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Grinding is one of the most complex and accurate machining processes, and the efciency of the grinding wheel depends
signifcantly on its surface properties.Tis work aims to propose an algorithmic manner that reduces the cost and time to conduct
grinding of an optimized DIN 1.2080 tool steel (SPK) using a soft computing technique to obtain the best combination of input
parameters including depth of cut (20, 40, 60 μm), wheel speed (15, 20, 25m/s), feed rate (100, 300, 500mm/s), and incidence angle
(0, 30, 45 de grees) with respect to output parameters consisting of average surface roughness and specifc grinding energy.
According to the input parameters and their levels, an experiment using fractional factorial design of experiment (RFDOE) was
designed. Later on, two parallel feed-forward backpropagation (FFBPNN) networks with similar topology made up of 4, 11, and 1
units in their input, hidden, and output layers are trained, respectively. After sensitivity analyses of networks for determination of
the relative importance of input variables, a genetic algorithm (GA) adopting linear programming (LP) based on Euclidean
distance is coupled to networks to seek out the best combinations of input parameters that result in minimum average surface
roughness and minimum specifc grinding energy. Te fndings revealed that RFDOE provides valid data for training FFBP
networks with a total goodness value of more than 1.99 in both cases. Te sensitivity analyses showed that feed rate (38.97%) and
incidence angle (33.94%) contribute the most in the case of average surface roughness and specifc grinding energy networks,
respectively. Despite the similar surface quality based on scanning electron microscopy (SEM), the optimization resulted in an
optimized condition of the depth of cut of 25.23 μm, wheel speed of 15.02mm/s, feed rate of 369.45mm/s, and incidence angle of
44.98 de grees, which had a lower cost value (0.0146) than the optimum one (0.0953).Tus, this study highlights that RFDOE with
a hybrid optimization using FFBP networks-GA/LP can efectively minimize both average surface roughness and specifc grinding
energy of SPK.

1. Introduction

Temost frequent machining process used to produce a fne
surface fnish is grinding. For the purpose of removing
material, grinding machines use abrasive wheels. Several
factors that impact surface fnish can be generally catego-
rized into wheel and machining factors. Abrasive grains, grit
size, bonding material, wheel construction, and wheel grade
are among the characteristics of the wheel. Machining pa-
rameters include the feed rate, depth of cut, wheel speed, and
dressing depth for the grinding wheel [1]. Due to chip
deformation resulting in elastoplastic deformation at the

primary shear zone, plastic deformation and friction at the
secondary shear zone, and elastic deformation and friction at
the tertiary shear zone beneath the grinding wheel’s cutting
surface, there are several areas where material can be re-
moved, thanks to the grinding wheel’s structure, which has
numerous undefned cutting edges producing a high rate of
heat [2–4]. In grinding operation, the workpiece material
becomes more ductile throughout the process due to the
generated heat, which increases chip adherence to the
abrasive tool. Heated chips from the grinding zone could
have the propensity to lodge the pores of the wheel if they are
not entirely eliminated from the cutting zone [5]. Te

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 3042131, 17 pages
https://doi.org/10.1155/2022/3042131

mailto:milad.razbin@aut.ac.ir
mailto:hadibi@aut.ac.ir
https://orcid.org/0000-0002-5409-1476
https://orcid.org/0000-0002-9956-0344
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3042131


clogged chips reduce the wheel’s ability to cut, increasing the
force and temperature of the grinding process and leading to
wheel chatter or workpiece thermal damage and wheel
loading.Wheel loading, which is related to the dulled wheels,
decreases wheel cutting power, and the ensuing excessive
rubbing and plowing, which is the propensity of detached
chips to stick into the pores of grinding wheels. As a result, it
enhances cutting forces and temperature while reducing
wheel lifespan. In other words, the cutting forces are in-
creased in addition to the heat fow [6–9]. Tis kind of
damage can be reduced by utilizing food coolant in the
grinding zone. Because of the cooling action of the food
coolant, the grinding fuids eliminate part of the heat from
the workpiece-wheel contact [10]. Some recent works ex-
amined adding another auxiliary nozzle in the grinding zone
in order to improve efciency. With this regard, using four
compressed air nozzle jets at various angles, comprising 0,
30, 60, and 90 de grees, was conducted by Lopes et al. Tey
found that employing food coolant, followed by minimum
quantity lubrication (MQL) with a compressed air jet at a 30
de grees angle to the wheel surface, is the most efcient
method for cleaning the grinding wheel, lowering diamet-
rical wheel wear, and surface roughness [11]. In the fol-
lowing, Hatami Farzaneh et al. used an auxiliary compressed
air jet system to investigate the efect of the incidence angle
at various angles to clean the wheel surface and reduce wheel
loading. Te results showed that an incidence angle of 45
de grees produced the best results in terms of surface
roughness, diametrical grinding wheel wear, G-ratio, tan-
gential forces, specif;c energy, and wheel loading analysis
[7].

In order to engineer the grinding process of diferent
materials through manipulating efective parameters,
methods relying on experimental data including support
vector machines (SVMs), feed-forward backpropagation
neural networks (FFBPNNs), fuzzy logic (FL), and neuro-
fuzzy networks (NFNs) were employed for establishing a
relationship to map from input variables to output variables
[12, 13]. Moreover, researchers utilized diferent methods of
optimization such as the golden section search (GSS)
method, sequential quadratic programming (SQP) method,
genetic algorithms (GAs), particle swarm optimization
(PSO), ant colony optimization (ACO), and gray wolf op-
timizer (GWO), composite desirability function (CDF), and
self-learning batch-to-batch optimization (SLBBO) method
to seek out the best combination of input variables to reach a
desirable value of output parameters [14–16].

In the following, we will review works related to the
abovementioned topics. With regard to regression-based
modeling, Savas and Ozay minimized the surface roughness
in the process of tangential turn-milling of SAE 1050 steel by
a regression-based model coupled with a genetic algorithm
[17]. Bouacha et al. carried out a tentative study on the efect
of cutting speed, feed rate, and depth of cut on surface
roughness and cutting forces of hard turning with the cubic
boron nitrides (CBN) tool of AISI 52100 bearing steel.
Trough designing an experiment based on the full factorial
design of the experiment (FFDOE), the response parameters
were modeled by response surface methodology (RSM).

