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�e Arabic syntactic diacritics restoration problem is often solved using long short-term memory (LSTM) networks. Handcrafted
features are used to augment these LSTM networks or taggers to improve performance. A transformer-based machine learning
technique known as bidirectional encoder representations from transformers (BERT) has become the state-of-the-art method for
natural language understanding in recent years. In this paper, we present a novel tagger based on BERTmodels to restore Arabic
syntactic diacritics. We formulated the syntactic diacritics restoration as a token sequence classi�cation task similar to named-
entity recognition (NER). Using the Arabic TreeBank (ATB) corpus, the developed BERT tagger achieves a 1.36% absolute case-
ending error rate (CEER) over other systems.

1. Introduction

One of the main problems in Arabic natural language
processing is that the Arabic text is often written without
diacritics [1, 2]. Words with the same written form have
di�erent pronunciations and meanings can be disam-
biguated with the help of diacritics. Morphological dia-
critics and syntactic diacritics are the two types of Arabic
word diacritics. �e morphological diacritics are the di-
acritics inside a word. Moreover, the syntactic diacritic tag
is the last diacritic mark or tag in the stem of a word. �e
rules of Arabic grammar and the context of a word
contribute directly to the prediction of the syntactic di-
acritic mark. For example, Figure 1 shows three Arabic
sentences with diacritics. Based on the Arabic grammar
rules, the syntactic diacritics of the word are dif-
ferent. On the other hand, the morphological diacritics are
identical.

It was found empirically that diacritization errors are
often related to the prediction of the syntactic diacritic task
when a machine learning approach is developed [3–5].
Diacritics restoration is a vital component in Arabic text-
to-speech (TTS) systems where the phonetic transcription
is extremely a�ected by diacritization errors [6, 7]. When

the syntactic diacritics are wrong, the listeners to the output
speech are usually disturbed.

Diacritized Arabic text is very essential for many natural
language processing (NLP) applications such as speech
synthesis and machine translation. Unfortunately, a lot of
electronic Arabic resources did not have these diacritics, and
this shows the importance of automatic diacritization.

In addition, the restoration of Arabic syntactic diacritics
(i.e., the last character of the stem of each word) is more
challenging than morphological diacritics. Although most of
the state-of-the-art systems have a low error rate in the case
of morphological diacritics, they still have a high error rate
when restoring syntactic diacritics [3].

Our objective in this paper is to solve this problem based
on BERTmodels and compare our proposed approach with
other approaches.

To our knowledge, the proposed model is the �rst at-
tempt to use BERT models to restore the Arabic diacritics
(for other languages, see [8]). Our contributions include the
following: (1) formulating syntactic diacritics restoration as a
named-entity recognition (NER) problem and using the
BERT model for diacritics restoration; (2) Arabic BERT
automatic hyperparameters search optimization; (3) using
two steps �ne-tuned model which used two datasets for
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model building; and (4) achieving a case-ending error rate
(CEER) less than other systems.

)e paper is organized as follows: )e next section
summarizes related work. In Section 3, BERT models or
taggers and our problem formulation are reviewed. )e data
used to train the BERT taggers are described in Section 4.
Section 5 details the experimental work and results on the
Arabic TreeBank (ATB) corpus [9]. Finally, the last section
presents the summary and our conclusions.

2. Related Work

Many approaches have been introduced to address the
problem of Arabic diacritics restoration. )ese approaches
can be grouped into rules-based approaches, statistically-
based approaches, and deep learning approaches [1]. In the
literature, there is plenty of work done for Arabic diacri-
tization, some of it considered milestones such as
[5, 10, 11]. In this section, we focused on the most recent
work.

Although the earliest work was dependent on predefined
rules, this still helps in the diacritization process. Neme and
Paumier [12] argued that the supervised machine learning
techniques depend on huge annotated datasets which are
rare and difficult to be available in the case of the Arabic
language.

)ey suggested utilizing lexical resources and grammar
rules to avoid the aforementioned problem. )e proposed
system (i.e., Arabic-Unitex) replaced each undiacritized word
with its equivalent diacritized from the prepared lexicon.

)is system was integrated with a set of vowel omission
rules. )ese rules enable the system to restore the diacritized
copy of every word from a list of candidates using omission-
tolerant dictionary lookup. )e prose system is fast in
diacritization, but the required lexicon cannot be prepared
or updated automatically.

