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E�ective software cost estimation signi�cantly contributes to decision-making.�e rising trend of using nature-inspired meta-heuristic
algorithms has been seen in software cost estimation problems. �e constructive cost model (COCOMO) method is a well-known
regression-based algorithmic technique for estimating software costs.�e limitation of the COCOMOmodels is that the values of these
coe�cients are constant for similar kinds of projects whereas, in reality, these parameters vary from one organization to another
organization.�erefore, for accurate estimation, it is necessary to �ne-tune the coe�cients.�e research community is now examining
deep learning (DL) as a forward-looking solution to improve cost estimation. Although deep learning architectures provide some
improvements over existing �at technologies, they also have some shortcomings, such as large training delays, over-�tting, and under-
�tting. Deep learning models usually require �ne-tuning to a large number of parameters. �e meta-heuristic algorithm supports
�nding a good optimal solution at a reasonable computational cost. Additionally, heuristic approaches allow for the location of an
optimum solution. So, it can be used with deep neural networks tominimize training delays.�e hybrid of ant colony optimization with
BAT (HACO-BA) algorithm is a hybrid optimization technique that combines the most common global optimum search technique for
ant colonies (ACO) in associationwith one of the newest search techniques called the BATalgorithm (BA).�is technology supports the
solution of multivariable problems and has been applied to the optimization of a large number of engineering problems.�is work will
perform a two-fold assessment of algorithms: (i) comparing the e�cacy of ACO, BA, and HACO-BA in optimizing COCOMO II
coe�cients; and (ii) using HACO-BA algorithms to optimize and improve the deep learning training process.�e experimental results
show that the hybrid HACO-BA performs better as compared to ACO and BA for tuning COCOMO II. HACO-BA also performs
better in the optimization of DNN in terms of execution time and accuracy.�e process is executed upto 100 epochs, and the accuracy
achieved by the proposed DNN approach is almost 98% while NN achieved accuracy of up to 85% on the same datasets.

1. Introduction

Software project development includes di�erent sets of activ-
ities, from requirements collection to testing and maintenance,
which need to be executed within a speci�ed time period and
budget to achieve a reliable software product [1].

Because of the high rate of change in customer needs and
rapid technological advancement, software development is
more complicated than other types of engineering projects.
�is makes it di�cult for e�ective software project man-
agement to achieve speci�c goals while adhering to a set of
constraints [2]. �e Standish Group report shows that only
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32% of the software projects are successfully delivered on
time, within the allocated budget, and have the required
functionality. 44.4% did not fulfil the aforementioned re-
quirements, and 24.4% failed; that is, they were either
cancelled or completed but never used [3]. Another survey
study, which was conducted among 800 senior ITmanagers
in the US, Germany, Singapore, UK, Japan, and France,
shows the same results: 62% of projects were not completed
on time, 49% went over budget, and 47% required extensive
maintenance [4].

Project planning is the most critical aspect of software
project management and consists of a set of managerial and
technical practices that can be broadly classified as the de-
velopment of the project plan, execution of the project plan,
and anticipating problems that may arise and preparing ten-
tative solutions to those problems. Software cost and effort
estimation come under the project-planning phase and include
the process of determining how much a project will cost, how
many man-hours will be required to complete the project, and
how long it will take. Inaccurate estimation can result in project
failure and escalation in project costs. Some of the reasons for
inaccurate estimation of software projects include the fol-
lowing: inaccurate project goal setting, project scheduling,
required development effort (capability, estimation, and
availability), project budgeting, project risk management,
stakeholder politics, and market pressures [5]. Effective esti-
mates are critical in the decision-making process. Estimation
must take into account both the market and the organisational
perspective in order to control project costs and scope and
manage the project in accordance with organisational policies.
Project effort underestimationmay end up in a situationwhere,
because of a shortage of budget and time commitments, work
cannot be accomplished whereas overestimation may end up
with the rejection of a project proposal [6].

Several methods for solving the estimation problem are
presented in the existing research literature. (is effort can
be divided roughly into two categories: there are two types of
methods: algorithmic methods and nonalgorithmic methods
[7]. Nonalgorithmic approaches rely on deduction and
analogy in their estimation processes. For estimation, these
models require knowledge of previously completed projects
that are similar to current software projects. Previous
software projects or dataset analyses are used to make es-
timates. Estimation techniques based on nonalgorithmic
models [8] include analogy estimation, expert judgement
techniques (including top-down and bottom-up estima-
tion), learning-based methods (artificial neural network
(ANN) [9–11], machine learning (ML) [12], and case-based
reasoning (CBR) [13]), regression, and fuzzy logic [14].”

In the case of fuzzy logic-based methods [15, 16], al-
though no training is required, for complex features, cost
estimation becomes tedious. Furthermore, fuzzy models are
difficult to use. In the case of expertise-based methods,
experts determine possible costs and factors impacting the
estimate. (erefore, the estimation accuracy is based on
expert skill, knowledge, and experience. Learning-based
techniques automatically identify trends and patterns. It
gains experience and keeps improving in efficiency and
accuracy. Multidimensional data of various varieties can be

handled easily through learning-based algorithms. (ere are
also some limitations, as it requires huge data sets to train on,
which should be unbiased and inclusive. Also, it takes a
considerable amount of time to train and learn to fulfil a
considerable amount of relevancy and accuracy. (e
progress of the software development process has continued
to evolve over the past few decades. (erefore, most of the
available data sets are heterogeneous because their sources
come from various organisational projects. On the other
hand, there are a large number of missing values. (erefore,
the use of neural networks for high-dimensional and
multiobjective data classification is a challenging task.

In the algorithmic model [17], the cost estimation is
provided by a mathematical model that utilises the attributes
of products, projects, and processes. (ese equations are
derived from research and involve parameters such as
function points, source lines of code (SLOC), and cost
drivers (such as design methodology, risk assessments, and
language dependency). Some examples of algorithmic
models are the SAIC model, function point-based models,
Putnam’s model, COCOMO, and SEERSEM model.
COCOMO is the most extensively used regression algo-
rithmic model for software cost estimation [18] because it
allows users to adjust parameters according to the
uniqueness of their projects. For estimation, COCOMO uses
equations and parameters based on experience from earlier
software projects. COCOMO II is an enhancement of
COCOMO and is widely adopted because of its simplicity
and accuracy. For effort estimation, it uses the project size
(in terms of Kilo Source Line of Codes (KSLOC)) and 22 cost
drivers, in which 05 scale factors and 17 effort multipliers are
included. (e outcome of the COCOMO II (post-
architecture model) is in terms of people per month for a
project. However, a prominent limitation of algorithmic
models is that they are difficult to learn and require data
about the current state of the project. So basically, no one
method can be regarded as the best method. (erefore, it is
usually recommended to combine these methods (hybrid
methods) to obtain better cost estimates.

COCOMO is a parametric effort estimation model.
COCOMOmodel coefficients play a significant role in effort
estimation. (e limitation of the COCOMO models is that
the values of these parameter coefficients are constant for
similar kinds of projects whereas, in reality, these parameters
vary from one organization to another organization.
(erefore, it is difficult to have a single, acceptable, and
logical parametric model. (e software project dataset
contains data on heterogeneous projects (different project
indicators in terms of scale and attributes). (erefore, in
order to estimate the accuracy, the parameters need to be
fine-tuned [19]. In order to overcome the limitations of
COCOMO, many studies have adopted different methods to
adjust the coefficients of COCOMO II and improve cost
estimation. In the estimation problem, an upward trend has
been seen in the use of meta-heuristic algorithms inspired by
nature. Because of their unique characteristics, such as large
search spaces and random selection techniques, these meta-
heuristic algorithms perform well in dealing with optimi-
zation problems in various fields of interest [20].
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Deep learning (DL) is now being considered by the
research community as a viable solution for improving cost
estimation. Deep learning (DL) characteristics such as better
feature selection and representation enable it to outperform
other shallow learning techniques. Because DL makes it
possible to express complex relationships between e�ort and
cost drivers, it is a better choice for estimating software costs
[21]. Although deep learning architectures o�er some ad-
vantages over existing shallow technologies, they also have
some drawbacks, such as long training times, over�tting, and
under�tting. Meta-heuristic algorithms allow formulating
the DL components into an optimization problem. �e
hybrid of ant colony optimization with the BAT (HACO-
BA) algorithm is a hybrid optimization technique that
combines the most common global optimum search tech-
nique for ant colonies (ACO) in association with one of the
newest search techniques called the BAT algorithm (BA).
�e inclusion criteria of these algorithms are high maturity,
state-of-the-art, and representative. Meta-heuristics, nature-
inspired, and machine learning optimization algorithms are
shown in Figure 1.