Ten, a comparison between the optimization performance
of RSM and CDF was conducted. Te analogy depicted that
RSM eventuates optimized conditions [18]. Elbah et al.
designed an experiment based on the FFDOE to assay the
efect of depth of cut, feed rate, and cutting speed on the
surface roughness of the AISI 4140 steel using two inserts
including CC6050WH and CC6050. Furthermore, modeling
and optimization by RSMwere conducted, and an optimized
condition was found [19]. In another work, Bouacha et al.
investigated the efect of process parameters consisting of
cutting speed, feed rate, depth of cut, and cutting time on
response parameters such as tool wear, surface roughness,
cutting forces, and metal volume removed of hard turning of
AISI 52100 bearing steel with the CBN tool. During their
study, Taguchi design of the experiment (TDOE) was carried
out. After modeling diferent responses using RSM, the
optimization performance of two approaches including CDF
and GA was compared.Teir funding highlighted that GA is
capable of resulting in better-optimized conditions than DF
[20]. Qasim et al. simulated various conditions of machining
AISI 1045 steel using ABAQUS software based on the
TDOE. Tey considered cutting speed, feed rate, depth of
cut, and rake angle in the orthogonal cutting process as
afecting variables on cutting forces and temperature. Te
optimism condition was determined with regard to statis-
tical calculations [21]. Venkatesan et al. designed an ex-
periment using a central composite design of experiment
(CCDOE) with respect to independent variables including
cutting speed, feed rate, laser power, and approach angle of
the laser beam axis to the tool. During their study, surface
temperature and heat-afected depth of Inconel 718 alloy
were modeled by RSM. According to the results, coefcients
of determination of 0.96 and 0.94 were achieved for surface
temperature and heat-afected depth, respectively [22].
Paturi et al. employed TDOE to investigate the efect of
parameters consisting of cutting speed, feed rate, and depth
of cut on surface roughness and the S/N ratio of turning of
Inconel 718. During their study, multiple linear regression
models were developed, and optimal statistical condition
was determined [23]. Khan et al. adopted a CCDOE to
perform multiobjective optimization of surface grinding of
AISI D2 steel by the Gray–Taguchi method using depth of
cut, table speed, cutting speed, and minimum quantity lu-
brication fow rate as input variables. Te output variables
were surface quality, surface temperature, and normal force.
Te objective functions were based on RSM. Tere were
desirable results through the proposed optimization pro-
cedure [24].

Turing to ANN-based modeling, Davim et al. trained an
FFBPNN with two outputs including average roughness and
maximum peak-to-valley height of steel 9SMnPb28k (DIN)
feeding feed rate, cutting speed, and depth of cut as efecting
process parameters. To obtain data, the FFDOE was selected.
A high value of the coefcient of determination (COD) was
acquired in both responses [25]. Muthukrishnan and Davim
applied the FFDOE considering cutting speed, feed rate, and
depth of cut as efecting factors on the surface roughness of
Al-SiC (20 p). Ten, a model based on the FFBPNN was
constructed. During the verifcation of the model, the
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maximum percentage of prediction error was 4.78% [26].
Çaydaş and Ekici compared the predictability of three dif-
ferent types of SVMs tools such as least square SVM (LS-
SVM), spider SVM, and SVM-KM and an FFBPNN through
a study to predict the surface roughness of AISI 304 aus-
tenitic stainless steel under CNC operation. Te input pa-
rameters of the models were cutting speed, feed rate, and
depth of cut. In order to acquire the data, a three-level
FFDOE was employed. Unlike most studies, all SVMs
models had better performance than FFBPNN [27]. Far-
ahnakian et al. presented an algorithmic method based on
FFBPNN as a predictive model and PSO as an optimizer for
the personalization of polyamide-6/nanoclay (PA6/NC)
nanocomposites products using the milling process. Under
changing parameters such as spindle speed, feed rate, and
nanoclay (NC) content, the cutting forces and surface
roughness were minimized [28]. Davim tried to optimize
surface roughness, tool wear, and power required through
the manipulation of parameters such as cutting speed, feed
rate, and cutting time taken from another study [29]. Tey
integrated GA into four diferent techniques of modeling
such as multiple linear regression analysis, response surface
methodology, SVM, and FFBPNN. Overall, SVM-GA out-
performs all three optimization approaches [30]. Gopan
et al. reduced the surface roughness of high carbon, high
chromium (HCHCR) steel by a hybrid modeling made up of
FFBPNN-GA through alteration of variables including
wheel speed, depth of cut, and feed rate [31]. With regard to
the fnish turning of AISI 4140 hardened steel with the mixed
ceramic tool, Meddour et al. in addition to scrutinizing two
diferent optimizers including the DF and the non-
dominated sorting genetic algorithm (NSGA-II), studied the
predictability of two various methods consisting of FFBPNN
and RSM to predict the cutting forces and surface roughness.
Te experiment was designed based on CCDOE where
cutting speed, depth of cut, feed rate, and tool nose radius
were afecting parameters. Te fnding indicated that
FFBPNN-NSGA-II can result in the most desirable condi-
tion [32]. Deshpande et al. took cutting speed, feed rate, and
uncut chip thickness into account to perform an experiment
based on CCDOE to train two diferent FFBPNN for
cryogenically treated and untreated Inconel 718. Moreover,
regression modeling also was conducted. Te analyses of
model predictability demonstrated that FFBPNN with a
COD of more than 0.98 is dominant over the regression
method [33]. Badiger et al. used FFDOE in two series of
work to investigate the efect of cutting speed, feed rate, and
depth of cut on cutting forces and surface roughness. To
optimize the machining condition of MDN431 with two
diferent coatings on cutting tools including TiN/AlN and
AL/Fe, FFBPNN and PSO were adopted for modeling and
multiobjective optimization, respectively. Tey also used
regression for modeling, but the results were not satisfying.
Based on the optimization outcome, FFBPNN-PSO was able
not only to reduce the surface roughness but also resulted in
a lower cutting force [3, 34]. Kara et al. built a model based
on the FFBPNN feeding cutting tool, workpiece, cutting

speed, depth of cut, and feed rate to forecast the surface
roughness of AISI D2 cold-work tool steel. Te best per-
formance of prediction was with a COD of 0.97 and root
mean square error (RMSE) of 0.07 [35]. Susac and Stan
conducted an experiment using the TDOE to investigate the
efect of drill diameter, spindle speed, and feed rate on
roughness, circularity error, and cylindricity error during
the drilling of polymethyl methacrylate. In order to develop
a relationship between input and output parameters, they
utilized a feed-forward backpropagation neural network
consisting of two hidden layers. Te results showed that the
developed models have a maximum absolute mean relative
error of 7% [36]. Karthik et al. incorporated the CCDOE to
study the efect of spindle speed, feed rate, and depth of cut
on surface roughness AISI 316 under face milling operation.
Tree prediction techniques were applied to establish the
relationship between dependent and independent variables,
including RSM, SVR, and FFBPNN. Tey also constructed a
hybrid model made up of FFBPNN and SVR. Tey found
that the hybrid model of FFBPNN-SVR surpasses the other
models due to partial training of weight which leads to the
conversion of static learning capability to dynamic capability
[37]. Ayyıldız et al. modeled the surface roughness of
AA6061 alloy using two diferent procedures including RSM
and FFBPNN considering cutting speed, depth of cut, and
feed rate as input variables. Tey deduced that RSM could
result in a higher COD due to its stability and sturdiness
[38]. Kechagias et al. employed FFBPNN to map from input
variables including X distance, Y distance, laser speed, laser
power, and distance from top to output variables consisting
of surface roughness along the X-axis and Y-axis of thin
thermoplastic plates. To train networks, TDOE was utilized.
Teir funding revealed that FFBPNN has superior pre-
dictability power [39]. Manoj et al. made a comparison
between two methods including FFBPNN and RSM to es-
timate the cutting velocity and surface roughness of the
AltempHX based onmachining parameters such as pulse on
time, wire span, and servo gap voltage. Next, GA was
coupled to FFBPNN for optimization purposes due to their
lower error of prediction [40].