Alansary [13] proposed a rules-based diacritization
system called “Alserag.” )e proposed system is based on a
prepared dictionary containing diacritized words and a set of
linguistics rules. Diacritizing dictionary words begins with
the Buckwalter analyzer then the AlKhalil engine, followed
by a final step to select the best diacritization manually.

In addition, three modules were developed to provide full
diacritization (i.e., morphological analyzer, syntactic analysis,
and morph-phono-logical processing). Arabic TreeBank [9]
was used to evaluate the system. It achieved a lower word
error rate compared to the other three statistical systems.

Most of the statistically-based approaches utilized hid-
den Markov models (HMMs) or n-grams to solve the dia-
critization problem. In HMM, the hidden states represented
the words with diacritization while the observations rep-
resented the words without diacritization. In addition, a
large dataset is always used for estimating the emission and
transition probabilities.

Systems that utilized HMM have the problem of out-of-
vocabulary (OOV) words that occur when some undiacri-
tized words exist in the test dataset only and do not exist in
the training dataset. Khorsheed [14] proposed a character-
level diacritization system based on HMMs to handle the
OOV problem. )e system converts the text character-by-
character to its equivalent ASCII codes and injects the
characters as a sequence into the HMM. )e Viterbi algo-
rithm was used to find the best path through the HMM,
which is considered the output diacritics. )e system results
were comparable to the other state-of-the-art systems.

Darwish et al. [15] proposed a diacritizer of two com-
ponents; one for diacritizing the word and the second for its
case-ending diacritization. )e Viterbi algorithm was
employed in the first component in addition to stem back-off
and morphological patterns. For the second component,
ranking based on support vector machine (SVM), mor-
phological patterns, and linguistic rules was used for
case-ending (i.e., syntactic) diacritization. )e proposed
diacritizer achieved a low error rate.

Another alternative to handling diacritization is based
on n-grams [16]. An n-gram is a group of adjacent units
where each unit may be a character, a word, or a semi-word.
In addition, the language model is always combined with
scoring techniques to utilize n-grams with high orders [17].

Hifny [18] used byte pair encoding (BPE) to handle the
OOV words. )e BPE method converts each word to sub-
words with different lengths and allows open vocabulary
using a dictionary containing sub-words with fixed lengths.
)e disadvantage of this method was the low performance of
syntactic diacritization similar to the HMM-based methods.

Recently, Masmoudi et al. [19] formulated the diacritics
restoration of the Tunisian dialect as statistical machine
translation (SMT). )ey considered the text without dia-
critics as the source language of the SMT, while the target
language is the diacritized text. In addition, they prepared a
text corpus for the Tunisian dialect. )e proposed SMT
achieved a high error rate, and so they suggested increasing
the corpus size and integrating a rule-based diacritizer with
the proposed SMT in the future.

Deep learning is a form of machine learning based on
some architectures of neural networks. One of the best
advantages of deep learning is the ability to learn data
features and extract their hidden relations automatically. For
Arabic diacritization, deep learning approaches usually do
not require any prior preprocessing or morphological
analysis of the dataset [20]. In [21], it was accelerated using

Damma is the syntactic
diacritic mark of the word

Fatha is the syntactic
diacritic mark of the word

Kasra is the syntactic
diacritic mark of the word

Figure 1: In the given text, the word has identical mor-
phological diacritics, but the syntactic diacritics are different.
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hybrid approaches where a morphological and syntactical
analyzer is used to assist the neural networks.

)e long short-term memory (LSTM) networks can be
used for character, word, or sentence classification [22, 23].
Abbad et al. [24] proposed a model composed of an em-
bedding layer that calculates weights for every input char-
acter followed by four bidirectional LSTM layers. In
addition, a preprocessing step was required to separate the
letters and their corresponding diacritics to use the letters as
input and their diacritics as output. Furthermore, the
proposed model achieved comparable results over a subset
of the Tashkeela corpus [25].

Darwish et al. [3] combined a set of character-level
features such as stem and part-of-speech (POS) tags with an
embedding layer and a bidirectional LSTM. )e proposed
system restores core word and case ending diacritization.
In addition, they tested the system over more than one
dataset for standard and classical Arabic. )e proposed
system achieved a very low error rate compared to other
systems.