1.1. Contribution. RQ1: Which of the meta-heuristic algo-
rithms has the lowest MRE, MMRE, MBRE, and PRED?

Ans: Various meta-heuristic algorithms are used for
model optimization. From the literature review, we have to
select di�erent algorithms on the basis of their performance
for solving various software estimation problems. Di�erent
parameters will be evaluated, for example, MRE, MMRE,
MBRE, and PRED, to �nd out which performs better among
the selected algorithms. �ose algorithms are the best that
have optimised values for evaluation parameters.

RQ2: whether the performance of the meta-heuristic
algorithm changes or varies by changing the dataset.

Ans: �e three most widely used datasets for software
cost and e�ort estimation, that is, NASA dataset,
COCOMO 81 dataset, and KEMERER dataset, will be used
as input to the various models built using the mete-heu-
ristic algorithm.�e performance of all these models will be

tested and evaluated on these three datasets to see whether
their performance changes or varies by changing the
datasets.

RQ3: nature-inspired and meta-heuristic algorithms
combined with deep learning can improve the software
estimation process.

�e algorithm that performs best among the other se-
lected algorithms in terms of improvement of the evaluation
parameter from RQ2 is used to tune the deep neural network
(DNN). �e proposed model, which is a combination of
meta-heuristics and DNN, is tested and evaluated for fast
and e�cient results.

RQ4: whether the performance of a meta-heuristic-based
deep learning algorithm changes by changing the dataset.

Di�erent datasets are chosen from the state of the art.
�ese datasets are used as input to the proposed meta-
heuristic-based DNN. Performance is tested and evaluated
for this model by changing the datasets.

Whether metaheuristic-based deep learning algorithms
perform better than the NN-based approach for software
estimation.

Ans: Neural network (NN)-based approaches for soft-
ware estimation are widely used by the research community.
However, there are various pros and cons to using NN
techniques. Solving various optimization problems with
DNN is the most popular topic among researchers. So we
have to check whether the meta-heuristic with DNN per-
forms best when compared to the NN model. Table 1 de-
scribes the notation guide for each algorithm as well as
additional abbreviations.

�e rest of the article is formatted as Section 2 dem-
onstrates related work and a subsection of research gaps,
Section 3 contains a problem statement, Section 4 describes
the proposed methodology, and results are discussed in
Section 5.

2. Related Work

Many researchers and practitioners around the world use
di�erent methods to improve software estimation [17]. �e
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Figure 1: Optimization algorithms.
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existing literature in the field of software estimation has
proposed various techniques to evaluate the accuracy of
predictive models. (e most popular among the existing
literature is the mean magnitude of relative error (MMRE),
based upon mean relative error as shown in the following
equation:

MRE �
actualefforts − predictedefforts

actualefforts
. (1)

(e lower the MMRE value, the closer the predicted
estimated value is to the actual estimate, and vice versa.
(ere is work being done to review existing studies on
software cost estimation [19]. Various meta-heuristic
techniques for software cost estimation have been imple-
mented over the last decade.(ere is work that computes the
effectiveness of meta heuristics algorithms [17, 20, 22–24]
related to the optimization of software cost estimation. For
example, in the existing literature, genetic algorithm (GA)
[23], hybrid GA [24], ants colony optimization (ACO) [25]
algorithm, and firefly algorithm (FA) [26] improved cost
estimation. Moreover, existing literature also demonstrates
the effectiveness of meta-heuristic algorithms in terms of
optimizing the parameters of COCOMO [25–29]. (ere is
work to optimize COCOMO II coefficients using hybrid
algorithms. A hybrid method is [30–36] the combination of
several methods that can be derived from algorithmic or
nonalgorithmic techniques. For example, the author of [34]
uses the artificial bee colony and the genetic algorithm for
optimization.

Bee colony optimization (BCO) [22] is a subclass of
swarm intelligence that has been effectively used in a variety
of engineering applications, including software estimation.
By using BCO, COCOMO parameters have been optimised.
In the proposed technique, artificial agents are produced by
analogy with bees. Better results are obtained as compared to
other models such as the Baily-Basil and Halsted models.

Puri and Kaur [20] discussed various meta-heuristic tech-
niques that are used for software cost and effort estimation.
BCO works on the natural phenomenon of getting food
from bees. It has two stages: moving forward and moving
backward. FA is based on firefly flashing characteristics, and
human opinion dynamics (HOD) is based upon the human
creative problem-solving process to solve complex optimi-
zation problems.

(e parameters of the basic COCOMO model are
optimised using a simplified GA technique in [23]. We use
the NASA software project dataset as a starting point.
According to empirical evidence, the basic COCOMO
model produces a superior actual estimate. (e authors of
[24] proposed the whale–crow optimization (WCO) algo-
rithm, which is a combination of the whale (WOA) and crow
search (CSA) optimization algorithms.(emain objective of
the WCO approach is to find an optimal regression coef-
ficient to build an optimal regression model. (e perfor-
mance evaluation of the proposed scheme is calculated using
four datasets of software estimation. MMRE is analysed, and
a reduction is seen, which proves thatWCO performs well in
both the linear regression model and the kernel regression
model. (e authors of [26] proposed the firefly algorithm
(FA) as a meta-heuristic optimization technique for opti-
mizing three COCOMO-based model parameters. Among
these three models, the basic COCOMOmodel and the other
two models are proposed in the state-of-the-art as an ex-
tension of the basic COCOMO model.

Jafari and Ziaaddini [27] analysed the effectiveness of the
harmony search algorithm (HSA). Using the NASA dataset,
the work demonstrates a significant reduction of MMRE as
compared to basic COCOMO. To estimate software reli-
ability issues, the partial swarm intelligence (PSO) technique
and ant colony optimization (ACO) are used [28]. In [29],
the BAT algorithm is presented to improve the software
estimation accuracy. (e effectiveness of the BAT algorithm
is compared with grey relational analysis (GRA). GRA de-
livers an effective solution for the complex interrelationships
betweenmultiple response parameters.(e results show that
GRA performs better in terms of error rate.

A new hybrid model, BATGSA [30], which is based on
two meta-heuristic algorithms, gravitational search, and the
BAT Algorithm, is proposed to achieve better software es-
timation. (e BATalgorithm uses the random walk of BATs
to determine the hunting and routing behaviour of bats in
the exploration phase and uses the gravitational effect of
GSA to further improve and speed up the search speed of
BATs. Four NASA datasets are used for analysis, down-
loaded from the promise repository. (e minimization of
errors is obtained by comparing the COCOMO against the
hybrid BATGSA algorithm.

(e work presented in [31] demonstrates that software
cost estimation can be improved by using a hybrid approach
based on Tabu search and genetic algorithms. Furthermore,
the hybrid model is used to tune the COCOMO.

In [32], three meta-heuristic optimization algorithms are
implied synthetically in order to refine the COCOMO
model: partial swarm optimization (PSO), invasive weed
optimization (WOA), and genetic algorithm (GA). (e

Table 1: Notation guide.