Almost all researchers focused only on the optimization
of surface roughness while less consideration has been made
about specifc grinding energy which is a factor that makes a
remarkable contribution to the grinding process. Herein, to
optimize the grinding parameters such as depth of cut, wheel
speed, feed rate, and incidence angle to obtain tool steel with
minimum surface roughness and minimum specifc
grinding energy, an experiment based on the fractional
factorial design of experiment (RFDOE) is designed. Ten,
two parallel models via an FFBPNN consisting of four,
eleven, and one node in input, hidden, and output layers are
developed, respectively. Furthermore, the relative impor-
tance of input variables is analyzed. Later on, a cost function
is determined and optimized by a GA to fnd the best in-
dividual. Finally, the optimized sample was produced and
compared with the optimum sample to verify the applica-
bility of the proposed optimization algorithm.
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2. Experimentation

2.1. Workpiece Material. Te material employed in the re-
ciprocal grinding tests was DIN 1.2080 tool steel (SPK), high
carbon, high chromium tool steel that has outstanding re-
sistance to wear and abrasion and is often used in a range of
mechanical applications including high-performance
blanking, punching dies, and plastic molds. Te SPK sample
purchased from (https://www.tejarataliaj.com/) with di-
mensions of 20× 30×10mm3 had a hardness of 250HB. In
order to reduce the residual stress and hardness that might
have been produced during the casting and cutting process,
before the grinding process, all the samples underwent a heat
treatment process as given in Table 1.

Te chemical composition of this material is displayed in
Table 2.

2.2. Experimental Design. To investigate the efect of inde-
pendent variables with three diferent levels including depth
of cut, wheel speed, feed rate, and incidence angle (nozzle
angle) on average surface roughness (Ra) and specifc
grinding energy (Ee), an experiment based on Table 3 using
the RFDOE is designed.

Te total number of samples has been determined
according to the RFDOE model [16, 41] as equation (1)
utilizing Design-Expert 13 software:

yijklm � μ + Di + Vj + Rk + Al + DVij + DRik + DAil

+ VRjk + VAjl + RAkl + ε(ijkl)m,
(1)

where μ, Di, Vj, Rk, Al, and ε(ijkl)m are the common efects
for the whole experiment, ith level of depth of cut, jth level of
wheel speed, kth level of feed rate, lth level of incidence
angle, and random error of mth repetition, respectively. Te
two combinations of variables indicate the interaction be-
tween them. Moreover, the average surface roughness and
specifc grinding energy [42–46] are calculable using
equations (2) and (3), respectively:

Ra �
1
L

􏽚
L

0
|Y(x)dx|, (2)

Es �
FtV

WRD
, (3)

where L refers to the sampling length. In addition, Ft, V, W,
R, and D are the tangential grinding force, the cutting speed,
the contact width (20mm), the feed rate, and the depth of
cut, respectively.

2.3.Methodologies. In this study, according to ISO 468:1982,
BLOHOM Surface Grinder was employed for grinding
(model HFS204). Te grinding machine was outftted with
NORTON White Alumina-32A46 JVBE 268445 vitrifed
bond grinding wheel. During grinding, the tangential force
was extracted using the dynamometer, which is manufac-
tured by the KISTLERCompany in Germany (model 92558).
Input parameters are summarized in Table 4.

Marsurf XR 1 surface roughness tester was employed to
measure Ra values. According to equation (2), Ra is the
arithmetic average of the absolute profle height values
across the sampling length, which was set at 0.80mm.
Moreover, the standard wheel dimension was
225× 37× 51mm3. Te distance between the nozzle and the
wheel surface was chosen to be 1mm. Conventional cutting
fuid (semisynthetic oil-based emulsion) was used as the
food coolant. Te grinding wheel was dressed using a di-
amond single-point tool with a depth of 50 μm in two passes
under the speed of 100mm/min to obtain a wheel surface
free of chips and particles after each experimental test, and
its spark-out was set at 8 seconds. Additionally, the pressure
of the compressed air nozzle and its dimensions was
0.70MPa and 10×1× 100mm3, respectively. Figure 1 in-
dicates the arrangement of the experimental setup and its
schematic view.

Te dynamometer has been set up on the bed, and a
fxture has been placed above it to hold the samples. Te
grinding zone contains two embedded nozzles, one for the
delivery of coolant and the other for the jet of compressed
air. A diamond single-point dressing mechanism has been
placed on the other side of the fxture so that the time spent
getting dressed can be reduced to a minimum.

3. Modeling and Optimization

3.1. Artifcial Neural Network. In terms of predictions, ar-
tifcial neural network-based models are considered as the
most efcient ones. Among many networks, the FFBPNN is
utilized to predict the output of the diferent systems with
desirable performance. Besides, the most critical aspect
during modeling with ANN is the number and validity of
data obtained by performing an experiment with a particular
design. Diferent designs including FFDOE, CCDOE, and
TDOE can be taken into account to provide data for training
and testing networks. In the present study, the data are
obtained via the fractional factorial design of experiment

Table 1: Parameters of the heat treatment process.

Process Temperature (℃) Time (min)
Hardening 880 60
Cooling 880-ambient —
Tempering 150–300 180
Annealing 300-ambient —

Table 2: Chemical composition of the workpiece material.

Element Fe Cr C Mn Si V W
Composition (%) 83.7 12.0 2.2 0.6 0.6 0.5 0.4

Table 3: Independent variables and their levels.

Variable Code Unit Levels
Depth of cut D μm 20 40 60
Wheel speed V m/s 15 20 25
Feed rate R mm/s 100 300 500
Incidence angle A Degree 0 30 45
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Table 4: Input parameters of the grinding operation.

Grinding machine BLOHOM (HFS204)
Grinding process Pendulum (reciprocal)
Grinding wheel White alumina-32A46 JVBE 268445
Wheel dimension (mm) 225× 37× 51
Dynamometer KISTLER Company with 92558 model
Cutting speed (m/s) 15; 20; 25
Feed rate (mm/s) 100; 300; 500
Depth of cut (μm) 20; 40; 60
Conventional cutting fuid Semisynthetic vegetable oil-based emulsion
Flow rate for the conventional technique (1/min) 17
Air pressure in the cleaning system (MPa) 0.7
Air jet nozzle dimension (mm) 10×1× 100
Workpiece material Hardened and tempered tool steel (SPK) with dimension of 20× 30×10mm3

Cooling/cleaning methods Flood coolant
Air jet with angle of 0°, 30°, 45°

Dresser Diamond single-point
Dressing depth (μm) 50 in 2 passes
Dressing speed (mm/min) 100
Spark-out (second) 8

Coolant delivery

Compressed air nozzle

Grinding wheelWorkpiece

Dynamometer

(a)

Coolant delivery

Air nozzle

Feed direction

1 mm

225 mm

θ

Grinding wheel

Workpiece

Dynamometer

(b)

Figure 1: Arrangement of experimental setup. (a) During operation. (b) Schematic view.
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(RFDOE) which considers the main and two interactions. In
order to evaluate the performance of networks during
training and testing steps, the same total goodness function
(TGF) is considered [16, 47–49]. Besides, to enhance the
performance of networks, two parallel networks with single
output instead of a network with dual outputs are developed.
Te following functions are used for the performance
evaluation of networks.