Deep belief network (DBN) was used in Arabic diacri-
tization for the first time in [26]. )e proposed system does
not require any preprocessing steps. In addition, they trained
the DBN to classify every character with its equivalent
diacritized copy. ATB and Tashkeela corpora were used to
evaluate the proposed systems. Furthermore, an extra corpus
was prepared from the Arabic text of children’s stories to
measure the error rate of the system.

Restoring diacritization of Arabic poetry has a higher
error rate compared to the normal Arabic text, so Abandah
et al. [27] used transfer learning for diacritizing Arabic
poetry. )ey tried a two-stage model that uses one classifier
for poetry meter classification and the other to predict the
diacritics. In addition, three different architectures of the
transfer learning model that use the poetry meter classifier
were tried. )e model with the highest accuracy was
composed of two stacks of bidirectional LSTM.

Dealing with the restoration of Arabic diacritics as a
tagging problem was introduced in many papers such as
[28, 29]. In this case, the tagger generates the diacritics after
it has been trained using extracted features from the raw
text.

In [29], the bidirectional LSTM was combined with
maximum entropy connections between input and output
layers which decreases the diacritization error rate. Hifny [4]
improved the previous work [29] using a knowledge dis-
tillation technique [30]. In addition, a character-level em-
bedding layer was utilized to handle the OOV problem.

Some of the aforementioned work is based on techniques
such as LSTM that are slow in training and inference and
cannot be parallelized. In addition, there is still room and
opportunity to improve results.

3. The BERT Tagger

)e BERT model is both conceptually simple and empir-
ically powerful. It achieved the best results for many of the
eleven tasks in natural language processing [31]. In addi-
tion, it is built on the transformer networks introduced by

Google in a landmark paper [32]. In this section, we will
review the building blocks of the transformer networks and
show how to use the BERT tagger for syntactic diacritics
restoration.

3.1. Self-Attention Networks. )e self-attention networks
(SANs) are the core idea of the transformer models [32].
)ese networks learn contextual relations between words or
tokens in a text, and they have the ability to capture long-
term dependencies. Hence, they replace the recurrent
connections used in recurrent neural networks (RNNs).
Moreover, they runmuch faster than RNNs since they run in
parallel.

Assuming we have an input matrix and a query vector, in
terms of computation, the parts of the input matrix which
are similar to the query vector are given attention (i.e., a
similarity score between the input matrix and the query
vector is computed). After the similarity score is computed,
the input matrix is transformed into an output vector. )e
weighted summation (or average) of the input matrix is the
output vector. )is leads to a richer representation which is
better than the input matrix.

Mathematically, the attention distribution over the input
sequence is computed using dot-product attention. )e
distribution αtτ is given as follows:

αtτ �
exp βxT
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whereWq,Wk ∈ Rdk.dx are used to transform xt to the query
and key spaces and β � 1/

��
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. Conceptually, the self-at-

tention networks compute the attention weights for each
token with respect to every other token. )e output rep-
resentation of the self-attention is obtained by the following
equation:

ht � 
τ
Dropout αtτ( Wvxτ , (2)

where Wv ∈ Rdv.dx is used to transform xt to the value space.
It is possible to improve the self-attention performance by
running i self-attention blocks (i.e., multihead attention) in
parallel.)ismeans that the key, query, and valuematrices are
split into a number of heads and projected. )e individual
splits are then passed into a self-attention block as described
above. A multihead version of the equation (2) [32].
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. . .


τ
Dropout αi
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. . .
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (3)

whereWo ∈ Rdx.ndv is a projection matrix, n is the number of
heads, and i is the head index.

3.2. Self-Attention Networks Complexity. )e complexity of
self-attention networks per layer is O(n2d), where n is the
input sequence length and d is the embedding dimension.
)e self-attention networks compute the attention weights
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for each token with respect to every other token. Hence, it is
O(n) operations for each token and therefore O(n2) for all
the tokens. Moreover, the complexity of the number of
sequential steps is O(1) where all n operations run in a single
step (i.e., all the n tokens are processed in parallel).

On the other hand, the complexity per layer is O(nd2)

for RNNs where the previous step’s hidden states with the
weight matrix multiplication run in d2 operations (i.e.,
O(nd2) for n steps). In addition, the complexity of the
number of sequential steps is O(n) where all n operations
run in n steps, respectively.

