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 e interactive motion planning between unmanned vehicles and pedestrians in urban road environments is the key to realizing
the autonomous motion of unmanned vehicles in hybrid tra�c scenarios.  e problem of human-vehicle interaction motion
planning modeling at complex intersections is studied for an unmanned vehicle in this article. First, the motion planning of
pedestrians and the unmanned vehicles is established according to the social force model and the behavioral dynamics model.
 en, the autonomous vehicle is added to the crowd, and the human-vehicle interaction force is established.  e virtual force is
added to the social force model and the behavioral dynamics model, respectively, and the improved social force model and the
behavioral dynamics model are used for the motion planning of pedestrians and unmanned vehicles. In this way, the established
model solves the problems of simple pedestrian interaction motion planning in the social force model and single-body motion
planning in the behavioral dynamics and thus provides a strong support for multibody motion planning. Finally, through the
interactive motion planning trajectory of pedestrians and unmanned vehicles in di�erent scenes, the vehicle and pedestrian
motion planning trajectory can e�ectively avoid overlapping or crossing, so as to avoid the collision, which veri�es the ef-
fectiveness and feasibility of the proposed model.

1. Introduction

At present, the motion planning technology of unmanned
vehicles (referred to as autonomous vehicles or self-driving
vehicles) is mainly used to meet the obstacle avoidance
function under vehicle and road constraints, as well as the
requirements of multivehicle cooperation in the actual tra�c
environment and the intentions of other drivers [1–5].
However, autonomous vehicles will be sharing urban roads
with human tra�c participants for a long time in the future.
Autonomous vehicles running on urban roads need to be
able to autonomously interact with pedestrians and must be
able to seize road resources [6–8]. Especially at urban in-
tersections with complex tra�c, the problem of human-
vehicle interaction becomes more serious, making it di�cult
for autonomous vehicles to land and drive [9–12]. erefore,
it is very important to solve the problem of motion planning
based on human-vehicle interaction.

 e social force model (SFM) is an autodriven contin-
uous model proposed by Helbing et al.,[13] which predicts
the behavior andmotion state of individuals in the later stage
by analyzing individual physiological characteristics, desired
speed, reaction time, individual distance, collision factors,
and other conditions.  e social force model mainly sim-
ulates individual and group movement according to New-
ton’s second law formula, and the speed of the individual is
compatible with the overall speed, which can portray the
dynamic behavior of the individual. As a result, social force
models are more used in areas such as emergency crowd
evacuation [14–21], that is, most scholars have made many
modi�cations and optimizations [22–30]. Jiang et al. [31]
present a generalized walking cost distribution to determine
a dynamic navigation �eld in the social force model for
pedestrian evacuation and expect to choose an optimal path
with the lowest walking cost to reach their target destination.
 e crowd evacuation simulation is performed using the
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density evacuation algorithm and the social force model and
they can effectively improve the efficiency of crowd evac-
uation [32]. However, the social force model mainly is
applied in the case of human-human interaction, rather than
in scenarios of human-vehicle interaction [16, 33–35].

Yang et al. [16] present multipedestrian interaction with
a low-speed vehicle based on a social force for pedestrian
motion, a low-speed vehicle is not be considered the
problem of motion planning, but it can be considered as a
dynamic obstacle in the crowd. Wu et al. [36] develop a
pedestrian heterogeneity-based social force model by in-
troducing physique and mentality coefficients into the SFM
to quantify the physiological and psychological attributes of
pedestrians to change the desired speed and it does not
consider the problem of human-vehicle interaction.

Unmanned vehicle motion planning problem, com-
bining previous research results, and using the behavioral
dynamics of attraction and repulsion to realize unmanned
vehicle motion planning [37–39], this method uses virtual
forces to control the heading angle and linear velocity of the
unmanned vehicle and does not need to add empirical
parameter adjustment control for path navigation, so as to
reduce the accumulation of various empirical errors.

*e aim of this research article is focused on the study of
the motion planning problem of human-vehicle interaction
and it combines the social force model and the behavioral
dynamic model to realize unmanned vehicle motion plan-
ning during the two-way interaction between humans and
vehicles. In the social force model, the unmanned vehicle is
added to the crowd, the virtual interaction force between the
autonomous vehicle and the pedestrian is introduced, called
the human-vehicle force, and the social force model is used
to plan the movement trajectory of the pedestrian. On this
basis, the force received by pedestrians in the social force
model is used as the repulsive force in the unmanned vehicle
behavior dynamic model, and the motion planning of the
unmanned vehicle is carried out.