Notations Abbreviation
ML Machine learning
ACO Ant colony optimization
BA BAT algorithm
MMRE Mean magnitude relative error
NN Neural network
DL Deep learning
COCOMO COnstructive COst Mode
BCO Bee colony optimization
PSO Partial swarm optimization (PSO)
COCOMO COnstructive COst Model
SLOC Source lines of code
RQ Research questions
MAR Mean absolute residual
RBFNN Radial basis function NN
RF Random forest
COA Chaos optimization algorithm
ABC Artificial bee colony
OPSO Optimized particle swarm optimization
MBRE Mean balanced relative error
INGPS IdeNtitybased generalised proxy signcryption
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dataset is divided into two groups: train and test datasets.
Furthermore, the dataset is further divided based on the type
of projects. COCOMO parameters are tuned using meta-
heuristic algorithms, and the new cost drivers are tested
using a testing dataset.

In [33], a hybrid approach based on ant colony (ACO)
and chaos optimization algorithm (COA) is presented. In the
first phase, the dataset is classified into two parts according to
project type; one is used for training the model, and the
second is used to test that trained model. Each algorithm
(ACO, hybrid ACO-COA) is applied with its own function in
the first phase. Next, the most optimal solutions obtained for
estimation from the proposed model are then tested using
testing data. In the result section, a comparison is made
between COCOMO, ACO, and the hybrid ACO-COAmodel.

In [34], the author proposed a hybrid model based on
genetic algorithm (GA) and artificial bee colony (ABC)
schemes for optimization of estimation method parameters
according to project size. In the artificial bee colony (ABC)
algorithm, each bee presents a solution to the problem. In
every iteration, the most graceful bee solution is chosen, and
their fitness is calculated.(e bees whose performance is low
are replaced with new bees. (e new bee population is
generated using GA crossover, selection, and mutation.
Finally, the most optimal solution is found. (e results
demonstrate that GA, ABC, and the hybrid model of ABC
with GA performedwell (fewerMRE error values) compared
to the COCOMO model. Moreover, the hybrid model
demonstrates better convergence as compared to the GA and
ABC algorithms.

In [35], the author uses a hybrid model formed on PSO
and DE algorithms to deliver a more comprehensive and
efficient estimate. With incomplete and ambiguous input
data, the hybrid model works well, and it can operate reliably
in software estimation. In the proposed hybrid model, the
accuracy of PRED (25) increased 1.34 times.

In [36], a hybrid model based on the cuckoo search (CS)
and harmony search (HS) algorithms is used for optimizing
COCOMO-II coefficients. (e proposed CSHS has two
stages. CS at the first stage is used for finding the initial
optimal solution for local and global search. In the second, a
new harmony vector or solution is generated using the HS
strategy, which is compared with the global best solution
found in the first stage. If it has better fitness, then the global
best is replaced. (is procedure is continued until the given
iterations are completed. (e proposed technique is applied
to NASA 93 datasets. (e aim is to achieve an estimation
value close to the actual value.

ML is a method that trains computing systems to im-
prove itself by learning from previous data available. ML
programs work by constructing a prediction model from a
set of previously available training data, and this step is
followed by the data-driven predictions [37].

Categorically, analysis was performed in [21] on 4 neural
network models: (1) general regression NN (GRNN), (2)
multilayer perceptron (MLP), (3) cascade correlation neural
network (CCNN), (4) radial basis function NN (RBFNN),
and mean absolute residual (MAR) were the criteria used for
performance evaluation. Four inputs have been assigned to

each model, including (1) development platform, (2) soft-
ware size, (3) resource level, and (4) language type. Five
datasets mined from the ISBSG are used. (e output of the
model was software effort.

In [38], an empirical study was conducted by using the
random forest (RF) method for software effort estimation. In
RF, first, we investigate the number of trees affected and then
evaluate the number of selected attributes for growing trees.
(e outcomes show that the estimation accuracy is very
sensitive to these parameters.

In addition, the survey conceded that we optimize the RF
model by selecting the best values for these two parameters.
We compare the performance of the enhanced RF model
with the performance of the classical regression tree (RT) by
using the (70–30) hold-out validation method and using
three COCOMO, IBSSG, and Tukutuku data sets.”

Some highly mature and popular ML algorithms, such as
support vector machines, regression, decision trees, RF,
Bayesian inference, ANN [39], and feature selection, are an
important process during training a model because model
efficiency depends on selected variables. It is very important
to choose features that have a significant influence on the
prediction model [40].

Barmpalexis et al. [41] accelerate the neural network
training process by using optimized particle swarm opti-
mization (OPSO).(e main function of OPSO is to enhance
the free PSO parameters by having a new swarm within a
swarm. (e aim is to build a quantitative model by applying
the OPSO technique to neural network training. (is
method yields the parameter combinations needed to im-
prove the overall performance of the optimization process.

In [42], the author proposed a nonalgorithmic method
for estimating software development effort. (is article
discusses the integration of wavelet neural networks (WNN)
and meta-heuristic methods for estimating software devel-
opment effort (SDEE).(e technologies used here are WNN
with the firefly algorithm and the BAT algorithm. As the
activation function in WNN, two wavelet function var-
iants—Morlet and Gaussian—are used. It has been dis-
covered that usingWNNwith the firefly and BATalgorithms
(FA and BA) produces better results than using simple
WNN without any meta-heuristics. According to the au-
thor’s experimental results, the WM technique performs the
worst across all four data sets. However, combining meta-
heuristics with WNN yields significantly better results.

In [43], the author conducted an exploratory longitu-
dinal case study. Data collection was conducted through
semistructured interviews and archival research. (e two-
stage estimation process, which reestimates in the analysis
stage, improves the effort estimation accuracy.

Underestimation is the main trend in software evalua-
tion, and less mature teams experience greater work
overspending.

Some of the most common challenges are solved in
large-scale agile software development. In order to improve
the effort estimation, the team maturity, distribution, and
demand size and priority need to be considered.

Emary et al. [44] proposed a modified grey wolf opti-
mization (GWO) that utilises the reinforcement learning

Computational Intelligence and Neuroscience 5



rules or principles by integrating them with neural networks
in order to improve the model performance. (e combi-
nation of GWO with a neural network forms experienced
GWO (EGWO). (e performance of experienced GWO is
measured by finding the optimal weights of the neural
network and choosing a subset of related features (predic-
tors, variables) for use in model building.

(e author in [45] presents a comprehensive dataset for
the story points-based estimation. 23,313 issues from 16
open-source projects are addressed. A prediction model
using DNN is also proposed for the estimation of the story
points.

In [46], the author proposed a new technique of deep
learning modified neural network using the cuckoo search
algorithm for initialising the weight of the network and
applying HPSO to obtain a better classification of various
parameters of the dataset. A neural network is qualified as a
“deep network” when there are more than three layers. (e
deepmodified neural network (MNN) classifier is comprised
of neurons with weights in addition to biases. Also, the deep
MNN classifier consists of different sorts of layers: convo-
lution, pooling, as well as a fully connected layer.(e cuckoo
search algorithm (CSA) is used to initialise the weight of the
network.(e input of this deepMNN is the effort multiplier,
that is, the software development of the COCOMO dataset,
database size, exponent value, constant value, etc.(is step is
carried out through an optimization process, which is ex-
ecuted by using hybrid particle swarm optimization (HPSO)
with genetic operators. (Crossover, explicitly, and also
mutation of genetic algorithms). While choosing the NN
weights, which help to enhance the classification of the
model, HPSO is used to attain better classification outcomes.
Finally, the proposed deep MNN is evaluated on different
performance parameters: relative error (RE), magnitude of
relative error (MRE), mean-MRE (MMRE), mean balanced
relative error (MBRE), and also percentage of prediction
(PRED) and compared with traditional NN.(e experiment
shows better results in all features. (e execution time for
effort estimation is also compared. When 10 instances are
considered, the proposed deep MNN shows a decrease in
execution time compared with the traditional NN. On the
other hand, there is also a limitation in the proposed
technique; that is, when the instances were increased to 50,
the results show that the proposed method takes more time.