3.3. Architecture of the BERT Tagger. In addition to the
multi-head attention sublayer, each transformer encoder
layer has a fully connected feed-forward network (FFN). It
consists of two linear transformations and a “GELU”
nonlinear activation function in between.)e FFN is applied
to each word or token in the input sequence. Layer nor-
malization and dropout are often used in the encoder layers.

)e BERT base tagger consists of stacking 12 layers of
transformer encoder layers and a token classification layer to
predict the syntactic diacritics tags. It has a hidden size of 768,
12 heads, and 110M parameters. )is token sequence clas-
sification setup is very close to the named-entity recognition
(NER) task widely implemented using the BERT tagger [31].
Figure 2 shows the architecture of the BERT base tagger.

)e English version of the BERT model was pretrained
using the plain unlabeled text of the English Wikipedia and
the Brown corpus. )e objective function to train these
models is based on masked language modeling (MLM),
which is a self-supervised pretraining objective. It involves
masking part of the input tokens and then training the BERT
model to predict the masked tokens. )e prediction task is
formulated as a multi-class problem. Next sentence pre-
diction (NSP) is the second objective of the training process
for the BERT model [31].

A pretrained BERTmodel can be further optimized for
the downstream tasks such as the syntactic diacritics pre-
dictions by adding an output layer. )en, small annotated
datasets can be used to fine-tune this model and achieve high
results for the downstream tasks. )is technique is known as
“transfer learning.”

)e BERTmodel was originally designed for the English
language. To solve the Arabic syntactic diacritics restoration
task, we used a version of the BERTmodel pretrained for the
Arabic language known as AraBERT [33]. It was chosen
based on its empirical performance as detailed in Section
V. We used two steps of fine-tuned models to achieve state-
of-the-art results for the syntactic diacritics restoration. )is
novel approach is similar to the transfer and adapt
(TANDA) method used for the answer sentence selection
task in the question-answering domain [34].

)e BERTmodel uses a word piece tokenizer [35] which
divides the words into subwords. On the other hand, the
syntactic diacritics restoration predicts a tag for each word in
the input sequence. Similar to the BERT-based NER, the tag
of the first token of each word is chosen as the final tag for
each word during the prediction process.

In the next section, we will describe the datasets used for
the syntactic diacritics restoration, a two-step fine-tuning
process.

4. Data

We used a two-step fine-tuning approach to get the final
results. )is novel approach takes advantage of the available
datasets for the syntactic diacritics restoration downstream
task.

Our results for the syntactic diacritics restoration
downstream task based on the BERT tagger are reported
using the Penn Modern Standard Arabic (MSA) Arabic
treebank (ATB) corpus [9]. )e ATB catalog number
LDC2005T20 (Part 3, version 2) of the linguistic data
consortium (LDC) is used. From the Al-Nahar News text,
part 3 dataset has 600 stories (340,281 words). A standard
test dataset has 91 articles (approximately 52,000 words) that
were published in 2002 between the fifteenth of October and
the fifteenth of December, and is used for evaluation. )is
test set is used by other systems to report the state-of-the-art
performance over years.

)e ATB has annotations for syntactic (case-ending) and
morphological diacritization, part-of-speech (POS) tagging,
morphological segmentation, and syntactic parsing trees.
)e possible ATB syntactic diacritic tags are listed in Table 1.

Token classification

Add and Norm

Add and Norm

Dropout

Dropout

Self attention

Feed Forward

12×

Text and Position Embed

Figure 2: )e BERT base tagger has 12 layers of transformer
encoder layer and a token classification layer to predict the syn-
tactic diacritics tags.
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An open-source corpus known as the Tashkeela corpus
[25] is used for the two-steps fine-tuning setup. Using au-
tomatic web crawling techniques, this Classical Arabic (CA)
corpus is collected from diacritized Islamic religious heritage
books. )e words of the corpus have morphological and
syntactic diacritics. However, it does not have annotations
for the location of the syntactic diacritics in the words.

We used some heuristics to guess the location of the
syntactic diacritic mark for each word in the Tashkeela
corpus. Hence, the final syntactic diacritic annotations are
noisy and may be helpful for fine-tuning. We used
20,000,000 sentences from it to run the experiments.