MSE �
1
n

􏽘

n

i�1
ti − Oi( 􏼁

2
,

R
2

� 1 −
􏽐

n
i�1 ti − Oi( 􏼁

2

􏽐
n
i�1 ti − t( 􏼁

2 ,

GF � R
2

+
1

e
MSE

,

χ �
n

M
,

TGF � χtrainGFtrain + χtestGFtest.

(4)

Te basic components of a neural network are neurons,
inputs, weights, a summation function, an activation
function, and an output [35, 50]. Here, in this work, ti, Oi, t,
and n are the target, output, mean values of the target, and
amount of data during the testing or training step of the
network, respectively. In addition, M is the total amount of
data. Table 5 depicts the performance of the networks using
diferent activation functions.

Referring to the total goodness value of diferent acti-
vation functions, the activation function of hidden and
output layers has been determined as equations (5) and (6),
respectively [51]:

Tansig(n) �
2

1 + e
− 2n

􏼐 􏼑 − 1
, (5)

Purelin(n) � n. (6)

Te learning rate and momentum value were both 0.90.
All available training functions such as Lev-
enberg–Marquardt, BFGS quasi-Newton, resilient back-
propagation, scaled conjugate gradient, conjugate gradient
with Powell/Beale restarts, Fletcher–Powell conjugate gra-
dient, Polak–Ribiére conjugate gradient, one step secant, and
variable learning rate backpropagation have been tried, and
there was no diference in their TGF values.Tus, to improve
the training process as in previous work [52], the Lev-
enberg–Marquardt algorithm has been chosen as a training
function. Te number of training cycles was 1000 epochs.
Both networks have a single hidden layer. Table 6 depicts the
setting of ANN-based models.

In order to specify the number of units in the hidden
layer, a comparison between total goodness values was
made. Te abovementioned networks are developed via the
ANN toolbox of MATLAB software.

3.2. Genetic Algorithm. A genetic algorithm is an adaptive
method of optimization that is inspired by biological or-
ganisms. Tis procedure is based on the “survival of the
fttest” that rules in natural selection, and its basic funda-
mentals were frst afrmed by Holland [53]. By promoting
the survival and reproduction of the solutions that are most
likely to converge toward the optimum, these algorithms
build a population of solutions and cause them to develop
[54, 55]. Since it is reliable in identifying an optimal solution,
which is the nearly global minimum, GA is one of the most
alluring strategies for problem optimization in the nu-
merous domains of industrial application [16, 56]. Trough
implementing such procedures, solutions are represented as
vectors called chromosomes. During the optimization
process, such chromosomes are sorted according to their
either cost or ftness values which are defned by objective
function or functions [14]. Te process of fipping a chro-
mosome is known as mutation. To commence optimization,
the setting of the GA algorithmic toolbox of MATLAB
software is considered as given in Table 7.Te chromosomes
change throughout a number of generations or iterations. By
combining crossover and mutation, new generations are
produced. In a process known as a crossover, two chro-
mosomes are divided and then combined with each other.
Later on, the chromosomal bit is fipped during a mutation.
Te best chromosomes are maintained while the inferior
ones are eliminated after the chromosomes have been
assessed using a set of ftness criteria. One chromosome is
chosen as the best option for the problem after this pro-
cedure is repeated until it has the best ftness [57]. In fact, the
genetic algorithm uses the criteria to determine the objective
function’s global minimum value and makes sure the output
is the converged value. In light of this, genetic algorithms are
efective tools for enhancing process parameters to identify
the best-ft optimal solution from the global search based on
the specifed goal function to reduce average surface
roughness [58]. Te size of the original population, the kind
of selection function, the crossover rate, and the mutation
rate are the main factors that have the greatest infuence on
the best outcome and must be taken into account. Trial and
error are used to determine the value of parameters for these
criteria in order to get the desired outcome as efciently as
possible.

Regarding previous works, it can be deduced that most
researchers had not considered the specifc grinding en-
ergy which is the main parameter to determine the energy
required for obtaining a particular average surface
roughness. In this study, a multiobjective optimization is
constructed based on two responses including average
surface roughness and specifc grinding energy. In the
optimization step, both trained networks for average
surface roughness and specifc grinding energy are
recalled, in which their value is normalized between 0.10
and 0.90. Ten, a Euclidean distance [59] as equation (7)
to fnd an individual with minimum average surface
roughness and minimum specifc grinding energy is
applied.
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Minimize : f( x
→

) �

�����������������������������

Rn( x
→

) − 0 · 1( 􏼁
2

+ En( x
→

) − 0 · 1( 􏼁
2
,

􏽱
(7)

x
→

i � Di.Vi.Ri.Ai􏼈 􏼉& i � 1. . . . .m, (8)

where x
→, Rn, and En are the vectors that store input pa-

rameters, the normalized average surface roughness, and the
normalized specifc grinding energy, respectively. In addi-
tion, D, V, R, and A refer to the depth of cut, wheel speed,
feed rate, and incidence angle, respectively. Te upper and
lower boundaries of input parameters are as follows:

20≤D≤ 60,

15≤V≤ 25,

100≤R≤ 500,

0≤A≤ 45.

(9)

Te schematic illustration of the experimentation,
modeling, and optimization process is highlighted in
Figure 2.

According to Figure 2, the data are normalized after
obtaining them from an experiment based on the RFDOE.
Next, ANN-based models are trained and tested via dataset.
Later on, the GA operator is utilized to fnd an individual
that can result in minimum average surface roughness and
specifc grinding energy.

4. Results and Discussion

4.1. Statistical Results. Te results of the investigation on
average surface roughness and specifc grinding energy for
60 samples under alteration of the depth of cut, wheel speed,
feed rate, and the incidence angle with a 95% confdence
level are summarized in Table 8. All estimations are based on
three repetitions.

Using equation (10), the raw data obtained through
experimentation are normalized for the modeling step be-
tween 0.10 and 0.90 to avoid any quantitative efect [16, 60]:

Yn � 0 · 8
Y − min (Y)

max (Y) − min (Y)
􏼠 􏼡 + 0 · 1, (10)

where Y and Yn are the actual and normalized values of
variables, respectively. Besides, to train and then test models,
the dataset randomly was split into a ratio of 54 : 6.

Regarding the information provided in Table 8, Figure 3
demonstrates the efect of diferent cutting parameters on
average surface roughness and specifc grinding energy.
According to Figure 3(a), when the depth of cut was in-
creased from 20 to 40 μm, average surface roughness rose
from 0.62 to 0.92 μm, respectively. Meanwhile, the reverse
efect can be found in Figure 3(b) regarding specifc grinding

Table 5: Performance of network with diferent activation functions.

Run
Activation function TGF

Hidden layer Output layer Ra ES

1 Purelin Purelin −16.3628 −19.2731
2 Purelin Tansig −0.4878 1.1008
3 Purelin Logsig −1.1652 −1.0529
4 Tansig Purelin 1.9987 1.9998
5 Tansig Tansig 1.9712 1.9400
6 Tansig Logsig 0.0317 −1.5739
7 Logsig Purelin −1.3190 1.3295
8 Logsig Tansig −0.7430 1.4582
9 Logsig Logsig −1.3575 −1.2885

Table 6: Parameter settings of the ANN-based models.