A hybrid approach is introduced in [11], which is divided
into two sections. First, the author applies the GA for feature
optimization. To obtain the desired results, the total pop-
ulation is divided into several subpopulations and applies
computation for each population, which includes designing
of chromosomes and calculation of fitness functions. In the
second section, an improved DNN for classification is
proposed. As we know, neural networks show significant
performance in terms of classification. However, neural
networks cannot classify multiobjective functions or high-
dimensional data, so the paper proposes an enhanced DNN
model with sparse auto-encoders to overcome this limita-
tion. We use the proposed technique to learn the feature

pattern. (e adaptive auto-encoders are used in conjunction
with the denoising model to produce better results for
specific software features. (e MATLAB tool is used for
experiments in various scenarios that are performed for
software defect prediction. (e proposed technique’s per-
formance is assessed using data sets KC1 and CM1. A
comparative study reveals that the proposed technique
outperforms the experimental scenario without optimiza-
tion in all four scenarios created during the experiments. A
brief summary of estimationmethods and their limitations is
shown in Table 2.

For categorised problems, the deep belief network
(DBN) is an excellent machine learning technology. (e
traditional DBN, on the other hand, does not function well
for unbalanced data classification because it assumes that
each class has the same cost. Cost-sensitive approaches are
employed to overcome this issue, which attaches varying
misclassification costs to different classes without affecting
the actual data sample distribution.(e author [47] proposes
an evolutionary cost-sensitive deep belief network (ECS-
DBN) model in which he first optimises the misclassification
costs using optimization algorithms that automatically
update their corresponding parameters and then applies
them to the deep belief network. (e author demonstrated
that ECS-DBN outperforms other competing techniques
significantly. (e suggested ECS-DBN improves DBN by
applying cost-sensitive learning techniques. (e adaptive
differential evolution approach is utilised in practise to find
the misclassification cost and solve the unknown misclas-
sification cost [48–50]. In [51], the grey wolf algorithm
(GWO), the strawberry algorithm (SBA), and the harmony
search algorithm (HSA) were tested on MRE and MMRE
parameters using the NASA dataset.

(e author proposed multiple approaches to make the
software secure and reduce future efforts for maintance. In
[52], the author proposed a lightweight identity-based
signature scheme for content poisoning mitigation in
named data networking with the Internet of things. A
secure identity-based generalised proxy signcryption
(IBGPS) scheme that is lightweight and provable for the
industrial Internet of (ings (IIoT) is proposed in [53]. For
the Internet of (ings-enabled smart grid, CBSRE is a
lightweight and formally secure certificate-based sign-
cryption with proxy reencryption. For the named data
networking-enabled Internet of things, a lightweight het-
erogeneous generalised signcryption (hgsc) scheme, se-
curing the NDN-based Internet of Health (ings with a
low-cost encryption scheme, is proposed in [54, 55]. Ma-
chine and deep learning approaches are widely used in
different areas of life. (e author proposed an intrusion
detection system for IoT based on deep learning and a
modified reptile search algorithm in [56] and a modified
Aquila optimizer for forecasting oil production in [57]. In
[58], author forecasted the wind power using the marine
predator algorithm and mutation operators for wind power
forecasting to evaluate the performance of meta heuristic
approach.
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3. Algorithmic Approaches

Meta-heuristic algorithms and nature-inspired algorithmic
approaches are discussed in this section.

3.1. Meta-Heuristic Algorithms. Nature influenced meta-
heuristic algorithms and nature-inspired algorithms. Nat-
ural biological systems, evolution, human activities, animal
group behaviours, and other factors can inspire algorithms,
such as the biological human brain-inspired artificial neural
network [1], the genetic algorithm stimulated by evolu-
tionary theory [2], and Dujuan.(e cuckoo search algorithm
(CSA) was inspired by the cuckoo’s birth behaviour [3],
whereas the grey wolf optimization (GWO) was inspired by
the grey’s aggressive behaviour [4].

It is found that these nature-inspired algorithms are
more effective and efficient than traditional algorithms in
solving real-world optimization problems because they can
effectively deal with highly complex and nonlinear problems,
especially in the fields of science and engineering [22]. Meta-
heuristic is defined as an iterative method, which explores
and uses search space to guide lower-level heuristics by
intelligently combining different concepts. (ey are inspired
by observing phenomena that occur in nature.(e summary
of the used meta heuristics techniques is presented in
Table 3.

3.1.1. Ant Colony Optimization. Marco Dorigo was first
introduced in 1992 as a multiagent solution for optimization
problems. When an ant moves, it deposits pheromone (in

Table 2: Estimation method and limitations.

Estimation method Limitations

Estimation by analogy

Subjective selection of correlation standards and dispute identification process (confidence
level)

Requires analogous project for comparison from historical data from database
(ese analogous projects are rarely available in software development

Decomposition and bottom-up (WBS-
based)

It may be time-consuming for large or even medium-sized projects
High risk of ignoring system-related tasks such as testing, integration, and configuration is

high
(is method may lead to underestimation due to lack of project information at early stage

Parametric models (SLIM, SEERSEM)

Usually does not take into account the project team’s skill set specific to the organization’s
software and project management culture

Modern methods of code reuse, code less programming, and various agile development
methods for software development may not be feasible

Highly dependent on programming language

Expert estimation (Delphi, PERT, planning
poker)

(ese methods rely on the experience, knowledge, and perception of experts, and there may
be deviations or biased, which often lead to overestimation or underestimation

All the factors used by experts in the estimation process are unable to justify and quantify

Size-based estimation models (use case,
FPA, sTory points)

Requires trained personnel which is not easily available
High effort and cost is required for the application of large projects

Due to limited information, using this method in the early stages of a project may result in
inaccurate estimates

Table 3: Comparison between existing approaches.

Refer
ence

DL/ML/
ANN

Meta-heuristic
algorithm Dataset Evaluation parameter Contributions

[42] NN Fiery algorithm, BAT
algorithm

COCOMO81, NASA,
MAXWELL, China MRE, MMRE, pred, MDMRE Hybrid model for effort

estimation

[45] ANN Firefly COCOMO81, NASA,
MAXWELL, China MMRE, MdMRE, PRED Hybrid model for cost

estimation

[46] DNN Cuckoo, hybrid PSO COCOMO RE, MRE, MMRE, MARE,
PRED, execution time

Hybrid model for cost
estimation

[11] DNN GA KC1, KC2, CM1, PC1,
JM1

Accuracy, precision, F-score,
recall, sensitivity Defect prediction

[47] DL Evolutionary
algorithm KEEL dataset repository Accuracy, G-mean, precision, F-

score, computational time
Hybrid of DBN and ADE for
imbalanced classification

[48] NN GA, PSO N/A Survey Possibility to apply on DL
[49] NN Cuckoo COCOMO MMRE, standard deviation Improve cocomo

[50] ANN Cuckoo COCOMO81, NASA MMRE, PRED, computational
time Hybrid model

[51] GWO,
HSA SBA NASA MRE, MMRE Hybrid model
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varying amounts) on the ground and uses the smell of this
substance to determine its path.�e colony’s other members
follow the path to �nd food and return to the nest in the
same manner. Ants begin their search for food sources by
randomly exploring the area around their nest [25]. When
ants �nd a food source, they evaluate the quality of the food
and bring a small amount back to their nest. �e �ow chart
of the ant colony optimization algorithm is shown in
Figure 2.