In the two steps of fine-tuning, we used the Tashkeela
corpus to fine-tune the BERT tagger. Consequently, we used
the output model of this process for the second step of fine-
tuning using the ATB corpus.

5. Experiments

All of our experiments were implemented using the Python
simple transformers library [36] for BERTmodel fine-tuning
and weights & biases platform [37] for tracking hyper-
parameters optimization. In addition, we ran all experiments
on Google Colab Pro+ with a Tesla (R) V100 GPU, and the
available memory was 54GB.

5.1.ArabicBERTModels. )ere are a variety of Arabic BERT
models that differ in some aspects such as model training,
training dataset, and size of the model parameters.

AraBERT is a pretrained BERT utilized for the Arabic
language. It is based on the BERT model and has the same
architecture. In addition, it was built using a huge data from
the Arabic Wikipedia and other resources. AraBERT was
tested over many natural language processing (NLP) tasks
and achieved a comparable result [33].

Arabic-BERT combines the architecture of the BERT
model with CNNs which performs better than the BERT
architecture only. Arabic Wikipedia, the Arabic copy of the
open super-large crawled aggregated (OSCAR) corpus and
other sources were used for model training over modern
standard and dialectical Arabic [38].

Multi-Dialect-Arabic-BERTweights were initialized using
AraBERT. )en, a ten million Arabic tweets corpus was used
to fine-tune the model. In addition, ensemble techniques were
used to enhance the model’s performance [39].

)e BERTmultilingual base model (cased), is trained on
more than one hundred languages which includes Arabic
using the largest Wikipedia [31].

ARBERT and MARBERT were introduced in [40].
ARBERT was built for MSA. )is model was trained over a
group of datasets that have a huge amount of text (i.e., 6.2
billion tokens). On the other hand, MARBERT focused on
MSA and dialectal Arabic (DA). A dataset with 1 billion
Arabic tweets was used to train this model. Any tweet that
has three or more Arabic words used in the training is el-
igible even if it has non-Arabic words.

)e size of the dataset used in training and the size of
parameters for each model are summarized in Table 2.

5.2. Results and Discussion. We start with an experiment to
explore the previously mentioned Arabic BERTmodels. An
ATB corpus was used in this experiment as described in
Section 4. )e official training set was divided into a training
set (90%) and a development set (10%). )e development set
is used to evaluate the accuracy of the model during the
training phase. )e accuracy of the model is measured as the
percentage of correct predictions of the Arabic syntactic
diacritics (i.e., the last character of the stem of each word).
We evaluated the trained models using the complement of
the accuracy which is called the case-ending error rate
(CEER) [3].

)e number of training epochs was fifty in this exper-
iment. In addition, the learning rate and the warmup steps
were adjusted to their default values 4e− 5 and 0,
respectively.

)e AraBERT-v02 base achieved the best CEER over the
test dataset of the ATB corpus, as shown in Table 3, because
this model was trained using many Arabic resources [33].
We adopted this model as a reference model in the rest of the
experiments.

To evaluate the model created using two steps of fine-
tuning, the Tashkeela corpus was used in the first step to fine-
tune the base model of AraBERT-v02 [33]. )is model was
built using 10 epochs, 2e− 5 learning rate, 0 value for
warmup steps, 128 for sequence length to avoid out-of-
memory issues, and default values for all of the other
parameters.

For the second step, the ATB corpus was used to fine-
tune the previous model. Fifty epochs were tried in addition
to hyperparameters optimization for learning rate and
warmup steps. A range between 1e− 5 and 4e− 4 was tried
for the learning rate parameter, while 0, 500, 1000, and 1500
values were tried for warmup steps parameter. For all of the
other parameters, we used the default values.

After finishing the hyperparameters optimization using
the development set of the ATB corpus, we used the values of
learning rate and warmup steps that achieved the best CEER
to calculate the CEER of the model over the test dataset of
the ATB corpus.

Table 1: )e ATB dataset syntactic diacritics tags (marks)
definitions.

ATB tag Meaning Ex. Pron.

B-NCE Diacritic tag is not given or
Skoon /b/

CASE-DEF-GEN Kasrah /b//i/
CASE-INDEF-
GEN Nunation of Kasrah /b//in/

CASE-DEF-NOM Dammah /b//u/
CASE-INDEF-
NOM Nunation of Dammah /b//

un/
CASE-DEF-ACC Fathah /b//a/
CASE-INDEF-
ACC Nunation of Fathah /b//

an/
NUM Numbers — —

Computational Intelligence and Neuroscience 5



Table 4 illustrates the CEER of the one-step and two-step
fine-tuning models over the test dataset of the ATB corpus.
Two steps fine-tuning model outperforms one step with
0.34% CEER.