*e rest of the study is as follows: Section 2 introduces
human-vehicle social force models and behavioral dynamics
models, including the function of the social force model,
virtual force analysis of pedestrians and unmanned vehicles,
and modeling the behavior dynamics of the human-vehicle
social force model. Constraints and conflict determinations
are introduced in Section 3. Simulation results of illustration
examples and discussion are presented in Section 4. Finally,
in Section 5, the conclusion and further discussion are given.

2. Human-Vehicle Social Force Models and
Behavioral Dynamics Models

2.1. Function of the Social Force Model. In the unmanned
vehicle motion planning model, a process with such char-
acteristics is required, when the obstacles around the un-
manned vehicle show gradual and slow decay with the
passage of direction and distance; then, this process is
represented by the anisotropy function and attenuation
function. *e anisotropic function is used to describe the
magnitude of the influence of interacting factors in different
directions, for example, the vehicle or pedestrian in front of

the unmanned vehicle has a significantly greater influence
than the vehicle or pedestrian on its left or right; the at-
tenuation function is used to describe the interaction results
of different distances, for example, the vehicle or pedestrian
who is far away from the unmanned vehicle has no influence
on it, and the vehicle or pedestrian closer to the unmanned
vehicle has a greater influence on it.

2.1.1. Anisotropic Function. *e input and output repre-
sentations of the anisotropic function [16], the angle be-
tween the direction of travel of the unmanned vehicle and
the direction of motion of the interaction object as the input
of the anisotropic function, and the output of the function is
changed from 0 to 1, indicating that the anisotropy and
function decrease with increasing. Commonly used func-
tions are linear, exponential (exp), Gaussian (guess), and sin,
and the four forms of anisotropic functions are shown in
equations (1) to (4).

Vline(φ, λ) � max 1 − λ
|φ|

π
, 0􏼨 􏼩, (1)

Vguess(φ, λ) � exp −2∗
|φ|

λ2
􏼠 􏼡, (2)

Vexp(φ, λ) � exp (−λ|φ|), (3)

Vsin(φ, λ) � λ + (1 − λ)
1 + sin |φ|

2
􏼠 􏼡, (4)

where range change, which represents the angular change
between the vehicle and the surrounding interacting objects,
is the anisotropic adjustment factor. *e different aniso-
tropic function curves are shown in Figure 1.

As can be seen from Figure 1, when the λ value changes
from 1 to 0, the main difference between these anisotropic
functions is the decay rate near 0. When the φ value changes
from −1 to +1, the Gaussian function decays the fastest, and
the smaller the value of λ , the faster is the decay, while the
sin function decays the slowest with the larger the value of λ.
In this simulation test, the anisotropic function of λ� 0.8 is
selected, and when the angle φ is [−π/3, +π/3], the Gaussian
function is selected, and the φ between [−π × 3/2, +π × 3/2] is
selected, the exponential or linear function is the exponential
or linear function is selected; and the sine function is selected
for other ranges.*is variation plays an important role in the
interaction between unmanned vehicles and surrounding
objects.

2.1.2. Attenuation Function. *e attenuation function is
used to describe the influence on the unmanned vehicle at
different distances. *e distance between the unmanned
vehicle and the interaction object is taken as the input, and
the output of the function is the size of the virtual force, in
unit N (Newton), which increases with the decrease of the
distance. Similarly, linear, exponential, Gaussian, and si-
nusoidal functions are used to represent these four
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functions. *is study compares these four functions through
distance changes, and the function forms are shown in
equations (5) to (9).

Fexp f, d, d0( 􏼁 � f exp −d0 ∗d( 􏼁, (5)

Fguess f, d, d0( 􏼁 �
f

d0
exp d0 − d( 􏼁, (6)

Flin f, d, d0( 􏼁 �
f

d0
d0 − d +

������

d0 − d

􏽱

+ 0.2􏼒 􏼓, (7)

Fsin f, d, d0( 􏼁 � f 1 + sin
d0 − d( 􏼁

2.5
􏼠 􏼡􏼠 􏼡, (8)

where d represents the change in the distance between the
vehicle and the surrounding interaction object, f represents

the virtual force at a distance of 0 when the distance between
the vehicle and the surrounding interaction object is non-
contact, and d0 is the set threshold distance.*e change rules
of the four functions under different f and d0 are shown in
Figure 2.

