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�is study used Kinect V2 sensor to collect the three-dimensional point cloud data of banana pseudostem and developed an
automatic measurement method of banana pseudostem width. �e banana plant was selected as the research object in a banana
plantation in Fusui, Guangxi. �e mobile measurement of banana pseudostem was carried out at a distance of 1m from the
banana plant using the �eld operation platform with Kinect V2 as the collection equipment. To eliminate the background data and
improve the processing speed, a cascade classi�er was used to recognize banana pseudostems from the depth image, extract the
region of interest (ROI), and transform the ROI into a color point cloud combined with the color image; secondly, the point cloud
was sparse by down-sampling; then, the point cloud noise was removed according to the classi�cation of large-scale and small-
scale noise; �nally, the stem point cloud was segmented along the y-axis, and the di�erence between the maximum and minimum
values in the x-axis direction of each segment was calculated as its horizontal width. �e center point of each segment point cloud
was used to �t the slope of the stem centerline, and the average horizontal width was corrected to the stem diameter. �e test
results show that the averagemeasurement error is only 2.7mm, the average relative error was 1.34%, and themeasurement time is
only about 300ms. It could provide an e�ective solution for the automatic and rapid measurement of stem width of banana plants
and other similar plants.

1. Introduction

Banana is one of the four largest fruits in the world and
occupies an extremely important position in the world [1].
However, the management of banana plantation is still
extensive. If the plant phenotype of banana plants can be
extracted and applied to farmmanagement, it will be of great
signi�cance for banana production e�ciency and yield. �e
main body of banana plant is mainly composed of corms
(true stems), pseudostems, leaves, and roots. Pseudostems
mainly transport and store nutrients for leaves and fruits.
�e stem width or diameter of pseudostems largely deter-
mines the nutrient transport and supply capacity of the
plant, and it is also related to the yield of the plant.�erefore,
this study takes the pseudostem of banana plant as the

measurement object and studies a rapid, automatic, and
accurate method to measure the width of banana pseu-
dostem, so as to guide scienti�c planting.

For the width measurement of banana pseudostem, the
traditional method is generally manual measurement. �e
tools used include ruler, hand-held laser range�nder and
other tools, or equipment, which not only contains certain
subjective factors but also takes time and e�ort. With the
continuous development of technology, binocular vision,
depth camera, laser scanning, 2D/3D LIDAR, CT, MRI, and
other measurement technologies emerge endlessly. Because
these technologies have the advantages of accuracy, speed,
and low labor cost, they are widely used in the study of crop
phenotypic feature extraction. Although laser scanners, CT,
MRI, and other equipment have high advantages in accuracy
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or penetrability, they are also expensive; comparatively
speaking, low-cost three-dimensional imaging devices such
as binocular vision and depth sensor have also attracted
more and more attention in agricultural research scenes
such as fruit recognition and field plant phenotype mea-
surement [2]. Researchers at home and abroad have also
carried out a lot of research on low-cost three-dimensional
imaging devices.

In recent 20 years, binocular vision based on stereo
matching algorithm has been widely used in fruit recog-
nition [3–5] and agricultural machinery navigation [6–8].
However, binocular vision has the problems of weak anti-
interference, low matching accuracy, complex algorithm,
and slow processing speed in the complex field environment,
and there are some limitations and deficiencies in its
application.

Based on the principle of laser ranging, Kinect V2 sensor
can quickly obtain the color and three-dimensional point
cloud data of the measured object. Compared with binocular
vision, the Kinect sensor has low cost and strong resistance
to environmental interference. At present, many researchers
use it in the agricultural field to obtain plant phenotypic
parameters and detect agricultural products [9–11]. Adar
et al.[12] compared the current low-cost 3D imaging systems
and concluded that the low-cost 3D imaging equipment can
replace the laser scanner in many plant phenotype analysis
scenes. Yamamoto et al. [13] designed a three-dimensional
reconstruction method of apple using the Kinect depth
sensor and estimated the fruit volume. Bao et al. [14] de-
veloped a noncontact automatic 3D robot blade detection
system, which uses Kinect V2 sensor, high-precision 2D
laser profiler, and six-axis robot manipulator to realize the
automation of blade detection tasks. Hu et al. [15] proposed
a nondestructive automatic growth measurement system for
leafy vegetables based on Kinect. )e system was used to
obtain the precise three-dimensional model of the tested
plants, and the key phenotypic parameters of the plants were
measured according to the acquired model.