Parameter Value
Number of units in the input layer 4
Number of units in the hidden layer 11
Number of units in the output layer 1
Activation function of the hidden layer Tan-sigmoid
Activation function of the output layer Pure linear
Learning rate 0.90
Momentum value 0.90
Learning function Levenberg-Marquardt
Number of training cycles (epochs) 1000

Table 7: Parameter settings of GA.

Parameter Value
Population type Double vector
Max generation 25
Creation function Uniform
Scaling function Rank
Selection function Roulette
Elite count 1
Mutation function Adapt feasible
Crossover function Two points
Migration direction/interval Forward/10% of population size
Migration fraction 0.90
Nonlinear constraints
algorithm Penalty

Cost limit 0

Computational Intelligence and Neuroscience 7
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Figure 2: Optimization diagram of the hybrid model.

Table 8: Experimental design and results.

Sample

Inputs Outputs Dataset
D V R A Ra (μm) Es (J/mm3) Training Testing

Act.
value

Nor.
value

Act.
value

Nor.
value

Act.
value

Nor.
value

Act.
value

Nor.
value Act. value Nor.

value Act. value Norm.
value + −

1 60 0.90 15.00 0.10 500.00 0.90 0.00 0.10 1.31± 0.02 0.82 7.75± 0.14 0.13 + −

2 60 0.90 20.00 0.50 500.00 0.90 30.00 0.63 0.94± 0.03 0.53 7.87± 0.60 0.13 + −

3 60 0.90 15.00 0.10 100.00 0.10 0.00 0.10 1.01± 0.02 0.59 31.25± 0.32 0.39 + −

4 60 0.90 15.00 0.10 300.00 0.50 45.00 0.90 0.75± 0.01 0.39 8.00± 0.81 0.14 + −

5 60.00 0.90 20.00 0.50 500.00 0.90 45.00 0.90 0.79± 0.03 0.42 6.93± 0.84 0.12 + −

6 60.00 0.90 20.00 0.50 100.00 0.10 45.00 0.90 0.64± 0.01 0.30 31.67± 0.51 0.39 − +
7 60.00 0.90 20.00 0.50 300.00 0.50 0.00 0.10 1.26± 0.01 0.78 15.33± 0.23 0.21 + −

8 60.00 0.90 15.00 0.10 300.00 0.50 30.00 0.63 0.85± 0.03 0.47 10.17± 0.31 0.16 − +
9 60.00 0.90 25.00 0.90 500.00 0.90 0.00 0.10 1.42± 0.02 0.90 13.75± 0.75 0.20 + −

10 60.00 0.90 15.00 0.10 100.00 0.10 30.00 0.63 0.80± 0.04 0.43 28.50± 0.17 0.36 + −

11 60.00 0.90 25.00 0.90 100.00 0.10 45.00 0.90 0.61± 0.04 0.28 36.25± 0.56 0.44 + −

12 60.00 0.90 15.00 0.10 500.00 0.90 45.00 0.90 0.74± 0.02 0.39 4.65± 0.40 0.10 + −

13 60.00 0.90 25.00 0.90 300.00 0.50 30.00 0.63 0.90± 0.02 0.51 15.97± 0.29 0.22 + −

14 60.00 0.90 25.00 0.90 300.00 0.50 45.00 0.90 0.78± 0.01 0.41 13.19± 0.71 0.19 + −

15 60.00 0.90 25.00 0.90 500.00 0.90 30.00 0.63 0.92± 0.03 0.52 11.25± 0.14 0.17 + −

16 40.00 0.50 20.00 0.50 300.00 0.50 45.00 0.90 0.65± 0.02 0.32 12.67± 0.19 0.19 + −

17 40.00 0.50 20.00 0.50 100.00 0.10 45.00 0.90 0.47± 0.03 0.17 33.50± 0.87 0.41 − +
18 40.00 0.50 25.00 0.90 300.00 0.50 30.00 0.63 0.73± 0.02 0.38 20.83± 0.34 0.27 + −

19 40.00 0.50 15.00 0.10 300.00 0.50 30.00 0.63 0.72± 0.04 0.37 13.38± 0.74 0.19 + −

20 40.00 0.50 25.00 0.90 300.00 0.50 45.00 0.90 0.63± 0.03 0.30 18.13± 0.39 0.24 + −

21 40.00 0.50 15.00 0.10 500.00 0.90 45.00 0.90 0.71± 0.01 0.36 6.75± 0.66 0.12 + −

22 40.00 0.50 25.00 0.90 100.00 0.10 0.00 0.10 0.74± 0.06 0.38 64.38± 0.52 0.74 + −

23 40.00 0.50 25.00 0.90 500.00 0.90 0.00 0.10 0.95± 0.04 0.54 14.75± 0.91 0.21 + −

24 40.00 0.50 20.00 0.50 300.00 0.50 0.00 0.10 0.91± 0.03 0.51 19.17± 0.11 0.26 + −

25 40.00 0.50 25.00 0.90 500.00 0.90 45.00 0.90 0.76± 0.04 0.40 11.75± 0.53 0.18 + −

26 40.00 0.50 20.00 0.50 500.00 0.90 30.00 0.63 0.83± 0.02 0.45 11.20± 0.18 0.17 + −

27 40.00 0.50 15.00 0.10 100.00 0.10 0.00 0.10 0.66± 0.05 0.32 36.00± 0.27 0.44 + −

28 40.00 0.50 15.00 0.10 500.00 0.90 0.00 0.10 0.92± 0.03 0.52 9.00± 0.80 0.15 + −

29 40.00 0.50 25.00 0.90 100.00 0.10 30.00 0.63 0.69± 0.03 0.34 59.38± 0.22 0.69 + −

30 40.00 0.50 15.00 0.10 100.00 0.10 45.00 0.90 0.53± 0.02 0.22 34.50± 0.61 0.42 + −
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energy. With an increase in depth of cut from 20 to 40 μm,
specifc grinding energy falls from 32.34 to 17.46 J/mm3,
respectively. In the case of wheel speed, it can be found from
Figure 3(c) that there is no signifcant alteration in terms of
average surface roughness. At the same time, specifc
grinding energy underwent a growth to reach a maximum
value of 27.07 J/mm3 at a wheel speed of 25m/s as shown in
Figure 3(d). On the other side, it can be seen in Figure 3(e)
that the lowest average surface roughness (0.70 μm)
belonged to a feed rate of 100mm/s while the highest one
(0.87 μm) was a feed rate of 300mm/s. In addition, based on
Figure 3(f), a higher feed rate (100mm/s) led to higher
specifc grinding energy (44.30 J/mm3). Finally, changing the
incidence angle from 0 to 45 de grees, as depicted in
Figure 3(g), resulted in a reduction of average surface
roughness from 1.03 and 0.63 μm, respectively. Te same
trend can be found in Figure 3(h) with regard to specifc
grinding energy. In other words, the higher the incidence
angle (45 de grees), the lower the specifc grinding energy
(17.87 J/mm3) was required.