As can be seen from Figure 2, when the values of f and
d0 are different, these attenuation functions are mainly the
change rate when the distance d between the vehicle and the
interaction object approaches 0.*e larger the value off, the
faster the decay.*e higher the threshold d0 is, the faster will
be the attenuation. Among the four functions, the guess
function decays the fastest when d goes from 1 to 0. *e
attenuation rate is still exponential for the guess function,
that is, when pedestrians approach unmanned vehicles, the
attenuation function changes exponentially and acts as a
human-vehicle interaction force. However, when pedes-
trians are far away from unmanned vehicles, they will not be
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Figure 1: Different anisotropy functions.
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affected by each other, so linear functions are selected as
attenuation functions.

2.2. 'e Social Force Model. *e social force model is based
on Newton’s second law, which reflects the relationship
between the individual force and motion state, and
according to the social force model [17], a single pedestrian
of the total force includes a driving force towards the target,
and an interaction between pedestrians, around and around
obstacles between the force, and the basic expression of the
model can be expressed as shown in the equation (9).

f
→

i(t) � f
→

itar(t) + f
→

ij(t) + f
→

iobs(t) + f
→

iego(t). (9)

*is study mainly focuses on the interaction between
pedestrians and ego vehicles, so the force f

→
iego(t), between

pedestrians and ego vehicles is added to the social force
model. When it is added to the crowd, pedestrians will avoid
ego vehicles. *erefore, vehicles also have a virtual “force”

effect on pedestrians, which is called human-vehicle force in
this study.

Due to the introduction of ego vehicles, pedestrians by
force in addition to the driving force in the process of
movement, from around pedestrians force and force from
the obstacles around the outside, also suffered from the ego
vehicles of force-car, therefore, on the basis of social force
model, it will force people-car with three other kinds of
forces in the form of vector addition, the vector and the
combined force as a pedestrian, and then the relationship
between mass, velocity, and the combined force is analyzed
using Newton’s second law. *is social force model with
human-vehicle interaction force is called the “human-ve-
hicle social force model,” and its vector formula is shown in
the following equation:

mi

d v
→

i(t)

d(t)
� f

→
i(t)� f

→
itar(t)+ f

→
ij(t)+ f

→
iobs(t)+ f

→
iego(t),

(10)
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Figure 2: Different decaying functions.
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where mi and vi are the mass and speed of the i th pedestrian
at a time t, f

→
i(t) is the total acting force of the i th pedestrian

at a time t, f
→

itar(t) is the acting force running towards the
target at a time t, f

→
ij(t) is the interaction force between the i

th pedestrian and the i th pedestrian at a time t, f
→

iobs(t) is
the interaction force at a time t with static obstacles, and
f
→

iego(t) is the interaction force at a time t with ego vehicle.
Pedestrian is a point mass in the social force model, and

the position of the i th pedestrian is expressed as (xi, yi), and
the speed is expressed as (vxi

, vyi
). According to Newton’s

law of motion, the following equation can be obtained.

_xi � vxi
,

_yi � vyi
,

_vxi
� axi

�
Fxi

mi

,

_vyi
� ayi

�
Fyi

mi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

According to Newton’s second law, the total force of the i

th pedestrian at a time t is fi(t) � (fxi,t
, fyi,t

)T, and in
Newton’s lawofmotion, the i th pedestrian status information
can be expressed as Xi(t) � (xi(t), yi(t), vxi

(t), vyi
(t))T.

2.2.1. Pedestrian-to-Pedestrian Interaction. *e interaction
force between pedestrians includes the total interaction force
generated by all pedestrians around. According to the de-
scription of the interaction between pedestrians` in the
original social force model, the interaction force between
pedestrians is obtained by ignoring the friction of body
extrusion and sliding. In practice, interaction forces between
pedestrians include body collision force and virtual inter-
action force, as shown in the equation.

f
→

ij(t) � 􏽘
j∈Ω(i)

f
col
i,j (t) + f

vir
i,j (t)􏼐 􏼑, (12)

where j ∈ Ω(i) represents the number of the other pedes-
trians around the i th pedestrian.

fcol
i,j (t) represents the force generated when pedestrian i

and j are close to each other or their bodies are about to
collide. *e vector expression is shown in the formula.

f
col
i,j (t) � −A

col min d
i,j

(t), 0􏽮 􏽯n
⇀ij

, (13)

where Acol is the collision coefficient and nij is the unit
vector from pedestrian i to pedestrian j. When the boundary
distance is reached, the repulsive force is generated, and the
collision force is negative.