Because the banana plant is tall, the pseudostem is
similar to the trunk, and the diameter is also large; the
required measurement accuracy is not harsh, so it is very
suitable to use low-cost Kinect series sensors for measure-
ment. )erefore, in this study, Kinect V2 was used to obtain
the three-dimensional point cloud data of banana pseu-
dostems, and a point cloud data analysis and processing
method were proposed to quickly calculate the pseudostem
stem width, providing support for further prediction of
banana crop growth and yield.

2. Materials and Methods

2.1. ExperimentalDataCollection. )e image acquisition site
of banana pseudostem point cloud is located in a banana
plantation covering an area of 1800 mu in Guangxi sub-
tropical agricultural science new city in Fusui County.
During the experiment, it is in the fruit development period
of banana. )e spacing between each plant is about 0.5m,
and the spacing between rows is about 2m. Data collection is
carried out using the vehicle mounted field operation

platform (as shown in Figure 1) composed of Kinect V2
sensor, Dell Precision 7530 Mobile Workstation (Intel-i9
CPU, 32GB high-speed memory, NVIDIA QuADro P2000
graphics card), 220V portable emergency energy storage
power supply (2 pieces), and Beno KH25 tripod. Main
parameters of Kinect V2 sensor are shown in Table 1.

)e shooting time of the experiment is from 9 a.m. to 5
p.m. By installing Kinect V2 on the vehicle mobile platform
through a tripod, and moving at a speed of 8m/s at a
distance of 1.5m from the ground height and 1m from the
banana pseudostem, the Kinect V2 is always aligned with the
center of the banana pseudostem at a distance of 1m by
adjusting the wheel direction of the operation platform, to
obtain the depth image and color image of the banana
pseudostem. Five rows of banana plants were selected for
mobile measurement. Some banana plants were randomly
selected, and the resolution was 0A. 01mm digital vernier
caliper was used to manually measure the diameter of the
pseudostem at a height of 1m.)e gray value of each pixel in
the depth image (Figure 2(a)) represents the linear distance
from the measured point to the sensor. )e color image
(Figure 2(b)) was captured by the Kinect V2 internal in-
tegrated color camera.

2.2. Point Cloud Data Preprocessing. Before banana pseu-
dostem estimation, the original data need to be preprocessed
in order to effectively extract the measured banana pseu-
dostem, reduce the measurement error, and improve the
measurement speed. Preprocessing mainly includes four
steps: ROI recognition, ROI extraction, conversion to point
cloud, normal vector correction, voxel down-sampling, and
point cloud filtering. )e corresponding pretreatment
process is shown in Figure 3.

2.2.1. ROI Extraction from Depth Images Based on Cascaded
Classifiers. Other background information in the collected
original image, such as non-measured banana plants and
fallen leaves, will interfere with the measurement. At the
same time, the accuracy of the edge region of the depth
image is also relatively low. At the same time, if all the
information in the original data is transformed into color
point cloud, and then the banana pseudostem is extracted by
conditional filtering, a large amount of unnecessary

Figure 1: Field operation platform.
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information will be introduced, resulting in too long pro-
cessing time and affecting the real-time performance.
)erefore, the region of interest (ROI) of banana pseu-
dostem can be extracted from the depth image. Only ROI
part is converted to color point cloud, as shown in Figure 4.
)is method can effectively remove the background infor-
mation and has good real-time performance with short
processing time.