τi,j(t + 1) � τi,j(t) +∑
nk

k�1
δτki,j(t). (2)

Ants communicate via indirect channels and coordinate
their activities in a hidden state by doing changes in the
surrounding environment as shown in equation (2). ACO
works on the principle of indirect arti�cial communication
to match societies of arti�cial agents. �e steps of ant colony
optimization algorithms are shown in Algorithm 1.

3.1.2. BAT Algorithm. �e BATalgorithm (BA) [30, 42] was
proposed by Xin-She Yang and is in�uenced by mini-BAT
echolocation behaviour. BATs use this behaviour to direct
and assist them in �ight and hunting. BATs can not only
move but also discern between obstructions and bug forms,
even in complete darkness, thanks to their incredible ori-
entation mechanism. �e �ow chart of the BATalgorithm is
shown in Figure 3.

�e position of each BAT in the search space is de�ned
by xtk, frequency f, velocity v

t
k, loudness A

t
k, and transmitted

pulse rate rtk in this algorithm. �e velocity and position kth
of the BAT at time t are calculated using the Equations 3rd,
4th, and 5th.

fk � fmin + fmax − fmin( )β,

vtk � v
t−1
k + xt−1k − xtk( )fk,

xtk � x
t−1
k + vtk.

(3)

Among them, fk is the frequency of the sound waves
emitted by kth BATs; fmix and fman are the minimum and
maximum sound waves frequencies, respectively; β is
composed of uniform which distributes the random number
generated by [0, 1]. �e velocities of kth BAT are vtk and v

t−1
k

at time t and time (t − 1), and xtk represents the current
global optimal position of the BAT.

For local search, each bat the position is measured using
equation (6). Each BAT local random walk is calculated by
using the following equation:

Xnew � Xold + δĹ(t), (4)

where δ is a random number produced uniformly distrib-
uted on the interval [−1, 1], Xold is a solution arbitrarily
selected from the current optimal solution, in the iteration of
ith, Ĺ is the normal uproar of all BATs. �e steps of the BAT
algorithm are shown in Algorithm 2.

3.1.3. Hybrid of Ant Colony Optimization with BAT (HACO-
BA). �e hybrid of ant colony optimization with BAT
(HACO-BA) algorithm is a hybrid optimization tech-
nique that combines the most common global optimum
search technique for ant colonies (ACO) in association
with one of the newest search techniques called the BAT
algorithm 3 (BA).

3.2. PerformanceAnalysis andEvaluation. In this section, we
discuss about the performance analysis, experimental setup,
datasets selection, evaluation metrics, and experimental
results.

3.2.1. Performance Analysis. In the experimental section, we
will compare the performance of 6 meta-heuristic algo-
rithms, that is, GWO, GA, strawberry (SBA), cuckoo search,
particle swarm (PSO), and ant colony optimization (ACO)
[23, 25, 28, 34, 35, 59]) that use meta-heuristic algorithms in
terms of e�ort and cost estimation with each other and with
COCOMO model.

In 1981, Barry Boehm proposed the constructive cost
model (COCOMO). It is the most often used algorithmic or
parametric model. �e model parameters and equations are
generated from historical projects for estimation. �e model

No

Yes

Initialize pheromone concentration for each region

Create region to explore memory

Determine objective function

Check region explored is better or not, for
update of region memory and perform

pheromone intensification

Pheromone evaporation

Local optimum achieved

Stop

Set parameter values for ACO

Repeat for all
ants

F

N

Food

Ant Colony Optimization

Following
the Trials

Reinforcing the
Shortest Trial

(Positive Feedback
Loop)

Marking a Trial

b

a

Nest

F

N

F

N

1 2 3

Figure 2: Ant colony algorithm.
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is used to estimate the project’s size, the amount of e�ort
necessary, and the project’s cost. We must �rst construct a set
of criteria to quantify this. In this model, we use functional
points (FP) and lines of code (LOC) to compute the required
e�orts. �e “person month” unit is used to estimate e�ort in
this method, which is equivalent to a single person’s month
e�orts. COCOMO models are divided into two categories.

(i) COCOMO I
(ii) COCOMO II

COCOMO I (also known as COCOMO 81) and
COCOMO II (COCOMO 2000) were released in 1981 and
1995, respectively. It was, however, published in the year
2000. COCOMO I is separated into three levels of di�culty:

Initialize and evaluate solution archive
Begin
Repeat
For each ant
Select guiding solution
Generate a new solution
End
Update archive
Optionally apply local search
Optionally Expand archive
Optionally Restart archive

Until termination criteria are satis�ed
End

ALGORITHM 1: Ant colony optimization (ACO).

Yes

Yes

No

No

Yes

No

If Eq. 11 is satisfied?

If iteration
criterion is satisfied?

If η > rjη

Initial bat population. Each bat flies with velocity Vj and
produces a signal with parameters frej, rj, Aj

Improve the bat population using the
proposed modification method

Evaluate the objective function value for all bats and
store the best solution as Xg

Improve the bat population
using Eq. 10

Accept the random bat &
Update rj & Aj by (12)

Improve the bat population using Eq. 9

Publish Results

Wave length

BAT Algorithm
Echo of sound wave

reflected back to the bat

Sonar waver
emitted by the bat

Distance from pray

Figure 3: BAT algorithm.
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basic, intermediate, and advanced [1]. (e formulas uti-
lised to calculate the estimations change across these
methods. (e most widely utilised methods are basic and
intermediate; these approaches are further divided into
three sections or measurements. (ese are organic,
semidetached, and embedded, according to the projects
featured in it [2].

Basic COCOMO E, organic COCOMO EB−O, semi-
detached COCOMO EB−S, and embedded COCOMO
EB−E formulas are shown in the following equations,
respectively.

E � a(size)b
, (5)

EB−O � 2.4∗ (LOC)
1.05

, (6)

EB−S � 3.0∗ (LOC)
1.12

, (7)

EB−E � 3.6∗ (LOC)
1.20

. (8)

(ese are the fundamental COCOMO equations. KLOC
represents the number of code lines and project size in these

For a given objective function: Obj(xi), where i� (1, . . ., n)
Initialize the BAT population with the corresponding attributes: velocity veli, position (xi) and pulse frequency (Qi)

Initialization features include loudness loudi, maximum number of iterations (Itermax) and acceleration rate ratei

Repeat step 4 to 15 for every iteration in (Itermax)

Repeat step 5 to 13 for every single BAT corresponding to bati

Evaluate equations (1)–(3) to produce a new solutions
set

if (random > r1) then
Generate a local solution around one of the chosen best solutions
end if

if (random < loudi) (fitness(xi <fitness(xGlobalBest))) then
Update xGlobalBest and fitnessBest

Increase ratei and reduce loudi (equations (3) and (6))
end if

Rank the BATs and find the GlobalBest
�0

ALGORITHM 2: BAT algorithm (BA).

Initialize and evaluate solution archive
Begin

For a given objective function: Obj(xi), where i� (1, . . ., n)
Initialize the BAT population with the corresponding attributes: velocity veli, position (xi) and pulse frequency (Qi)

Initialization features include loudness loudi, maximum number of iterations (Itermax) and acceleration rate ratei

Repeat step 4 to 15 for every iteration in (Itermax)

Repeat step 5 to 13 for every single BAT corresponding to bati

Evaluate equations (1)–(3) to produce a new solutions set
if (random > r1) then

Generate a local solution around one of the chosen best solutions
end if

if (random < loudi) (fitness(xi <fitness(xGlobalBest))) then
Update xGlobalBest and fitnessBest

Increase ratei and reduce loudi (equations (3) and (6))
end if

Rank the BATs and find the GlobalBest
Update archive
Optionally apply local search
Optionally Expand archive
Optionally Restart archive

Until termination criteria are satisfied
End� 0

ALGORITHM 3: Hybrid ant colony and BAT algorithm (HACO-BA).
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equations. (e COCOMO coefficients “a” and “b,” as well as
the value of “E,” describe the required efforts.