In formula (12), fvir
i,j (t) is the virtual interaction force

generated by the i th pedestrian and the j th pedestrian in a
close distance. Current researchers have modeled the in-
teraction force using circular rules, elliptic rules, obstacle
avoidance rules, and exclusion navigation rules, which are
based on the regional shape of the interaction range with or

without speed and so on. In order to properly represent the
effects of interaction forces, information such as position
and velocity need to be considered to calculate the inter-
action force. Information such as position and velocity need
to be considered to calculate interaction forces. *e be-
havioral dynamics motion planning model adopts repulsive
navigation rules, which are determined by repulsive force
and azimuth angle, and can be expressed as shown in the
following equations:

f
vir
i,j (t) � f

rel
i,j (t) + f

ψ
i,j(t), (14)

f
rel
i,j (t) � fi,j vi(t), vj(t), di,j(t)􏼐 􏼑,

f
ψ
i,j(t) � fi,j ψ ψi,j(t)􏼐 􏼑,

⎧⎪⎨

⎪⎩
(15)

where ψi,j(t) is the included angle between the line direction
from pedestrian i to pedestrian j and the horizontal di-
rection, as shown in Figure 3.

2.2.2. Pedestrian and Vehicle Interaction. Vehicle-pedes-
trian interactions are different from pedestrian-pedestrian
interactions in which collisions between pedestrians and
vehicles are strictly prohibited. *e relative position and
speed parameters between pedestrian and vehicle, size and
shape of vehicle, and anisotropy are considered in order to
give the vehicle a stronger force range. *us, different pe-
destrian directions and speeds as well as different vehicle
speed directions lead to different interactions between ve-
hicles and pedestrians. At the same time, it is important to
establish a safety buffer area around the vehicle, that is, the
minimum distance between pedestrians and vehicles, as
shown in the gray dotted box in Figure 4.

In Figure 4, df is the buffer length along the driving
direction of the vehicle and df� kvx is proportional to the

i

j

di,j

vi

vj

ψij

Figure 3: Schematic diagram of the movement of pedestrians i
and j.
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longitudinal speed of the vehicle. *e faster the speed of the
vehicle, the longer is the buffer df for in front of the vehicle.
*e de is the buffer range of vehicle obstacle avoidance. After
the buffer area is determined, the interaction force is de-
termined by considering the minimum distance between
pedestrians and buffer, anisotropy and attenuation, and the
interaction force between vehicles and pedestrians is cal-
culated by following formula.

f
→

iego(t) � fguess d( i,ego(t),A
ego

,B
ego

􏼁V φ,λego( 􏼁n
⇀iego

, (16)

where fego and Bego are the coefficients of the attenuation
function. λego is the coefficient of the anisotropy function, φ
is the angle between pedestrian and ego vehicle, di,ego is the

distance between pedestrian and ego vehicle, and n
⇀iego is the

unit vector between pedestrian and ego vehicle, when there
is no unit.

2.2.3. 'e Driving Force to the Goal. When the pedestrian is
disturbed by the surrounding pedestrians and the envi-
ronment, the pedestrian’s speed decreases and it generally
becomes lower than its expected speed. In order to achieve
the desired speed as soon as possible, the pedestrian will try
to maintain the desired speed throughout the automatic
driving force. *e driving force towards the target can be
expressed as follows.

f
tar
i (t) � f v

tar
i (t), vi(t)􏼐 􏼑 � k

tar
i βtari v

tar
i (t) − vi(t)􏼐 􏼑n

⇀itar
,

(17)

where ktar
i is the coefficient of the driving force. βtari ∈ [0, 1],

when the pedestrian-vehicle interaction force reaches a
certain set threshold, its value is 1, otherwise it is 0, as shown
in equation (18), vtari is the expected pedestrian speed in m/s,
vi(t) is the actual pedestrian speed inm/s, and n

⇀itar is the unit
vector of the direction of the expected speed, without a unit.