Considering that the angle, orientation, and distance of
each shot are not fixed, the range of ROI is not fixed.
)erefore, it is necessary to recognize the collected depth
image and determine the ROI range containing banana
pseudostems. In this study, 500 banana pseudostem depth
image samples were randomly classified into training set and
test set, including 250 training set and 250 test set samples. In
this study, the banana pseudostem model is trained and
recognized by cascade classification. )e training samples
include 250 positive samples and 500 negative samples. )e
positive samples are the depth images of banana pseudos-
tems obtained by cutting the training and samples, and the
negative samples are the depth images with the main body as
the background obtained by random cutting. Because the
pseudostems of banana crops are cylindrical and tightly
wrapped by leaf sheaths, their toughness is poor, and their
shape is usually straight. Although they are prone to slight
inclination, they rarely bend significantly. )erefore, rect-
angles can be used to approximate the main body of
pseudostems; both positive and negative samples are
intercepted by a rectangle with an aspect ratio of 2 :1. )e
classifier tool in OpenCV is used to train the positive and
negative samples.

In the training process, the classifier will first extract the
LBP features of the disparity map of the training samples.
LBP is a feature that describes the local texture of an image
and has the advantages of rotation invariance and gray
invariance [16]. LBP operator is defined in 3×. In the window
of 3, the central pixel is compared with the surrounding 8
pixels. )e value of the pixel greater than the central pixel is
assigned as 1, and the value of the pixel less than the central
pixel is assigned as 0, to generate a new 8-bit binary number,
and then it is converted it into a decimal number to replace
the central pixel value. )e training process of strong
classifier is shown in Figure 4. First, the data and data weight
wi are used to train the weak classifier, and one weak
classifier is trained in each iteration. )e trained weak
classifier continues to participate in the next iteration. )e
weak classifier can be regarded as a feature trainer of LBP.
Each simple feature corresponds to a weak classifier. After n
weak classifiers are obtained, a strong classifier can be ob-
tained by taking sign after linear combination through
formula (1) [17]. )e strong classifier training process
schematic diagram is shown in Figure 5.

H(x) � sign 􏽘
T

t�1
αtht(x)⎡⎣ ⎤⎦, (1)

where t is the sequence number of the weak classifier; X is
LBP characteristic.

Furthermore, several strong classifiers are concatenated
to get the final cascade classifier model.)e cascade classifier
trained in this study contains 10 strong classifiers, and its
model structure is shown in Figure 6.)e images to be tested

(a) (b)

Figure 2: Images obtained by Kinect V2. (a) Depth image. (b) RGB image.

Table 1: Key parameters of Kinect V2 sensor.

Parameter Value
RGB color image resolution 1920×1080
Depth (infrared) image resolution 512× 424
Frame rate (FPS) 30 fps
Horizontal field angle 70 degrees
Vertical field angle 60 degrees
Detection range 0.5ཞ4.5m
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must all meet the features of 10 strong classifiers in turn
before they can be identified as banana pseudostems. )e
banana pseudostems are marked, and the corresponding
ROI boundary is obtained. )e identified ROI results are
shown in Figure7(a). )e recognition rate of banana
pseudostem by this method is 92.3%, and the accuracy can
be further improved if the number of effective samples is
increased in the later stage.

2.2.2. Convert Depth Image to Color Point Cloud. )e depth
image belongs to the pixel coordinate system, as shown in
Figure 8(a). Each point in the image is represented by (Ui,
Vi). Since the coordinates in the pixel coordinate system
only contain the row and column information of the pixel, it
has no physical meaning. )erefore, this study also needs to
establish an image coordinate system X-Y with the meaning
of actual physical dimensions, as shown in Figure 8(b).

Let the origin coordinate in the image coordinate system
be Oi, and the coordinates in the pixel coordinate system be
(U0, V0). dx and dy represent the actual physical size of each
pixel. )e x- and y -axes are parallel to the u- and v -axes,
respectively. )e pixel coordinate system is converted to the
image coordinate system by the following formula:
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)e image coordinate system is converted to the spatial
coordinate system corresponding to Kinect V2, as shown in
Figure 8(c).

