assisted Passive assisted

Support phase 2.11+£0.74 1.62+0.52 1.96+0.75 1.57+0.38
Initial leg support 0.46 + 0.56 0.37+0.37 0.74£0.84*" 0.24+0.36
Single leg support 1.21 +0.45** 0.57 +£0.65 0.97 £0.51 0.86 +0.58
End leg support 0.75+0.46*" 0.22+0.46 0.46+0.75 0.34+0.46
Swing phase 0.89 +£0.37 0.79 £0.47 1.31 £0.45** 0.71£0.15

TaBLE 4: Comparison of contact area and pressure between compliant robotic-assisted walking and passive walking.

Affected side

Nonaffected side

Parameter Position
Compliant assisted Passive assisted Compliant assisted Passive assisted

Forefoot 29.75+14.48 25.74+17.76 32.46+13.25 29.85 + 14.65

Contact area (sz) Mid-foot 46.74 + 15.37** 31.37+16.84 43.64+13.65 40.75+16.75
Rear foot 30.44 +£13.52 26.43 +12.64 31.65+17.75 33.01 +12.36
Full foot 106.93 +26.74** 83.54+24.16 107.75+23.33 103.61 +32.03
Forefoot 48.36 + 39.96 51.25+41.64 87.37 +£47.76 77.86 + 81.04

Contact pressure (103 kPa) Mid-foot 94.64 +48.64** 59.96 +39.63 92.73 + 58.76* 71.65+74.18
Rear foot 59.37 +36.52 42.65 +26.37 89.97 +71.27 70.75 + 75.64
Full foot 202.37 +133.05* 153.86 +77.27 270.07 £ 85.74** 220.26 £94.72

Peak pressure (10° kPa) 218.53 +135.64

172.36 + 82.46

310.73 £128.17**

259.36 £127.84

TaBLE 5: Comparison of asymmetric index between compliant robotic-assisted walking and passive walking.

Parameter

Compliant assisted

Passive assisted

Support time 0.12+£0.47* -0.46+0.78
Swing time —-0.55+1.19% 0.41 £0.69
Contact area —7.54+19.65" -27.76 £16.35
Contact pressure —38.75+53.46 —45.54 + 35.57

TaBLE 6: : Comparison of human robot interaction methods.

Parameter Pressure sensor

Wearable devices Special wearable devices

Wear position Insole
Compliant control ®
Abnormal gait i
Drag-to gait ®
Accuracy 90%
Misidentification rate 18.18%

Gyroscope The proposed mehtod

Special wearable devices No
Limb or trunk No
v v
v v
® v

95.83% 91.2%

0.89% 6.27%

Meanwhile, brain monitoring techniques have the capability
to detect and characterize the operator’s mental state such as
workload, fatigue, or mental stress [45, 46]. It has been
applied to assisted driving and assisted rehabilitation
training for behavior correction and enhancing the ac-
ceptability of human-robot interaction. In this paper,
Functional Near-InfraRed Spectroscopy (fNIRS) WOT-100,
a brain imaging system to perform a continuous measure of
the mental state, is introduced to monitor the user’s mental
fatigue when implementing noncontact interaction method
and traditional method, as shown in Figure 19.

The mean and peak values of oxygenated signal are
extracted as classification features, and the continuous au-
tonomous assisted behaviors are classified combined with

linear discriminant classifier LDA (linear discriminant
analysis). As a method to evaluate mental fatigue, the
classification results can directly distinguish the mental
states of two different difficulty levels of behavior. The ex-
periments of noncontact interaction method and traditional
wearable interaction methods were carried out on 20 sub-
jects for seven times. The classification results are shown in
Table 7. The classification results of cerebral blood oxygen
parameters of two tasks with different difficulty levels are
large, and the difference is obvious. The greater physical
exertion, weak action ability and balance ability subjectively
cause the psychological load of subjects on risk behaviors
such as falls, and increase the fluctuation of cerebral blood
oxygen parameters. The noncontact interaction method can
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TaBLE 7: Comparison of subjective parameters of different human-
robot interaction methods.

. Score (traditional Classification
Subject Noncontact Trend Results
1 4/6 1 74.53
2 3/5 1 81.36
3 5/5 = 63.13
4 3/4 1 69.64
5 4/6 T 70.34
6 3/4 1 75.24
7 1/5 7 87.37
8 2/6 T 86.43
9 4/3 1 59.76
10 4/6 T 81.35
11 4/6 1 69.76
12 2/4 7 73.58
13 4/4 = 55.67
14 2/4 7 76.53
15 2/6 ) 81.87
16 3/6 1 72.76
17 2/4 T 57.34
18 3/4 T 79.48
19 4/3 l 82.84
20 5/6 ) 75.78

Preset
trajectory

Auxiliary walking

FNIRS WOT-100

FIGURE 19: Acceptability experiment of human-robot interaction.
(a) Auxiliary walking. (b) FNIRS WOT.

significantly reduce the physical consumption and mental
fatigue of the subjects.

In general, the advantages of the noncontact interaction
method proposed in this paper are summarized as follows:

(1) The proposed method can ensure the user’s direct
operation, and avoids the cumbersome steps of re-
peated wearing and data correction. It enhances the
user’s comfort and convention.

(2) For gait rehabilitation training, the proposed method
helps users to walk actively and master their gait
rhythm during rehabilitation process, which sig-
nificantly improves the symmetry and stability of the
user’s gait.

(3) The noncontact interaction method provides psy-
chological guarantee, and reduces the mental and
physical burden associated in using the robot.
Opverall, subjects show a boost in confidence while
interacting with the robot with our proposed
method, which is necessary for auxiliary walking and
medical rehabilitative recovery.
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5. Conclusion

This paper proposes a safe and compliant noncontact in-
teractive approach for the wheeled walking aid robot. First,
combined with the mechanical structure of wheeled walking
aid robot, an expandable multichannel proximity sensor is
designed. These sensors are combined and installed in the
robot mobile chassis to recognize human gait information
effectively. Secondly, a noncontact abnormal gait recogni-
tion approach based on NIFPN algorithm is proposed which
identifies asynchronous human-robot movement speed or
physical impairment induced falls and drag-to gaits during
walking, enabling the robot to brake in emergency situations
so as to ensure the safety of the user. Then, a PID_SC
controller which integrates gait speed compensation feature
is designed to accurately and compliantly follow the user’s
gaits. Experimental results show that the NIFPN algorithm
can accurately identify abnormal gaits of groups with dif-
ferent walking habits, and the recognition rate reaches
91.2%. Moreover, the designed PID_SC controller signifi-
cantly improves the compliance and stability of the robot
during assisted walking. Considering the convenience and
comfort that the method offers by not requiring patients to
wear sensors that introduce troublesome step of detection
point precorrection, it can be applied to all wheeled walking
aid robots with similar structures, and popularized to help
the elderly and the disabled in hospitals, home and other
places.

In the next step, we will further explore the safety of
wheeled walking aid robot. Our purpose is to develop an
environmental and gait information-based controller which
will encourage safety in small space areas such as homes.
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from the corresponding author, upon reasonable request.
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