βtari � max 0, min
fiego(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

F1
, 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (18)

where F1 is the setting threshold.

2.2.4. Dynamic Model of Vehicle Behavior. In order to make
the designed model to be effectively applied in the actual
motion planning and in the control of the ego vehicle, that is,
the basis on the “pedestrian-vehicle social force model”, the
vehicle movement adopts the behavioral dynamics model

and it is adopted so as to ensure that the ego vehicle can drive
normally in the external environment. *e obstacle avoid-
ance behavior in the behavioral dynamics is combined with
the pedestrian-vehicle interaction force in the social force
model, so as to realize the effective interaction model of
“pedestrian-vehicle” and “pedestrian-pedestrian,” and to
improve the single interaction model centered on “pedes-
trian” under the social force model.

According to the characteristics of the behavior pattern,
the virtual force generated by the behavior of running towards
the target is called attraction, and the virtual force generated
by the behavior of avoiding obstacles is called repulsion.
Attraction guides the vehicle along a certain direction towards
the target point, thus generating driving speed and direction
of the vehicle. Repulsion prevents the vehicle from
approaching its obstacle and causes the vehicle to travel in a
direction away from the obstacle. Repulsion increases with
decreasing distance and also creates a speed and direction that
prevents the vehicle from traveling toward the obstacle.
According to the ego vehicles by virtual forces, including
towards the goal of the driving force, with the surrounding
traffic participants and the interaction between road obstacles
such as the boundary, can be established based on Newton’s
law mv � fv(∙) and behavior dynamics model, and it reflects
the relationship between the force and motion state of ego
vehicles. *e basic expression is shown in the formula.

F
→

(t) � F
→

tar(t) + 􏽘
N

i�1
F
→

obs,i(t), (19)

where F
→

tar(t) is the attraction of running towards the target
at a time t, and F

→
obs,i(t) is the repulsive force generated by

the first obstacle at a time t. When there are multiple ob-
stacles, the resultant force should be calculated first.

Assuming that the ego vehicle is driving at v
→

ego(t) , then
it should drive at a desired speed v

→
tar(t) as much as possible.

In actual driving, there is a certain deviation between
v
→

ego(t) and v
→

tar(t) at a time t, and the virtual force of speed
attraction can drive the vehicle to change the driving speed,
and the force of speed attraction is proportional to
( v

→
ego(t) − v

→
tar(t)). If v

→
ego(t) � v

→
tar(t), then the attrac-

tion is 0 and the vehicle keeps the current speed.*e force of
speed attraction at the moment can be expressed as.

F
→

tar(t) � f( v
→

ego(t) − v
→

tar(t)). (20)

In the process of driving, other traffic participants within
the perspective range of ego vehicle will interfere with it, thus
forming a repulsive force. *e farther the distance from
obstacles, the smaller the repulsive force. *us, the amount
of repulsive force depends on the current number of ob-
stacles in space (i. e., density) and the current speed of the
vehicle, which increases as the distance decreases. *e re-
pulsive force at the moment can be expressed by the fol-
lowing equation.

F
→

obs,i(t) �
f v

→
ego(t), v

→
obs,i(t), dobs,i􏼐 􏼑,

0,

⎧⎨

⎩

dobs,i <ds,

dobs,i >ds,
(21)

de

de

de de df

de

de

de de df
W

L

Figure 4: Schematic diagram of vehicle safety range.
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where the speed of the first obstacle, if the obstacle is sta-
tionary, vobs,i(t) is 0, dobs,i is the distance between ego vehicle
and the i th obstacle, and ds is the safe driving distance.
Specific derivation and calculation processes can be referred
to in literatures [37–39].

2.2.5. Behavioral Dynamics Model of the Human-Vehicle
Social Force Model. *e behavior dynamics model of the
human-vehicle social force model (FSM-BDM for short)
introduces the human-vehicle interaction force into the
social force model and into the navigation behavior dy-
namics model, the navigation behavior dynamics motion
planning model adopts navigation rules based on repulsive
force, where f

→
iego(t) is the repulsive force generated as an

obstacle. *us, two system models about people and ego
vehicles are established, as shown in equation (22).

f
→

i(t) � f
→

itar(t) + f
→

ij(t) + f
→

iobs(t)+ f
→

iego(t),

F
→

(t) � F
→

tar(t) + 􏽘
N

i�1
F
→

obs,i(t)+ f
→

iego(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

*e obstacle avoidance behavior in behavioral dynamics
is combined with human-vehicle interaction force in the
social force model, so as to realize the effective two-way
interaction model of “pedestrian-vehicle” and “pedestrian-
pedestrian,” and to improve the single interaction mode
centered on “pedestrian” under the social force model.