)e midpoint m in the figure is an imaging point in the
image coordinate system, and the corresponding coordi-
nates are (x, y). )en, the coordinate point m’ in the cor-
responding spatial coordinate system is (xc, yc, zc), f is the
focal length of the camera, and the depth value of pointm is
d. According to the principle of similar triangles, the fol-
lowing formula can be obtained:
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)en, it can be deduced that
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So far, the conversion relationship between the image
coordinate system and the spatial coordinate system has
been established. )rough equations (2) and (4), the
conversion relationship between the pixel coordinate
system and the spatial coordinate system can be obtained as
follows:

Get the original image

Deep image ROI recognition
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Figure 3: Point cloud pretreatment flow chart.
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Figure 4: Schematic diagram of depth image ROI extraction.
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Figure 6: Cascade classifier flowchart.
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Figure 7: Results of the point cloud for each pretreatment step. (a) ROI recognition. (b) To a point cloud. (c) Voxel down-sampling. (d)
Statistical filtering. (e) Radius filtering. (f ) Bilateral filtering.
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)erefore, the ROI extracted from the depth image can
be transformed into the spatial coordinate system by
equation (5). Since Kinect V2 has been calibrated before
leaving the site, internal parameters can be called through
API, and color point cloud can be generated through PCL in
combination with color information. )e result of con-
verting ROI to point cloud is shown in Figure 7(b).

2.2.3. Point Cloud Normal Vector Correction. As a basic
morphological feature of point cloud, the quality of normal
vector will have a significant impact on the subsequent point
cloud dilution, point cloud smoothing, and point cloud
computing. At present, the commonly used point cloud normal
vector estimation method is the key component analysis
method based on point cloud local covariance analysis. V is set
as the whole point cloud set, and a point in the point cloud
mi ∈ V and its set of k nearest neighbors (hereinafter referred
to as K neighborhood) N m( j) are given, and the following
covariance matrix C can be constructed:

C �
1
k

􏽘

mi∈N mj( 􏼁

mi − m( 􏼁 mi − m( 􏼁
T
,

(6)

where m � 1/k 􏽐
k
i�1 mi is the centroid of the neighborhood

of mi point K.
)rough eigen root decomposition of the covariance

matrix C, the eigenvector of the corresponding minimum
eigen root is the approximate value of the normal phasor at
point MI. Although the covariance analysis method has
certain anti-interference ability, its anti-interference ability
decreases obviously when the point cloud noise is too
complex. )erefore, the Gaussian weight function method is
added to the original covariance matrix to smooth the
vector, and the following expression is obtained.

C �
1
k

􏽘

mi∈N mj( 􏼁

e
− ‖mi − m‖2/σ2

mi − m( 􏼁 mi − m( 􏼁
T
,

(7)

where ‖ · ‖ represents the modulus of a vector and σ is a
point cloud density parameter, and the corrected normal
vector information can be obtained by eigenvalue decom-
position. Normal vectors before and after improvement are
shown in Figure 9.

Kinect V2 is used to collect the wall point cloud, and the
traditional normal vector estimation method and the im-
proved normal vector estimation method are used to esti-
mate the normal vector, respectively. )rough observation,
it is found that the improved normal vector becomes more
uniform on the point cloud model, and the divergence di-
rection tends to be more consistent, which makes the
subsequent down-sampling and bilateral filtering process
more efficient and accurate.

2.2.4. Voxel Down-Sampling. Because this study mainly
measures the stem width of banana pseudostem, too dense
point cloud will reduce the measurement accuracy and real-
time performance. )erefore, this study carries out voxel
down-sampling on the point cloud to achieve point cloud
dilution. Voxel refers to a three-dimensional image with a
side length of λ pixel cube, and voxel downsampling is
mainly based on the side length λ. Voxel downsampling is
mainly to decompose voxels into several small voxel grids
with side length λ according to a certain ratio according to
the size of side length λ/k. )e improved normal vector
estimation is carried out for each small voxel cube, and the
corresponding center of gravity is estimated. Only the center
of gravity and the nearest original point are retained, to
approximately represent all points in the whole voxel. While
protecting the detailed information of the point cloud, the
point cloud is simplified. )rough down-sampling, the
number of point clouds decreased from 13655 to 3814, a
decrease of 72%. )e processed results are shown in
Figure 7(c).