3.2.2. Experimental Setup. (is stage is building a model in
MATLAB software to estimate effort using six algorithms
selected for their excellent performance in diverse optimi-
zation situations [25–27]. Because its basic data element is a
matrix, and its capability can be easily increased by utilising
multiple toolboxes, using MATLAB software provides sig-
nificant advantages. On three publicly available datasets
retrieved from the promise repository, various tests are
carried out using cutting-edge algorithms.

3.2.3. Datasets Selection. Effort multipliers are taken as
input to the models, from the following defined datasets.
(ese effort multipliers are categorized into three groups,
which are as follows:

(i) Positively correlated to additional effort
(ii) Negatively correlated to additional effort
(iii) Containing just schedule information

(i) NASA. (e NASA dataset was obtained from the promise
software engineering repository, which can be used publicly
to improve software cost estimation methods. It includes 93
software project information, which has been recorded for
many years from several NASA centers. Dataset contains 15
effort multipliers and 5 scaling factors, which have different
values in each software project.

(ii) COCOMO 81. (is dataset is also known as COCOMO
81 which is publicly available on promise software engi-
neering repository. (is repository’s software project data
are stored in the COCOMO software cost model, which
calculates the amount of effort required to develop software
projects in a calendar month. It also includes a standard
effort multiplier.

(iii) KEMERER. KEMMER dataset is measured in KLOC. It
is used in many machine learning applications for software
engineering which has 8 attributes. To compare it with Nasa
and COCOMO dataset, which has 15 attributes, we assume
the rest of attribute value as normal.

3.2.4. Evaluation Matrices. Many researchers and practi-
tioners have optimised the effort estimation technique to
assist the accuracy under various estimation standards. We
implement the following standards to compare and evaluate
the accuracy of the effort estimation model.

(i) MRE. One of the common criteria for evaluating the effort
estimation process is the magnitude of relative error (MRE),
which is computed using the following equation:

MRE �
Actual − Estimate

Actual
 




. (9)

(ii) MMRE. (e MRE value is calculated from the dataset for
each software item, while the mean magnitude of relative
error (MMRE) calculates the average of N number of
projects, as defined in the following equation:

MMRE �
1
N



N

i�1
MRE.i. (10)

(iii) MBRE. MBRE is another measure that is commonly
used to evaluate effort models. In recent years, it has been the
average value of balanced relative error (MBRE) in software
estimation research [12]. MBRE, in particular, is a useful
evaluation standard because, as a balanced symmetric error
measure, it penalizes both underestimation and overesti-
mation at the same level and better handles the outline.
MBRE is calculated in the following equation:

MBRE �
1
N



N

i�1

|Actual − Estimate|
min(Estimte − Actual)

. (11)

(iv) PRED. (e other most common metric is PRED(I),
which represents all projects with an MRE percentage less
than or equal to the I value. (is standard, which is com-
monly used in the literature, is the proportion of projects
completed with a given level of accuracy. In equation (12),
pred(x) is defined.

Pred(x) �
k

N
, (12)

where k denotes the number of projects whose MRE is equal
to or less than x, and N denotes the total number of projects.
(e most common value of x is 0.25, which is also used in
this study. Pred(0.25) denotes the percentage of projects
with MREs equal to or less than 25.

Estimation refers to the estimated value of the predicted
efforts, actual refers to the actual workload or effort required
to complete the project, and N denotes the number of
projects.

3.2.5. Experimental Result. In this section, optimization is
carried out on all modes discussed above; it is performed
on the NASA dataset, on semidetached mode, and on
embedded projects, and the average of each mode is taken.
(e model also receives input from the COCOMO 81
dataset. During experiments, the KEMERER dataset is
also used.

(i) Experiment 1. Optimization is performed on the NASA
dataset by using different nature-inspired algorithms. As
results are shown in Figure 4, the MMRE value is decreased
by using the meta-heuristic algorithms as compared to the
basic COCOMO parametric model. All the datasets are
divided into three folds, and then, the average is plotted on
the graph, as shown in Figure 4.MMRE is decreased by using
ACO, BAT, and HACO-BA algorithmic approaches. We
noticed that the hybrid algorithmic approach HACO-BA
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shows a signi�cant decrease as compared to other opti-
mizing algorithms.

(ii) Experiment 2. �e experimental results on the
COCOMO 81 dataset reveal that the maximum value of
MMRE is 7 as shown in Figure 5 as compared to the NASA
dataset and the maximum value of MMRE is 5 as shown in
Figure 5. Experimental results also show a decline in MMRE
and other evaluation parameters while using the hybrid
HACO-BA approach.

(iii) Experiment 3. KEMERER dataset is also used to
evaluate the performance of applied meta-heuristics
approaches. In KEMERER dataset, we have 8 attributes,
and to balance it with the above dataset, the rest of 7
attributes is assumed as normal whose value is equal to 1.
Due to this, the decrease in MMRE is less as compared to
NASA and COCOMO 81 datasets. On KEMERER, the
dataset hybrid approach HACO-BA performs well
compared to other meta-heuristic algorithms as shown
in Figure 6.

In Table 4, valuation parameter values of the opti-
mization models such as Basic COCOMO, BAT, ACO,
and HACO-BA on di�erent datasets are listed. �ese
approaches are evaluated on MRE, MMRE, MBRE, PRED
evaluation parameters using three di�erent datasets;
NASA, COCOMO, and KEMERER are listed.

4. Proposed Software Estimation Scheme
Based on Hybrid Meta-Heuristic and Deep
Learning Model

In the proposed system, we used the deep learning model.
Deep learning is a type of arti�cial neural network archi-
tecture (ANN). ANN represents a signi�cant early break-
through in the �eld of arti�cial intelligence.�e ANNmodel
is exceptionally dynamic in solving complex problems in
various machine learning application areas [11] in the real
world, such as health, agriculture, �nance, and automobile
industry. At the moment, ANN in single, hybrid, or en-
semble form is still an active research area [12], and its role in
autonomous vehicles is expected to receive more attention in
the future. ANN, on the other hand, is trained using
backpropagation algorithms and has some limitations, such
as falling into local minima and over�tting training data. As
a result, many researchers advocate using nature-inspired
algorithms to train ANNs to avoid challenges. For example,
GA [24], ABC [34], CSA [36], and particle swarm optimi-
zation (PSO) [41] were used to train ANN and were found to
be superior to the back propagation algorithm in terms of
avoiding the local minima problem.

As stated above, deep learning is an ANN architecture
with logical node weight updates and activation functions.
Deep learning models and extracting high-level abstractions
from large-scale data sets are useful when providing large-
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Figure 4: Comparison of NASA dataset.
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scale data [18]. Deep learning frameworks are based on
cutting-edge machine learning research and are used to
create new features for Silicon Valley startups.

Machine learning is not the same as traditional pro-
gramming. In traditional programming, the program we
write instructs the computer on how to complete the task.
Aside from that, in machine learning, we do not tell the
computer exactly what to do. Alternatively, we provide
training data, and the machine learning algorithm uses this
training data to develop its own rules for completing the
task. Deep neural networks are used in a variety of
applications.

(i) Image recognition, where you identify what objects
are present in the images

(ii) Image style transfer, where you can make a pho-
tograph look like, was painted in the style of a fa-
mous artist

(iii) Language translation, where you translate from one
human language to another

(iv) Speech recognition, where you turn speech into text
(v) Business problem, to solve a typical business

problem estimating sales

However, deep learning faces many limitations, but not
restricted to the lack of system programs to achieve optimal
or ideal parameter values, manual configuration of deep
learning architectures, and lack of standard training
methods and algorithms. (erefore, researchers have pro-
posed many methods including nature-inspired algorithms
to alleviate the challenges.