2.3. Constraints and the Model Parameter Settings

2.3.1. Constraint Analysis. Considering that pedestrians and
vehicles are constrained by the road and the surrounding
environment in the process of movement, there are certain
limitations in speed and acceleration. First of all, pedestrians
move in a way for the purpose of comfort under normal
circumstances. Unless there is an emergency, for example, if a
vehicle approaches pedestrians in a dangerous way, pedes-
trians will slow down or stop for self-protection. For example,
when pedestrians are crowded, they naturally slow down.
Second, vehicle traffic on the road, according to the road
environment will speed up, slow down or stop, therefore,
exertion on the pedestrian and vehicle speed and acceleration
constraints are related to time, and at the same time, the
constraint conditions need to consider the interaction be-
tween vehicles and pedestrians fiego(t) and pedestrians near
I sparse degree Di(t), as shown in the equation.

vi(t)≤ vlim fiego(t), Di(t)􏼐 􏼑,

a(t)≤ alim fiego(t), Di(t)􏼐 􏼑,

Di(t) � min
N

St

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

V φij
(t), λ􏼐 􏼑􏼠 􏼡,∀j ∈ St,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where Di(t) is the sparsity of the i th pedestrian, N is the
number of pedestrians within the limited range, St is the

measured area of the limited area, and V(φij(t), λ) is the
anisotropy function.

2.3.2. Constraint Set

(1) Pedestrian speed and acceleration constraints. According
to the literature [17, 18, 36], when pedestrians walk on flat
roads, themaximumwalking speed limit is vmax � 2.5m/s, the
normal walking speed limit is vnor � 1.8m/s, the density speed
limit is vden � 0.7m/s, the maximum walking acceleration is
amax � 5m/s2, the normal walking acceleration is anor �

2.5m/s2, and the density acceleration is aden � 0.1m/s2.

(2) Constraints on vehicle velocity and acceleration. In order
to maintain driving comfort, the vehicle speed and accel-
eration are limited vmin � 0m/s, vmax � vlimtm/s, and vlimt is
the actual maximum speed limit on the road. Acceleration is
divided into deceleration and acceleration, which are amin �

−1.5m/s2 and amax � 1.5m/s2.
Table 1 describes other parameters of people-vehicle

social force model.

2.3.3. Ego Vehicle and Obstacle Conflict Determination.
We determine whether there will be a conflict between the
ego vehicle and the obstacle in the future. If there is a
conflict, then we calculate the direction and magnitude of
the force exerted by the obstacle on the ego vehicle, as
follows:

(1) Determine whether there will be conflicts between ego
vehicles and obstacles. When the ego vehicle detects an
obstacle while driving, the ego vehicle starts to judge whether
it will collide with the obstacle or not. *e current speed of
the ego vehicle is vego, and its actual speed at a ∆t time can be
calculated according to the formula.

v
des
ego � vego +

fego

mego
∆t. (24)

*e position of the ego vehicle after ∆t time is obtained
by the following formula.*e time t value can be obtained by
combining the ydes

ego coordinate with the obstacle position
coordinate.

y
des
ego � yego + v

des
egot. (25)

(1) When t has no solution, there will be no collision
with the obstacle.

(2) When t1 � t2 is a plural, the vehicle will collide with
the obstacle.

(3) When t1 � −t2 ≠ 0, t1 and t2 are opposite, and the
vehicle will collide with the obstacle, and t becomes
greater than 0.

By judging that the ego vehicle will not collide with the
obstacle, if it is judged that a conflict will occur, the conflict
time is denoted as taw.

(2) According to the time of conflict, obstacles with force on the
unmanned vehicle are selected. Since there are not many
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Table 1: People-vehicle social force model parameters.