2.2.5. Point Cloud Filtering. Due to the equipment itself,
operator experience, measurement environment, and other
factors, a lot of noise will be generated in the process of point
cloud data acquisition. )erefore, it is necessary to filter the
point cloud before measurement. According to the specific
situation of this study, this study proposes a method of noise
reduction by classification of large-scale and small-scale noise.
Large-scale noise refers to the small and dense point cloud,
which is far away from the center of the main point cloud and
the sparse points, which are suspended above the main point
cloud and deviate from the main point cloud. It has the
characteristics of large amplitude and high frequency. Small
size noise refers to some irregular data points entangled with
the main point cloud. Compared with the single filtering
method, the classification noise reduction method used in this
study can achieve better noise reduction effect.

(1) Large Size Noise Removal. In this study, the combi-
nation of statistical filtering and radius filtering is used to
remove large-scale noise. Statistical filtering [16] means
that for any point, the average distance between the point
and other points in the k field is calculated, and the
distribution of the results is assumed to follow the
Gaussian distribution. Calculate the mean μand standard
deviation σ of the distance between this point and its
points in the neighborhood of K.Keep the points that are
within the range of (μ − σ, μ + σ). Radius filtering means
that for a certain subject point p in the point cloud data, it
is considered that at least M points should exist in the
neighborhood with radius r of the subject point; other-
wise, it will be determined as discrete points and deleted.
)e corresponding statistical filtering and radius filtering
effects are shown in Figures 7(d) and 7(e).

(2) Small Size Noise Smoothing. Bilateral filtering is a
common method in image filtering, which has been ex-
tended to 3D point cloud data model filtering. )e bilateral
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filtering of 3D point cloud data model is to move the noise
points along the direction of their normal vector and
constantly adjust the position and coordinates of the noise
points to smooth the small-scale noise [18].

)e expression of bilateral filtering is shown as follows:

p
’
i � pi + α · n, (8)

where p’i is the filtered point, pi is the original data point, α is
the bilateral filter factor (as shown in (9)), and n is the
normal vector of point pi.

α �

􏽐
pj∈N pi( )

Wc ‖ pi − pj ‖􏼐 􏼑Ws ‖ 〈ni, nj〉 − 1 ‖􏼐 􏼑〈pi − pj, nj〉

􏽐
pj∈N pi( )

Wc ‖ pi − pj ‖􏼐 􏼑Ws ‖ 〈ni, nj〉 − 1 ‖􏼐 􏼑
.

(9)

In equation (9), pj is the neighborhood point of the data
point pi; ‖ · ‖represents the module of the vector; 〈∙〉 rep-
resents the inner product of the vector; ni is the normal
vector of point pi on the point cloud; and nj is the normal
vector of the adjacent point p. Wc(x) and Ws(y) are
smoothing filter weight function (equation (10))and feature
preserving weight function (equation (11)), respectively; σc

and σs represent the filtering parameters in the Gaussian
weight function, which reflects the influence range of tan-
gent and normal vectors when calculating the bilateral fil-
tering factor of any sampling point.

Wc(x) � e
− x2/ 2σ2c( )[ ], (10)

Ws(y) � e − y2/ 2σ2s( )[ ]. (11)

)e bilateral filtering process is as follows:

(1) For point cloud data points, the k neighborhood is
determined by pi, and the normal vectors corre-
sponding to all points in the neighborhood are
solved by the improved normal vector method.

(2) )e smoothing filter function Wc(x) parameter x �

‖ pi − pj ‖ of data point pi (distance between data
point pi and pj) and feature retention weight function
Ws(y) parameter y �‖ 〈ni, nj〉 − 1 ‖ (the inner
product of the angle between the normal vector
between point pi and pj) are solved. Combined with
equations (9)–(11), the improved bilateral filter
factor is solved α.