Physically speaking, it can be said that when the depth of
cut, feed rate, and wheel speed is increased, the temperature
at the interface witnesses an increase that leads to the ele-
vation of average surface roughness [35, 61, 62]. In addition,

the reduction of the incidence angle from 0 to 45 de grees is
investigated, and it is shown that when the angle of the
nozzle is 45 de grees, a large amount of fuid is carried to
interface regions which enhances the lubrication and re-
duces the grinding zone temperature. As a result, lower
average surface roughness is achieved [62].

In terms of specifc grinding energy, it is shown that a
higher depth of cut causes lower specifc grinding energy due
to plowing and rubbing actions. In fact, the girt sharpness
and grinding force are the driving forces behind the re-
duction of the energy [62, 63]. Trough rising wheel speed,
the specifc grinding energy goes up due to the growing
cutting force. Hence, specifc grinding energy ascents
[64, 65]. Moreover, a high feed rate provides a condition in
which that more volume of material is removed due to
higher penetration of grits. Terefore, specifc grinding
energy falls [66]. Similar to roughness, when the nozzle angle
is 45, an optimum value of specifc grinding energy is ob-
tained due to better cleaning and cooling and lower grinding
zone temperature [7, 62].

4.2. Developed Objective Functions. A hidden layer, an
output layer, and an input layer are frequently used to model
artifcial neural networks. Te input layer regulates the

Table 8: Continued.

Sample

Inputs Outputs Dataset
D V R A Ra (μm) Es (J/mm3) Training Testing

Act.
value

Nor.
value

Act.
value

Nor.
value

Act.
value

Nor.
value

Act.
value

Nor.
value Act. value Nor.

value Act. value Norm.
value + −

31 60.00 0.90 20.00 0.50 300.00 0.50 30.00 0.63 0.89± 0.01 0.49 11.44± 0.52 0.17 + −

32 60.00 0.90 15.00 0.10 100.00 0.10 45.00 0.90 0.60± 0.05 0.28 22.00± 0.59 0.29 + −

33 60.00 0.90 15.00 0.10 300.00 0.50 0.00 0.10 1.20± 0.02 0.73 10.50± 0.41 0.16 + −

34 60.00 0.90 25.00 0.90 100.00 0.10 0.00 0.10 1.12± 0.01 0.67 47.08± 0.76 0.56 + −

35 60.00 0.90 20.00 0.50 100.00 0.10 30.00 0.63 0.81± 0.02 0.44 36.00± 0.14 0.44 + −

36 60.00 0.90 20.00 0.50 500.00 0.90 0.00 0.10 1.40± 0.04 0.89 9.47± 0.34 0.15 + −

37 60.00 0.90 25.00 0.90 500.00 0.90 45.00 0.90 0.73± 0.02 0.38 7.75± 0.83 0.13 + −

38 60.00 0.90 15.00 0.10 500.00 0.90 30.00 0.63 0.86± 0.05 0.48 5.10± 0.99 0.10 − +
39 60.00 0.90 20.00 0.50 500.00 0.90 45.00 0.90 0.75± 0.04 0.39 6.33± 0.43 0.12 + −

40 60.00 0.90 20.00 0.50 100.00 0.10 0.00 0.10 1.08± 0.05 0.65 37.00± 0.44 0.45 + −

41 60.00 0.90 25.00 0.90 300.00 0.50 45.00 0.90 0.78± 0.01 0.41 13.06± 0.11 0.19 + −

42 60.00 0.90 20.00 0.50 300.00 0.50 45.00 0.90 0.76± 0.03 0.40 10.89± 0.67 0.17 + −

43 60.00 0.90 15.00 0.10 300.00 0.50 0.00 0.10 1.27± 0.08 0.79 10.08± 0.50 0.16 + −

44 60.00 0.90 25.00 0.90 300.00 0.50 0.00 0.10 1.31± 0.07 0.82 17.78± 0.91 0.24 + −

45 60.00 0.90 25.00 0.90 100.00 0.10 30.00 0.63 0.82± 0.01 0.45 36.67± 0.19 0.44 + −

46 20.00 0.10 25.00 0.90 100.00 0.10 45.00 0.90 0.39± 0.04 0.11 60.00± 0.56 0.70 + −

47 20.00 0.10 20.00 0.50 500.00 0.90 0.00 0.10 0.89± 0.06 0.49 18.00± 0.65 0.24 + −

48 20.00 0.10 25.00 0.90 300.00 0.50 0.00 0.10 0.76± 0.05 0.40 35.42± 0.57 0.43 + −

49 20.00 0.10 20.00 0.50 300.00 0.50 30.00 0.63 0.78± 0.05 0.41 29.67± 0.71 0.37 − +
50 20.00 0.10 15.00 0.10 500.00 0.90 0.00 0.10 0.82± 0.04 0.45 14.10± 0.33 0.20 + −

51 20.00 0.10 25.00 0.90 300.00 0.50 30.00 0.63 0.80± 0.01 0.43 35.42± 0.12 0.43 + −

52 20.00 0.10 15.00 0.10 500.00 0.90 30.00 0.63 0.82± 0.03 0.44 13.65± 0.35 0.20 + −

53 20.00 0.10 20.00 0.50 300.00 0.50 45.00 0.90 0.37± 0.01 0.10 15.00± 0.86 0.21 + −

54 20.00 0.10 15.00 0.10 100.00 0.10 30.00 0.63 0.51± 0.08 0.20 56.25± 0.24 0.66 + −

55 20.00 0.10 25.00 0.90 500.00 0.90 45.00 0.90 0.48± 0.09 0.18 15.25± 0.91 0.21 − +
56 20.00 0.10 20.00 0.50 100.00 0.10 0.00 0.10 0.55± 0.03 0.24 79.00± 0.53 0.90 + −

57 20.00 0.10 25.00 0.90 500.00 0.90 30.00 0.63 0.78± 0.07 0.41 20.50± 0.44 0.27 + −

58 20.00 0.10 20.00 0.50 100.00 0.10 30.00 0.63 0.50± 0.01 0.20 68.00± 0.59 0.78 + −

59 20.00 0.10 15.00 0.10 300.00 0.50 45.00 0.90 0.40± 0.06 0.12 13.25± 0.33 0.19 + −

60 20.00 0.10 20.00 0.50 500.00 0.90 45.00 0.90 0.46± 0.01 0.17 11.60± 0.68 0.17 + −
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process variables for feed rate, wheel speed, and depth of cut.
Te hidden layer was populated with the number of neurons
required to increase the output value’s accuracy. When
employing a multilayer feed-forward network to solve real-
world issues, one of the most crucial factors to take into

account is the size of the hidden layers [67, 68]. Te best
network is chosen based on the total goodness value. Te
architecture of developed ANN-based models for average
surface roughness and specifc grinding energy is shown in
Figure 4. Such architecture is an optimum one that can result

1.20

1.00

20

0.62
0.73

0.94

40
Depth of cut (micron)

60

Su
rfa

ce
 ro

ug
hn

es
s (

m
ic

ro
n)

0.80

0.60

0.40

0.20

0.00

(a)