(e application of nature-inspired calculations in pro-
found learning is limited due to the need for cooperative
energy between profound learning and nature-inspired
calculations. As a result of the lack of synergy between deep
learning and nature-inspired algorithms, the application of
nature-inspired algorithms in deep learning is limited [19].
In the context of big data analysis, the author demonstrated
the role of nature-inspired algorithms in deep learning. (e
study, however, argued that nature-inspired algorithms have
a very limited application in deep learning methods [18].

As the results are shown in Table 4, HACO-BA performs
better among the other meta-heuristics algorithms. So, we
applied the hybrid algorithmic approach to optimize the
deep learning training process. HACO-BA is used to assign
the best values of initial weights to the deep neural network.
(e proposed deep neural model is compared with
[42, 46, 47] in terms of accuracy and time required for
training. We have to find out the mean RE (MRE), mean
magnitude of RE (MMRE), mean balanced residual error

(MBRE), and percentage of prediction (PRED) and then
compared it to the NN model. (e block diagram of the
proposed systems is shown in Figure7.

4.1. DataAcquisition and Processing. In data acquisition and
for further processing, three different data sets are used in
this approach. NASA dataset is used which has complete
data for software cost estimation for 93 different software
projects. (ese data are occupied by distinctive NASA
centers for a long time. NASA dataset along with COCOMO
81 and KEMERER dataset have various attributes. For these
attributes, different parameters are selected for effort and
time estimation. From which, 15 common variables along
with their descriptions are listed in Table 5 are taken, and
these attributes are input to the deep neural network at the
input layer. As this is supervised machine learning, we have
to provide a value as the result value in the output layer,
which is the total amount of effort needed to build the
software product.

(e important step is that we need to preprocess our
data. In order to train the deep neural network, we want to
scale all the numbers in each column of our dataset to be
between the value of 0 and 1. (is is because if the numbers
in one column are large but the numbers in another column
are small, the neural network training will not work very
well. One of the best ways to do this is to use the Min-
MaxScaler object from the popular scikit-learn library. It is
designed for exactly this purpose. In this method, first, we
have to create a new MinMaxScaler, and then, we just need
to pass in a feature range parameter, which tells it that we
want all numbers scaled between 0 and 1.

4.2.Model Building andOptimization. In this section, model
building and model optimization are presented.

4.2.1. Model Building. (is step involves creating the model
in TensorFlow, which is used to create and deploy supervised
machine learning models. Supervised machine learning is a
type of machine learning in which the model is trained by
providing the data as input and the expected result for that
data. It determines how to convert the input into the output.
When developing and deploying a supervised machine
learning model, we always adhere to a process known as the
train, test, and evaluate flow.

First, we write the code for our machine learning al-
gorithm. We will accomplish this by constructing a com-
putational graph of operations, in which, to begin, we will

Table 4: Parameter evaluation using different datasets.

Optimization models
NASA COCOMO KEMERER

MRE MMRE MBRE PRED MRE MMRE MBRE PRED MRE MMRE MBRE PRED
Basic COCOMO 1.93 4.95 6.39 8.04 2.76 7.07 9.12 11.49 2.79 7.15 9.23 11.62
BAT 1.51 3.87 5.00 6.30 1.87 4.78 6.16 7.77 1.97 5.04 6.51 8.20
ACO 1.67 4.28 5.53 6.96 2.19 5.61 7.24 9.12 2.49 6.38 8.23 10.37
HACO-BA 1.06 2.72 3.51 4.42 1.35. 3.47 4.47 5.63 1.61 4.12 5.31 6.69
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define each layer of the neural network and connect them so
that data flow from the first to the last layer.

(en, we will add the placeholder node, which represents
the data that will be fed into the neural network as input.
Another placeholder node represents the neural network’s
output or the values predicted by the neural network. DNN
has a total of five layers. (ere will be one input, one output,
and three hidden layers between the neural network that will
train to find the relationship between the inputs and the
outputs. (ere are many different types of layers that can be
used in a neural network, but we will stick with themost basic,
a fully or completely connected neural network layer. (at is,
each node in each layer is linked to each node in the next layer.

Between layers, the first layer has 50 nodes, the second
layer has 100 nodes, and the third layer has 50 nodes once
more. Neurons are another name for nodes. Before training
the model, the epoch is a hyperparameter to interpret in deep
learning. When the entire dataset is passed forward and
backward through the neural network only once, this is re-
ferred to as an epoch. We must set the training epochs to 100.

An epoch is another name for one full training pass over
the training dataset. 50 epochs mean that we will do 50
iterations in our training loop to train our neural network,
and similarly, 100 epochs mean 100 iterations.

Next, we need a way to measure the accuracy of the
neural network’s predictions. We will define the function
that measures the each prediction accuracy during the
training process. (is is called a loss function. (e loss
function gets added to the graphs in its own operation.(en,
we have to create an optimizer function that tells how we
want to train the model.

When we run this function, it will perform one training
step on our model. We will call this node the training oper-
ation. Bias is also an important parameter, and itmeans how far
our forecast is from the actual value. In general, parameter
algorithms have high biases, which makes them faster to learn
and easier to understand, but they are usually less flexible.

(e last part of defining this layer is multiplying the
weights by the inputs and calling an activation function. An
activation function outputs the result of the layer. We want
the bias values for each node to default to zero.

4.2.2. Model Optimization. (e deep neural network per-
formance is optimized through training by examining the
loss function results and balancing the weight of each neural
network layer to produce better results by increasing the
number of epochs. With deep neural networks, a lot of
research have gone into the best initial values to use for
weights. Weight is a very important part of the deep neural
network if a set of given weights is not correct, it will take
time to train the network and will not make correct pre-
dictions, so we have optimised it using an meta-heuristic
algorithm. For this purpose, we have used grey wolf opti-
mization (HACO-BA) algorithms which are a nature-in-
spired algorithm to give the best values for initial weights to
train the networkmore preciously.We access a model’s layer
by using model.layers. Here, we set a layer’s weights with
layer.setWeights() to obtain from grey wolf algorithmic

optimizer. We have used code, like the following to set the
optimised weights of each single layer: model.layers
[1].getWeight().setWeights(.da.). Furthermore, we cannot
set individual weights.

(e variation in weights is decided by the learning rate.
(e learning rate is a parameter that apprises the optimizer
on how far to move the weights in the direction of the
gradient. We have adjusted the learning rate of our model.
By using HACO-BA for weight initializers, the proposed
deep neural network model produces better results in less
time as in contrast to the neural network. Results of the
proposed procedure are shown is compared with wavelet
neural network-firefly algorithm morlet activation function
(WNN-FA-MORLET) [42], deep modified neural network
(Deep-MNN) [46], and evolutionary cost-sensitive: deep
belief network (ECS-DBN) [47] is also listed in Table 6.

4.3. Performance Analysis and Evaluation of Deep Learning
Model. In this section, performance analysis and evaluation
of the deep learning model is discussed.

4.3.1. Performance Analysis. (e proposed deep neural
network is compared with wavelet neural network-firefly
algorithm morlet activation function (WNN-FA-MORLET)
[42], deep modified neural network (Deep-MNN) [46], and
evolutionary cost-sensitive deep belief network (ECS-DBN)
[47] in terms of execution time required to train a model.
Also, the proposed DNN is compared with the neural
network in terms of accuracy achieved. Different software
estimation datasets are given as input to the proposed DNN
and find out whether the results change with a change in the
dataset. In last, the proposed DNN is evaluated in terms of
optimizing the evaluation matrices which is already defined
in the subsection of Section 3 of this paper.

4.3.2. Experimental Setup. (e model is built using the
TensorFlow. TensorFlow is an open-source software or a
library for building and deploying machine learning
methods. (e Python programming language and other
different libraries are also used to build the models.

4.3.3. Dataset. As specified in the subsection of comparison
of the existing meta-heuristic algorithms used for effort and
cost estimation, three different most widely used dataset by
the research community is used along with the China dataset
which has a large number of software project data having 18
attributes in this experiments.