(3) )e new coordinate pi of the data point pI
′ is cal-

culated according to equation (8), and the point pi is
moved to pI

′ coordinate.

)e processed image is shown in Figure 7(f).

2.3. Estimation of Banana Pseudostem Width. Because the
banana pseudostem is thick at the bottom and thin at the
top, to reduce the measurement error, this study evenly
segments the pretreated point cloud from top to bottom,
measures the width of each segment of point cloud, sets the
condition threshold for judgment and angle correction, and
finally takes the average value to obtain the measurement
results. )e specific algorithm flow is as follows:

(1) )e maximum and minimum value points of the
pretreated point cloud in the y-axis (height) direc-
tion are searched and marked as Ymax and Ymin.

(2) )e point cloud is divided into n segments from
bottom to top along the y-axis.

(3) Each segmented point cloud is queried separately, the
maximum value point and minimum value point in
the x-axis (width) direction are searched, and they are
recorded as (Xi max, Yi max) and (Xi min, Yi min). It
can be obtained that the width Li of the point cloud of
segment i in the x-axis direction is as follows:

Li � Xi max − Xi min. (12)

(4) )e width of pseudostem is easily affected by
withered leaves on the stem, resulting in great
changes in the width of some segments. To filter out
this effect, the banana pseudostem range thresholds
Lmax and Lmin and the banana pseudostem offset
threshold δ are set.Whether Li satisfies equation (13)
at the same time is judged, and if so, it will be
recorded as the effective value. )is segment of point
cloud is called the effective point cloud. By traversing
Li, we get N valid values

Lmin ≤ Li≤Lmax

Li − Li− 1
􏼌􏼌􏼌􏼌≤ δ

􏼌􏼌􏼌􏼌

Li − Li+1
􏼌􏼌􏼌􏼌≤

􏼌􏼌􏼌􏼌 δ

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

. (13)

(5) )e average value Lavg of n effective point cloud
widths Li is found as the average width in the
horizontal direction of banana stem.

(a) (b)

Figure 9: Schematic diagram of normal vectors before and after improvement. (a) Before improvement. (b) After improvement.
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(6) Since banana pseudostems are inclined to some
extent during the growth process, the horizontal
span value of each stem point cloud calculated in
the previous step is not equal to the diameter of the
stem, so the width obtained in step 5 needs to be
corrected (see Figure 10 for the schematic diagram).
First, the midpoint coordinates (Xi mid, Yi mid) of
each effective point cloud on the X- and Y-axes
according to equation (14)are calculated; )e center
line f of the stem was fitted according to the
midpoint coordinates of N effective point clouds,
and the inclination Angle θ between the center line f
and the X-axis was calculated. )e tilt Angle θ of
center line f is the tilt of banana pseudostem finally,
the vertical section width Wavg of the stem is cal-
culated by equation (15).

Xi mid �
Xi max + Xi min( 􏼁

2

Yi mid �
Yi max + Yi min( 􏼁

2

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

. (14)

Wavg � Lavg sin θ. (15)

3. Results and Discussion

)e measurement results at different distances are shown in
Table 2 and Figure 11. It can be seen that under different
distances, the correlation coefficient r between the stem
width measured by the sensor and the manual measurement
results basically reaches more than 0.95. )e lowest error
occurs at a distance of 0.5m, where the mean absolute error
is 2.68mm and the mean relative error is 1.34%; the overall
error increases obviously with the increase in the mea-
surement distance, and the average relative error at the
distance of 1.0m is as high as 8.35%. It shows that the
measurement accuracy of Kinect V2 sensor is obviously
affected by distance. In addition, it can be seen from the
measurement results that the average value of the sensor
decreases gradually with the increase in the distance; that is,
compared with the average value of manual measurement,
the farther the distance, the greater the negative measure-
ment error of the sensor. )is is mainly due to the thinning
of the beam quantity projected by Kinect V2 onto the banana
pseudostem, resulting in the measured value of the sensor
being gradually lower than the manual measured value.