)e two-steps fine-tuning approach which is similar to
the Transfer and Adapt (TANDA) [34], achieved better
results since it first fine-tunes the model using a large dataset
(i.e., the transfer step) and then fine-tunes the model again
using a domain-specific dataset (i.e., the adaptation step).

Finally, a comparison between the proposed system and
the state-of-the-art systems over the test dataset of ATB
corpus is introduced in Table 5. )ese systems measure the
performance using two metrics. )e first metric is “All
WER” which counts all diacritization errors. “Morph WER”
is the second metric that ignores the last character diacri-
tization errors for each word. Hence, the “CEER” for these
systems equals the difference between the previous two

metrics. Our proposed approach (i.e., BERTtagger) achieved
the best result with 2.94% CEER.

6. Conclusion

)e Arabic syntactic diacritic restoration is often handled
with taggers based on LSTM networks. In this paper, we
presented a BERT tagger to predict the syntactic diacritics.
)e tagger is based on self-attention networks which run in
parallel and model the long-term dependencies better than
LSTM taggers. On the standard Arabic treebank corpus,
our BERT approach reports a new state-of-the-art CEER.
)is result was achieved without using handcrafted features
like those used in the LSTM taggers. For future work,
we aim to combine the hidden Markov models (HMMs)
approach used to predict the morphological diacritics
with our BERT tagger to predict syntactic diacritics. )is

Table 2: Characteristics of the tested Arabic BERT models.

Model Dataset size Model parameters (M)
AraBERT-v02 base [33] 77GB/8.6 B 135
Arabic BERT [38] 95GB/8.2 B 110
Multi-dialect Arabic BERT [39] — 110
BERT multilingual base model [31] — 110
ARBERT [40] 61GB/6.2 B 163
MARBERT [40] 128GB/15.6 B 163

Table 3: CEER of the different Arabic BERT models on the ATB test dataset.

Model CEER (%)
AraBERT-v02 base [33] 3.36
Arabic BERT [38] 11.26
Multi-dialect Arabic BERT [39] 12.38
BERT base multilingual cased [31] 6.07
ARBERT [40] 10.76
MARBERT [40] 12.77

Table 4: CEER of one-step and two-step fine-tuning model.

Model CEER (%)
AraBERT-v02 base and one step fine-tuning using ATB dataset 3.28
AraBERT-v02 base and two steps fine-tuning using Tashkeela and ATB datasets 2.94

Table 5: )e comparison between the proposed BERT model and the state-of-the-art systems on the ATB test dataset.

Method All WER Morph WER CEER (%)
MaxEnt tagger [10] 18.00% 7.90% 10.10
Rule-based tagger [41] — — 9.97
MADA tagger [42] 14.90% 5.50% 9.40
Random forest tagger [28] 13.70% 4.30% 9.40
Scoring of a language model [5] 12.50% 3.10% 9.11
Confused subset resolution [43] 11.60% 3.00% 8.60
Scoring of a language model [16] 10.87% 3.00% 7.87
SVM tagger [29] — — 6.8
MADAMIRA+ character RNN tagger [21] 8.40% 2.30% 6.10
Character RNN tagger [20] 9.07% 4.34% 4.73
Word level MaxEnt/BiLSTM tagger [29] — — 5.3
Word level MaxEnt/BiLSTM tagger + distillation of knowledge + embeddings based on characters [4] — — 4.3
BERT tagger (two steps fine-tuning) — — 2.94
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may lead to the best results for restoring the full word’s
Arabic diacritics.

Data Availability

)e Arabic TreeBank (reference [8] in our text) catalog
number LDC2005T20 (Part 3, version 2) (https://catalog.ldc.
upenn.edu/LDC2005T20) data used to support the findings
of this study is not free and can be ordered from Linguistic
Data Consortium (LDC). On the other hand, the open-
source Tashkeela corpus is used to support this study and it is
available at https://www.kaggle.com/datasets/linuxscout/
tashkeela. It is cited at relevant places within the text as
reference [25].
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