50.00

20

32.34
24.36

17.46

40
Depth of cut (micron)

60Sp
ec

if
c g

rin
di

ng
 en

er
gy

 (J
/m

m
3)

40.00

30.00

20.00

10.00

0.00

(b)

1.20

1.00

15

0.81 0.79 0.81

20
Wheel speed (m/s)

25

Su
rfa

ce
 ro

ug
hn

es
s (

m
ic

ro
n)

0.80

0.60

0.40

0.20

0.00

(c)

50.00

15

17.63
23.54

27.07

20
Wheel speed (m/s)

25Sp
ec

if
c g

rin
di

ng
 en

er
gy

 (J
/m

m
3)

40.00

30.00

20.00

10.00

0.00

(d)

1.20

1.00

100

0.70
0.83 0.87

300
Feed rate (mm/s)

500

Su
rfa

ce
 ro

ug
hn

es
s (

m
ic

ro
n)

0.80

0.60

0.40

0.20

0.00

(e)

50.00

100

44.30

16.63
10.83

300
Feed rate (mm/s)

500Sp
ec

if
c g

rin
di

ng
 en

er
gy

 (J
/m

m
3)

40.00

30.00

20.00

10.00

0.00

(f )

1.20

1.00

0

1.03

0.79
0.63

30
Incidence angle (degree)

45

Su
rfa

ce
 ro

ug
hn

es
s (

m
ic

ro
n)

0.80

0.60

0.40

0.20

0.00

(g)

50.00

0

25.78 25.85

17.87

30
Incidence angle (degree)

45Sp
ec

if
c g

rin
di

ng
 en

er
gy

 (J
/m

m
3)

40.00

30.00

20.00

10.00

0.00

(h)

Figure 3: Efect of diferent cutting parameters on average surface roughness and specifc grinding energy. (a), (b) Depth of cut. (c), (d)
Wheel speed. (e), (f ) Feed rate. (g), (h) Incidence angle.
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in the highest total goodness value in both cases. Besides, it is
worth mentioning that 300 runs for each topology have been
taken into account due to their stochastic nature and the
weight and bias values of the best-performing one are
reported.

Figure 5 indicates the performance of ANN-based
models including average surface roughness and specifc
grinding energy during training and testing steps.

It can be found from Figure 5 that the capability of
developed networks during both training and testing is
desirable with the remarkable determination of coefcient
(∼1). Te training process of average surface roughness and
specifc grinding energy fnished after 128 and 296 epochs,
respectively. However, there are a few negligible settlement
regions during the testing steps. Overall, ANN-based models
had an excellent capability to result in a high value of TGV.
Table 9 quantitatively outlines the performance of the ANN-
based models.

According to Table 9, it can be said that both trained
networks have more than a 1.99 total goodness value, which
demonstrates their high predictability. To construct such
models as two objective functions, their bias and weight
values are extracted and summarized in Tables 10 and 11.

Te next phase of modeling is to analyze the sensitivity of
the developed ANN-based models. Such analysis determines
the impact of each input unit on the output of the network.
Equation (11) will be utilized to assess the sensitivity analysis
of diferent input variables ( Ii) on the output of the network
[69]:

Ii(%) �
􏽐

nH

j�1 Zij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/􏽐
nI

l�1 Zlj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽐
nI

i�1 􏽐
nH

j�1 Zij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/􏽐
nI

l�1 Zlj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓

× 100. (11)

According to equation (11), when the value of a specifc
input variable is high, it will make more contributions to the
output of the network. Te results of the calculation are
depicted in Figure 6.

With regard to Figure 6, it can be realized that the most
percentage of average surface roughness and specifc
grinding energy belong to incidence angle (38.97%) and feed
rate (33.94%), respectively, while cutting speed (10.08%–
17.98%) has the least percentage in both cases. Turing to feed
rate in the case of average surface roughness (17.26%), its
percentage is almost half the specifc grinding energy one.
On the contrary, the incidence angle in the case of specifc

grinding energy (21.83%) is approximately half the per-
centage of average surface roughness one. Moreover, the
depth of cute contributes 33.69% and 26.25% with respect to
average surface roughness and specifc grinding energy,
respectively.

4.3. Results of Optimization. When optimization is com-
menced, GA starts ranking individuals according to their
cost value to reach out to an individual with the minimum
possible cost value regarding input variables. In this study,
the cost value of an individual is determined in a way that the
individual with the lowest Euclidean distance to minimum
average surface roughness and minimum specifc grinding
energy will be chosen as the best one. Figure 7 indicates the
performance of GA during optimization.

It is worth pointing out that Figure 7 is the best-per-
forming result of 10 runs due to the stochastic nature of GA.
As it can be found, the best cost value reduces during the
advancement of GA until it reaches 0.0176 value over 25
generations with an initial population size of 25. Moreover,
the diversity of individuals is good enough to avoid reaching
local minima as a result of applying a mutation fraction of
0.50. Table 12 compares the cost value of the optimum
samples and optimized the ones considering the value of
corresponding input variables and GA parameters.

With regard to Table 12, it can be realized that when the
population size increases, the cost value decreases. In ad-
dition, the higher the mutation faction value, the lower the
cost value will be achieved. Tus, the simulated sample 10
with the highest population size and the most mutation
fraction has the lowest cost value than the optimum one and
other simulated ones. Regarding Table 12, the average
surface roughness and specifc grinding energy were reduced
by 1.0308 and 2.7662 times in comparison with the optimum
sample, respectively. Tus, the cost value declined from
0.0953 to 0.0146. Such reduction is the result of increasing
the depth of cut from 20 to 25.23 μm, keeping wheel speed
and incidence angle almost constant and rising the feed rate
from 300 to 369.45mm/s. Based on the results, both depth of
cut and feed rate has a direct efect on average surface
roughness while an indirect efect can be found in the case of
specifc grinding energy. Te point is that the constructed
cost function (equation (7)) acts as a trade-of function
between average surface roughness and specifc grinding
energy to fnd an optimized condition. To verify the result of
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Figure 4: Architecture of developed neural network models.
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Figure 5: Performance of the ANN-based models during prediction at training and testing steps. (a) Average surface roughness. (b) Specifc
grinding energy.

Table 9: Performance of the ANN-based models during the training and testing steps.

Parameter
Average surface roughness Specifc grinding energy

Train Test Train Test
MSE 0.0000 0.0008 0.0000 0.0004
R2 0.9990 0.9977 1.0000 0.9989
GV 1.9989 1.9970 2.0000 1.9985
TGV 1.9987 1.9998

Table 10: Weight and bias values of the average surface roughness ANN-based model.

Weight Bias

Z

−0.9162 −0.0385 −0.0299 1.6619 1 0.5620
−1.6992 −2.2741 −0.5367 −0.1380 2.6699
−2.1491 −1.7052 −1.2129 −0.6057 1.8995
4.4976 0.3169 −1.7098 −2.1134 −1.7442

−0.0900 −0.0115 1.5718 −1.8141 4.0282
0.6520 1.9190 −1.8986 −0.0643 0.6006

−2.0581 3.0260 −2.4365 −0.5920 −1.0491
−1.9916 −1.6285 −1.3518 −1.7809 −2.3489
3.1987 0.1407 0.0930 2.3439 −0.8984

−1.5168 1.0201 −0.7671 −0.3318 −2.9130
1.4699 −0.3938 2.3879 1.7243 3.0665

V 0.8635 −0.0268 −0.0857 0.1110 0.4282 −0.0869 −0.0904 −0.1621 0.5535 0.3913 0.2190 2 −0.5015
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optimization, simulated sample 10 was fabricated according
to input variables. Figure 8 depicts the workpiece, SEM
image, and average surface roughness profle of optimum
and optimized samples (simulated sample 10 in Table 12).