)rough comprehensive analysis, the main causes of
measurement errors are as follows: (1) the uneven surface of
banana pseudostem leads to inevitable errors in manual
measurement; (2) the structure of Kinect V2 sensor causes
the measurement accuracy to decrease gradually with the

f

Wavg

Lavg

θ

Figure 10: Schematic diagram of angle correction.

Table 2: Measurement results at different distances.

Measuring
distance (m)

Measured average value (mm) (average value
of manual measurement� 199.8mm)

Correlation coefficient r between
sensor and manual measurement

results

Mean absolute
error (mm)

Mean value of
relative error

(%)
0.5 198.9 0.987 2.7 1.34
0.7 196.7 0.949 5.9 2.89
0.9 189.5 0.982 10.3 5.25
1.0 183.8 0.977 16.0 8.35
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increase in distance, resulting in systematic error. In addi-
tion, in terms of processing speed, ROI recognition time is
100ms, point cloud conversion time is about 50 s, down-
sampling time is about 50ms, combined filtering time is
about 80ms, measurement time is about 100ms, and the
total measurement time is about 300ms.

4. Conclusion

(1) Compared with the method of converting the depth
image into point cloud and then adjusting the x-, y-,
and z-axes, the method of using cascade classifiers to
recognize ROI from the depth image and then convert
ROI into point cloud greatly shortens the measure-
ment time and improves the measurement accuracy.

(2) By improving the method of point cloud normal
vector estimation, the normal vector obtained by
estimation is more uniform and smooth, and the
measurement accuracy is improved.

(3) According to the difference in the size of point cloud
noise, the point cloud is classified into large-scale
and small-scale noise. )e large-scale noise is re-
moved by statistical filtering and radius filtering, and
the small-scale noise is smoothed by bilateral fil-
tering. )is method can remove the noise more
effectively by differentiating the point cloud noise.
Comparing the data before and after the point cloud
filtering, the average absolute error is reduced by

35.33mm and the average relative error is reduced by
17.68% after the point cloud filtering at 0.5m. )e
experimental results show that the combined filter
has a good effect on noise removal.

(4) According to the characteristics of banana stem, the
stem point cloud is divided into n segments from
bottom to top, and the span of each segment in the
x-axis is obtained and averaged to reduce the
measurement error; the stem width was corrected
by fitting the stem centerline with the approximate
center point to obtain the inclination angle of the
stem. )e average absolute error is 5.4mm and the
average relative error is 2.70% by comparing the
data before the angle correction with the manual
measurement data at 0.5m; the measurement ac-
curacy is improved by 2.7mm after comparison
and correction. At 0.7m, the average absolute error
is 8.8mm and the average relative error is 8.80%
compared with the manual measurement data; the
measurement accuracy is improved by 2.9mm after
comparison and correction. It is found that the
angle correction is closer to the manual measure-
ment value. )e measurement method has high
accuracy, can meet the needs of plant stem mea-
surement under a reasonable measurement dis-
tance, and can provide technical support for the
extraction of key growth parameters of banana
plants.

y= 0.9853x+ 0.2055
R2 = 0.9731

Measuring distance = 0.5 m Measuring distance = 0.7 m

Measuring distance = 0.9 m Measuring distance = 1.0 m

y= 0.9953x-0.2153
R2 = 0.9001
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Figure 11: Result comparison between sensor and manual measurement.
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(5) )e detection method proposed in this study is not
only limited to the detection of banana false stem but
also can be applied to the detection of tree stem and
other fields. )e experimental results show that the
method has better measurement speed and accuracy.
In the industrial field, the method can also quickly and
accurately detect the width and diameter of columnar
objects such as telegraph poles. However, the method
adopted in this study also has some limitations. )is
method is not suitable for some small objects and some
areas that need accurate measurement, which will lead
to excessive relative errors. At the same time, due to the
use of active light source to obtain data, it is not suitable
for the measurement of transparent, translucent, and
reflective objects, which will reduce the measurement
accuracy in the strong lighting environment. [19–25].
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