4.3.4. Evaluation Matrices. (e difference between the start
and end time of process execution of models is calculated
which is the total time required to test and train the model.
Also in order to measure the cost/effort, we will calculate the
mean square error between what the neural network predicts
and what we expect it to calculate. To do that, we will call the
tf.squared difference function and pass in the actual pre-
diction and the expected value. Also, our expected value is Y.
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Cost functions were included for a neural network, and
the goal is to reduce the cost function. For this streamlined
optimization problem, we use the GWO algorithm and
variants of gradient descent where the model parameters
(here weights and biases in the network) are rationalized in a
way to reduce the cost function. All the data sets are used one
by one for the training phase and for the testing phase. As
this is a computational graph, there is no single start or end.
We can start processing at any node in the graph, before we
can perform any of the operations in our graph, we have to
generate a session. Once the session object is created, we can
ask it to run any operation in the graph. To train the model,
we will call the training operation over and over. Each time
the training operation runs, we will pass a new training data
that will be used for that training pass. And then, we will
check the current accuracy by calling the loss function.
While the training process is running, we can watch the
results graphically using a separate tool called Tensor Board.
Di�erent evaluation matrices which are speci�ed in the sun
section of Section 3 are also evaluated.

4.4. Experimental Result. Various experiments are carried
out, and their results are compared in terms of time required
for training, accuracy, and various evaluation matrices.

4.4.1. Experimental 1. In this experiment, the proposed
scheme is di�erentiated with several DNN and NN models
that include a deep modi�ed neural network (Deep-MNN)
[46], evolutionary cost-sensitive deep belief network (ECS-
DBN) [47], and wavelet neural network-�re�y algorithm
morlet activation function (WNN-FA-MORLET) [42] in
term of time required for training. With 50 epochs and with
100 epochs, we run the training and testing process, and the
results reveal that the HACO-BA-DNN uses the less exe-
cution time appears in Figure 8 as compared to other nature-
inspired algorithms.

4.4.2. Experimental 2. In this experiment, the proposed
DNN is evaluated with neural network in terms of achieved
accuracy. �e process is executed upto 100 epochs, and the
accuracy is accomplished by the proposed DNN approach is
almost 98%. While NN achieved accuracy upto 85% on the
same datasets as shown in Figure 9, the HACO-BA-DNN
performs better in terms of accuracy as compared to NN.

4.4.3. Experimental 3. Various datasets of software esti-
mation are given as input to the HACO-BA-DNN to �nd the
change in results by changing the dataset. For this purpose,
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Figure 6: Comparison of KEMERER dataset.

Table 5: Selected parameters for e�ort and time estimation.

Variables Description Type Role
Analyst’s capability Ability to learn and examine the system Nominal Input
Application experience Basic application knowledge and skills Nominal Input
Process complexity Event and tasks assessment that make the process Nominal Input
Database size Large and complicated database Nominal Input
Modern programming practice Updated method used for development Nominal Input
Programmer’s capability Knowledge and skill of programmer Nominal Input
Required software reliability Failure-free probability of software Nominal Input
Schedule constraint Earlier identify limitations on project schedule Nominal Input
Main memory constraint Memory needs to e�ectively and e�ciently completes several operations Nominal Input
Time constrain for CPU Processing time to complete an action Nominal Input
Turnaround time Amount of time required to complete a speci�c process Nominal Input
Virtual machine experience Need for experience to operate on virtual systems Nominal Input
Use of software tools Used of various modern framework Flag Input
Machine volatility Experience and valuable knowledge to operate several machines Nominal Input
E�ort E�orts or resources required for development Continuous Output
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we de�ne the function which is known as the loss function
that measures the accuracy of each prediction during the
training process. Figure 10 demonstrates that there is no
visible change seen in results when we change the dataset
from NASA to COCOMO, KEMERER, or China.

4.4.4. Experimental 4. �e HACO-BA-DNN is evaluated as
compared to NN by using various performance evaluation
matrices, which are already de�ned in the subsection of
comparison of the existing meta-heuristic algorithms. �e
results in Figure 11 show that the proposed DNN performs
better in terms of reduction in MRE, MMRE, MBRE, and
PRED. �e smaller the value of the performance matrices
shows that more results improve, and better software cost
and e�ort estimation is achieved.
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Table 6: Evaluation of execution time.

Methods 50 Epochs 100 Epochs
WNN-FA-MORLET 7.68 16.91
Deep-MNN 6.96 13.84
ECS-DBN 8.29 18.23
HACO-BA-DLL 5.32 11.7
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Figure 8: Comparison with literature.
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5. Discussions

5.1. Answers to ResearchQuestions. RQ1, which of the meta-
heuristic algorithm, has the lowest MRE, MMRE, MBRE,
and PRED.

ACO and BAT along with their hybrid meta-heuristic
algorithm, that is, HACO-BA has been implemented and
their performance, is tested in terms of reduction in MRE,
MMRE, MBRE, and PRED. As results show that all the
algorithms reduced evaluation parameters as compared to
the basic COCOMO parametric model, HACO-BA per-
forms better among all other algorithms.

RQ2: whether the performance of the meta-heuristic
algorithm changes/varies by changing the dataset.

All the meta-heuristic algorithms have been imple-
mented, and their performance is tested and evaluated on
three di�erent publicly available data sets (NASA,
COCOMO, and KEMERER), and we take MMRE as an
evaluation parameter to check the performance of all three
datasets. �e results shows that the performance of HACO-
BA is better as compared to the BAT, ACO, and Basic
COCOMO as shown in Table 4.

RQ3: nature-inspired and meta-heuristic algorithms
combined with deep learning can improve the software
estimation process.

�e proposed DLL takes less execution time as compared
to other algorithms taken from the literature review. So it
improves the software estimation process as shown in Figure 9.

RQ4: whether the performance of meta-heuristic-based
deep learning algorithm changes by changing the dataset.

By changing the dataset, the performance of the pro-
posed meta-heuristic deep learning architecture does not
change. As shown in Figure 10, the two lines show that, with
the passage of execution, both the data sets achieve almost
the same accuracy.

RQ5: whether meta-heuristic-based deep learning al-
gorithm performs better than the NN-based approach for
software estimation.

Blue line shows the existing neural network approach.
Orange line shows the proposed deep neural network.
As shown in Figure 11, our proposed deep neural net-

work performs better in terms of accuracy. NN takes more
time/epochs as compared to HACO-BA-DNN to train its
network to achieve better results in terms of software de-
velopment e�ort reduction.

6. Conclusions

�e proposed method investigates the e�cacy of estimating
e�orts by combining ACO, BAT, and HACO-BA with
COCOMO for e�ort estimation using optimised coe�cients.
To test the e�ectiveness of the proposed method, three
datasets are used: Nasa, COCOMO 81, and KEMMER.
MMRE values are improved in each optimised scenario, with
HACO-BA outperforming all others. A new method that
combines meta-heuristics and DNN is also introduced. As a
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result of the results, it was determined that the optimised
method produces better estimates than the basic method in
terms of effort and cost estimation in all models. (e ex-
perimental results show that the hybrid HACO-BA performs
better for tuning COCOMO II than ACO and BA and that
HACO-BA performs better in DNN optimization in terms
of execution time and accuracy than NN.

7. Future Work

In the future, we will improve the estimation models by
experimenting with new methods and incorporating cloud
computing for estimating purposes in order to obtain more
comprehensive results in the future. Researchers and
practitioners in [59] and [61] used the Strawberry Plant
heuristics approach for software cost estimation and for
energy management. In [60, 62], Grey Wolf and Bacterial
Foraging approaches are used in smart grids for energy
management and heterogeneous generalized signcryption to
maintain the data integrity for estimation.

Data Availability

(e data used to support the findings of this study can be
obtained from the corresponding author.
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