Parameter Value Description Unit
L 2.4 Vehicle length m
W 1.2 Vehicle width m
de 0.20 Offset distance around the vehicle m
mvech 1120 Vehicle quality kg
vdesveh 11 Expected speed m/s
lt 0.8 Weight coefficient of toward target
lo 0.2 Weight coefficient of obstacle avoidance
Aveh 800 Initial value of the coefficient of anisotropic
Bveh −0.82 Initial value of the coefficient of anisotropic
λveh 0.32 Initial coefficient of the attenuation
F1 400 *reshold value N
mped [40 ∼ 70] Quality of pedestrian kg
rped [35 ∼ 40]/2/100 Radius of pedestrian m

vdesped [0.7 ∼ 1.8] Expected pedestrian speed m/s

ades
ped [0.1 ∼ 2.5] Expected pedestrian acceleration m/s2

numped [1 ∼ 45] Number of pedestrian

same direction opposite direction vertical direction mixed direction

Figure 5: Pedestrian-vehicle interaction for four typical scenarios.
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obstacles even in a complex environment, it is decided to
select all obstacles that meet the conflict time for force
calculation. We elect obstacles according to the rule that taw

is less than T2 seconds (T2 � 3 s to be calibrated).

(1) When 0≤ taw <T2 second, all obstacles within this
time range are selected for force calculation.

(2) When taw >T2 second, the influence of these ob-
stacles on the ego vehicle is not considered.

3. Experimental Simulation and Analysis

To verify and test the abovementioned SFM-BDM, this part
first experiment showed ego vehicles and pedestrian conflict,
and obstacles of decision analysis. By setting different traffic
scenarios, we test the pedestrian and vehicle interaction
under this model, through the pedestrian trajectory, pe-
destrians and vehicles and vehicle velocity and acceleration
analysis, and the validity and feasibility of the model.

3.1. Analysis of Human-Vehicle Interaction Scenarios.
According to the analysis of actual vehicle-human inter-
action traffic scenarios, vehicle-human interaction is mainly
divided into parallel and crossover scenarios. Parallel

scenarios include driving in the same direction and driving
in the opposite direction, and crossover scenarios include
vertical and mixed driving, as shown in Figure 5.

Same direction, opposite direction, vertical direction,
and mixed direction.

3.2. Human-Vehicle Interaction Scenario Test

3.2.1. Ego Vehicle Stationary. When the ego vehicle is static,
SFM-BDM the motion planning problem of is converted
into a pedestrian motion planning problem, the scene is set
to have 30 pedestrians through a stationary vehicle, pe-
destrian’s initial position is on the left side of the scene;
velocity and acceleration by the Monte Carlo algorithm;
pedestrians target is right at the scene of the middle area. We
test the motion planning trajectory of pedestrian and sta-
tionary vehicles under SFM-BDM, as shown in Figure 6.

3.2.2. Pedestrian and Vehicle Movement Test in the Same
Direction. When the movement scene of pedestrians and
vehicles in the same direction is bidirectional single-lane or
one-way single-lane, pedestrians and vehicles move in the
same direction when driving. Assuming that the test scene of
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Figure 9: Pedestrian and vehicle reverse interaction scene.
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driving in the same direction is set as 15 pedestrians and one
ego vehicle. Under FSM-BDM, the initialization scene is
shown in Figure 7, which includes the initial position and
target position of pedestrians and ego vehicles and also
includes the initial velocity and acceleration.

Figure 8 shows the movement planning tracks of pe-
destrians and vehicles at different times. *is scene tests the
mixed movement of humans and vehicles. In the case of a
large number of pedestrians, ego vehicles run towards the
target according to the behavioral dynamics model, and each
pedestrian moves and runs towards the target under the
social force model. *e blue dotted line in the figure

represents the trajectory of ego vehicle movement planning,
while the other dotted lines represent the trajectory of pe-
destrians. Since the target points of pedestrians are different,
pedestrians will move along the nearest distance when it is
safe. Under this model, pedestrians and ego vehicles can
effectively pass safely and run to their respective targets.