Figure 8(a) illustrates the results of the workpiece ma-
terial surface of the optimum one, while Figure 8(b) belongs
to the optimized one. As can be seen, the SEM images depict
no damage on both surfaces, and the average surface

Table 11: Weight and bias values of the specifc grinding energy ANN-based model.

Weight Bias

Z

0.9492 2.7481 4.2005 0.3914 1 −3.9783
0.4519 −1.5891 1.1768 −4.1529 −1.7808

−2.3263 −1.3850 −1.2141 3.5045 −3.3722
−3.2428 1.9768 2.4763 0.6414 1.2428
1.2275 −1.2303 5.6614 −0.9601 3.4885
1.3476 0.5714 2.1003 0.7893 1.6938
1.7272 −1.5745 −3.4630 −1.2880 1.0680

−3.1239 −0.2552 −0.7787 2.6385 3.8419
−3.9179 0.8403 −1.0936 0.7150 −1.4050
0.2495 −2.3161 1.6527 −2.3044 −4.4123

−3.2897 1.6518 0.9535 −0.8230 −2.0790
V −0.1249 −0.1336 −0.2084 0.2318 −0.3398 −0.3205 0.1457 −0.2001 0.0210 −0.1028 0.1517 2 −0.2927

38.97% 33.69%

10.08%
17.26%

Depth of cut
Cutting speed

Feed rate
Incidence angle

(a)

21.83% 26.25%

17.98%33.94%

Depth of cut
Cutting speed

Feed rate
Incidence angle

(b)

Figure 6: Relative importance of each input variables. (a) Average surface roughness. (b) Specifc grinding energy.
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Figure 7: Optimization performance of GA.
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roughness profle of the optimized one showed the lowest
peaks and valleys. In fact, optimization not only improved
the surface properties quantitatively but also resulted in a
similar qualitative state of the surface.

5. Conclusion

In the following work, an experiment with a total sample of
60 using a fractional factorial design of experiment based on
four independent parameters of the grinding process with
three levels including the depth of cut (20, 40, 60 μm), wheel
speed (15, 20, 25m/s), feed rate (100, 300, 500mm/s), and
incidence angle (0, 30, 45 de grees), and two dependent
parameters of surface quality consisting of the average
surface roughness and specifc grinding energy was con-
sidered. Ten, data were split into 90 :10 for training and
testing two parallel feed-forward backpropagation neural
networks with similar inputs but diferent outputs. Next, the
output of networks was fed to a genetic algorithm to seek out

an individual with a minimum value of average surface
roughness and a minimum value of specifc grinding energy
utilizing a Euclidean cost function. Finally, the optimized
sample was fabricated to verify the optimization result. Te
conclusions are as follows:

(1) Te fractional factorial design of experiment is ca-
pable of providing valid data similar to response
surface methodology for a feed-forward back-
propagation neural network to reach around a total
goodness value of 2

(2) Te proposed algorithmic procedure is not only able
to fnd better individuals (average surface roughness
value of 0.39 μm and specifc grinding energy value
of 4.79 J/mm3) than already one (average surface
roughness value of 0.40 μm and specifc grinding
energy value of 13.25 J/mm3), but it is efcient to
reduce the required time and cost value for engi-
neering the grinding process.

Table 12: Comparison between optimum and optimized samples.

Sample
GA parameters Input variables Ra (μm) Es (J/mm3) Cost value

P.S C.F M.F D V R A Predicted Exp. Predicted Exp. Predicted Exp.

Optimum — — — 20.00 15.00 300.00 45.00 — 0.40 — 13.25 — 0.0953
1 25.00 0.90 0.10 24.62 15.00 371.20 45.00 0.41 0.42 5.51 6.21 0.0337 0.0411
2 50.00 0.90 0.10 26.29 16.98 339.45 44.97 0.40 0.40 5.13 5.51 0.0225 0.0241
3 25.00 0.80 0.20 24.50 15.23 367.95 44.75 0.40 0.41 5.12 5.72 0.0196 0.0320
4 50.00 0.80 0.20 23.49 15.00 373.55 45.00 0.39 0.40 4.86 4.92 0.0181 0.0224
5 25.00 0.70 0.30 24.85 15.00 374.00 44.97 0.40 0.41 5.07 5.32 0.0192 0.0299
6 50.00 0.70 0.30 24.75 15.13 368.55 44.93 0.39 0.39 4.98 5.06 0.0176 0.0152
7 25.00 0.60 0.40 24.79 15.00 371.10 45.00 0.38 0.38 6.39 6.30 0.0194 0.0190
8 50.00 0.60 0.40 23.91 15.14 370.20 45.00 0.40 0.41 4.82 4.90 0.0188 0.0300
9 25.00 0.50 0.50 24.84 15.08 374.70 44.96 0.39 0.40 5.00 5.20 0.0185 0.0230
10∗ 50.00 0.50 0.50 25.23 15.02 369.45 44.98 0.39 0.39 4.85 4.79 0.0176 0.0146
P.S, population size; C.F, crossover fraction; M.F, mutation fraction; Exp., experimental value.

Workpiece SEM image Surface roughness profle

(a)

Workpiece SEM image Surface roughness profile

(b)

Figure 8: Workpiece material, SEM image, and roughness profle of diferent samples. (a) Optimum sample (depth of cut 20 μm, wheel
speed 15m/s, feed rate 300mm/s, incidence angle 45°). (b) Optimized sample (depth of cut 25.23 μm, wheel speed 15.02m/s, feed rate
369.45mm/s, incidence angle 44.98°).
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(3) Te sensitive analysis of networks indicated that
incidence angle (38.97%) and feed rate (33.94%) have
the most contribution to the output of average
surface roughness and specifc grinding energy
networks, respectively

(4) Te scanning electron microscopy demonstrated
that both optimum and optimized samples have
similar surface morphology which verifes the
qualitative result of optimization.

Nomenclature

μ: Common efect for whole experiment
D: Depth of cut
V: Wheel speed
R: Feed rate
A: Incidence angle
R: Surface roughness
L: Sampling length
E: Energy
F: Grinding force
W: Contact width
MSE: Mean squared error
R2: Coefcient of determination
GF: Goodness function
TGT: Total goodness function
t: Target value
o: Output value
χ: Data fraction
n: Te normalized value
M: Total number of data
Y: Variable
I: Relative importance
ANN: Artifcial neural network
GA: Genetic algorithm
SEM: Scanning electron microscopy
FFBP: Feed-forward backpropagation
Index: Description
i: Level of depth of cut
j: Level of wheel speed
k: Level of feed rate
l: Level of incidence angle
m: Repetition
a: Average value
s: Specifc value
t: Tangential component
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