3.2.3. Pedestrian and the Vehicle Reverse Motion Test. In
Figure 9, the reverse movement of pedestrians and vehicles is
tested. Ego vehicles run in reverse in a crowd with 12 pe-
destrians on both sides. *e movement tracks of pedestrians
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Figure 10: Pedestrian and vehicle mixed interaction scenario.
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and ego vehicles at different times are shown in the figure.
Among them, the blue and purple path is for random pe-
destrians on both sides, yellow for ego vehicles, yellow blue
area is the ego around vehicle safety area, ego in the process
of the vehicle, the triangle area and the vehicle in front of the
longitudinal velocity is proportional to the buffer area, when
pedestrians and ego vehicles without interaction, because the
ego vehicle speed, so the buffer is big. When there is an
interaction, the ego vehicle speed decreases, so the buffer
becomes smaller, especially when t� 3.85 s, it is in the in-
teraction range. *erefore, under the human-vehicle social
force model, pedestrians and ego vehicles can effectively and
safely avoid obstacles.

3.2.4. Pedestrian and the Vehicle MixedMotion Test. *e test
scenario of mixed driving of pedestrians and vehicles shown

are in Figures 4–10, and also, the running tracks of pe-
destrians and the moving positions of ego vehicles at dif-
ferent times are respectively shown in the figure. *e test
scenario is similar to the pedestrian crossing lane, and
different places are set up on both sides of the lane, which are
represented by gray rectangular areas in the figure and are
marked as (A, B, C, and D) respectively. On the left are traffic
exits, in which the yellow-green rectangular area are marked
as E. Yellow rectangles for ego vehicles are driven from left to
right, respectively, on the road on both sides of the set for
different number of pedestrians, the figure in the green line
represents the pedestrian from position A to position the
trajectory of C, the blue line represents the pedestrian from
location to location D B trajectory, lemon line pedestrians
from location to location B D trajectory, purple line rep-
resents the pedestrian from C to the location of A trajectory,
*e orange line represents the path of the pedestrian from
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position C to position E, and the red line represents the path
of the pedestrian from position D to position A. Under SFM-
BDM, the trajectory of pedestrian and vehicle motion
planning at different times is shown in Figure 10.

Figure 10 shows the interaction between pedestrians and
includes the interaction between pedestrians in the same
direction and pedestrians on the opposite side, and there is
no collision between pedestrians or pedestrians and vehicles.
In Figure 10, between 4.22 s and 5.63 s, pedestrians and
vehicles interact most closely. At this point, under the action
of human-human interaction force and human-vehicle in-
teraction force, pedestrians can randomly change their
walking status and can achieve an obvious obstacle avoid-
ance effect.

Figure 11 for vehicle and pedestrains trajectory and
velocity from Figure 10, Figure 11(a) shows pedestrians and
vehicle on the x and y coordinates change with time in the
process of movement. *rough the analysis of position and
time, it can show that the model can make pedestrians and
pedestrians, pedestrians and vehicle repel and avoid ob-
stacles behavior in the process of movement. *ere is no
overlap in space positions which is without collision. Figure
11(b) shows the speed of pedestrians and vehicles. When
pedestrians and ego vehicles interact closely between 4 s and
5.6 s, there is a process of deceleration and avoidance due to
the close interaction. After obstacle avoidance, pedestrians
and ego vehicles move towards their respective target po-
sitions at the expected speed.

4. Conclusion

*is study is mainly based on the research of movement
methods of the human-vehicle social force model and the
behavior dynamics model.

(1) *e behavioral dynamics motion planning method
of the constructed “human-vehicle” social force
model introduces the human-vehicle interaction into
the social force model and the behavioral dynamics
model and solves the motion planning problem by
considering the human-vehicle two-way interaction.

(2) *e behavioral dynamics motion planning method
of the “human-vehicle” social force model solves the
motion planning of the interaction between multiple
people and unmanned vehicles, which can be further
extended to the motion planning of the interaction
between multiple cars and multiple people, and the
motion planning considering the simultaneous
change of the speed and direction of unmanned
vehicles.

(3) *e proposed motion method based on the pedes-
trians-vehicle social force model and behavior dy-
namics was simulated in different scenarios to verify
the safety and effectiveness of the proposed method
in the process of human-vehicle interaction. *e
research in this chapter effectively combines be-
havioral dynamics motion planning with the social
force model, which is more in line with the actual
scene, provides an adaptive motion planning for ego

vehicles, and solves the process of pedestrians-ve-
hicle interaction motion planning by relying on a
large number of scene data learning.

(4) *is method can provide support for the interactive
obstacle avoidance and effective motion planning of
unmanned vehicles in the urban road environment
and can lay the foundation for the next tracking
control.
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