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Defect recognition plays an important part of panel inspection, and most of the current manual inspection methods are used, but
the recognition efficiency and recognition accuracy are low. The Fast-Convolutional Neural Network (Faster R-CNN) algorithm is
improved, and a surface defect detection algorithm based on the improved Faster R-CNN is proposed. Firstly, the algorithm
improves the bilateral filtering algorithm to smooth the image texture background. Subsequently, a feature pyramid network with
a shape-variable convolutional ResNet50 network can be applied to acquire defect semantic feature maps to improve the network’s
ability to express the features of multiscale defects while solving the difficulty problem of many types of defects and variable
shapes. To obtain more accurate defect localization information, the algorithm in this paper uses the Region of Interest Align (ROI
Align) algorithm instead of the crude Region of Interest Pooling (ROI Pooling) algorithm. Then, an improved attention region
recommendation network is used to improve the focus of the model on plate defects and suppress the features of complex
background. Finally, a K-means algorithm is added to cluster the defect data to derive anchor frames that are better adapted to the
plate defects. In this paper, a dataset containing 3216 images of surface defects of plate metal is made by acquiring surface defect
images from the production site of the plate metal factory, which mainly include various defect types. This dataset is used to train
and test the algorithm model of this paper, and the results of detection accuracy and detection speed are compared with those of
other algorithms, which prove that the algorithm of this paper can achieve real-time detection of plate defects with high
detection accuracy.

1. Introduction

At present, China’s home furnishing industry market is
booming, and the 2020 annual output value of China’s home
furnishing industry is expected to reach 1 trillion yuan. The
main driving force is that people pay more attention to the
overall layout of housing space, design involvement, brand
connotation, and health and environmental protection
factors. Customized home furnishing is becoming more and
more popular among consumers, so custom furniture is one
of the most rapidly developing components of the home
furnishing industry [1-3]. Despite the impact of domestic
real estate regulation in recent years, custom furniture still
maintains an annual growth rate of more than 20% and is
expected to reach a market size of 2500 billion yuan by 2022.
Under the traction of the strong demand, the order volume
of manufacturing enterprises such as major raw material

plate manufacturing enterprises and custom home fur-
nishing enterprises continues to climb.

To meet the growing demand, much automated
equipment is introduced in the panel production chain. At
the raw material end, medium density man-made panels,
high density man-made panels, and solid wood particle
boards are commonly used as the main materials [4]. In-
evitably, pits, bumps, oil spots, water spots, glue spots,
chipped edges, bulging, and other problems are introduced
in the processing process, which will directly affect the
downstream  surface lamination process. At the
manufacturing end of the finished product, scratches,
scrapes, knocks, chipped edges, dents, bulges, etc. will in-
evitably occur before the factory is installed by the end
customer. The surface quality of man-made board directly
affects the manufacturing quality of subsequent products.
However, during the production process, some defects will
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inevitably arise. These defects can seriously affect the
product quality and cause economic losses to the enterprise
[5]. At present, most of the plate defect detection links use
manual detection methods, while the continuous press
production line of man-made board runs at high speed, the
circulation of the plate is large, the manual detection work is
intensive, easy to produce errors and omissions, and the
detection rate is low. Therefore, there is an urgent need to
provide a set of inspection methods to meet the real-time
and high-precision requirements for detection of defects on
the surface of man-made boards [6-8].

Machine vision is widely used for product surface defect
detection due to its advantages of fast recognition and high
accuracy [9]. Based on the machine vision artificial board
defect detection system, the image is firstly acquired, and
feature values are obtained. Then, the classifier is used to
identify the defects based on the feature values. Finally, the
defects are graded by their type and size [10]. The result of
defect recognition directly affects the judgment of the board
appearance quality. The continuous press production line
has a speed of 1.5 m/s with intervals less than 0.4m and a
board area of 2.4 m x 4.8 m, which requires a high real-time
performance and a judgment within 3 s. Therefore, a fast and
accurate algorithm is needed for online detection and
identification of defects in man-made boards.

Several detection methods based on classical visual data
are available. In the literature [11], a pruned decision tree-
based method for artificial board surface defect recognition
was proposed. The method obtains the shape and texture
features of defects as input by preprocessing and segmenting
the existing artificial board defect images. The generated
CART tree is pruned using a cost complexity algorithm, and
finally the artificial board defects are recognized. In the
literature [12], a wood defect recognition method with near
infrared (NIR) spectroscopy and inverse neural network was
proposed. In the literature [13], a method of classifying
board defects by local binary mode and binary differential
excitation mode was proposed. The method performs feature
extraction by local binary differential excitation mode and
uses a two-dimensional histogram for defect identification.
There are also artificial board defect recognition methods
based on region screening segmentation and random forest,
artificial board surface defect detection image adaptive fast
threshold segmentation algorithm, and artificial board
surface image defect extraction method based on grayscale
cogeneration matrix and hierarchical clustering. All of these
methods require manual selection of certain key parameters
or production features of the artificial board surface and
have the disadvantages of low generalization ability and
shallow feature level [14].

Deep learning [15], especially convolutional neural
networks, with the advantages of deep feature hierarchy,
high detection accuracy, and good robustness, has been
gradually applied to defect detection in various fields [16].
Deep learning-based defect detection models fall into two
main categories. One is regression-based methods, such as
the SSD model. Literature [17] improved the VGG network
part of the SSD model by replacing the VGG network using a
deep residual network. The improved SSD model achieved
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an average detection accuracy of more than 89% for defects
in fir and pine wood. Literature [18] used the DenseNet
network to combine the improved SSD model and combined
migration learning with the improved SSD model to achieve
defect detection in wood with high accuracy. The other is
region suggestion-based methods such as R-CNN model and
Fast R-CNN model [19, 20]. Literature [21] designed a
multichannel modal region convolutional neural network
(Mask R-CNN) approach for wood detection, which can
achieve high detection accuracy. Literature [22] combined
adversarial generative networks with Mask R-CNN to
achieve the recognition of defects such as dead and live knots
in wood. Literature [23] applied the Faster R-CNN model to
wood panel defect detection for the first time. The algorithm
also uses multiple neural network models for migration
learning to improve the performance of wood panel defect
detection.

Based on the existing wood panel defect detection
methods, we propose a new algorithm for panel surface
defect detection. The algorithm uses the modules of pyramid
network, attention region recommendation network, and
region of interest calibration to improve the Faster R-CNN
model, which makes the model have high detection accuracy
for the panel defects in complex background.

Section 2 of the article is an introduction to man-made
plates and defect categories. Section 3 is an introduction to
image preprocessing. Section 4 is a specific introduction to
the algorithm of this paper. Section 5 is the algorithm ex-
periment and analysis. Section 6 is the conclusion.

2. Man-Made Panels and Defect Categories

In home customization, there are common panels including
raw material panels, veneer panels, and finished panels. The
following challenges exist in the identification of surface
defects of these boards: first, there are many kinds of sur-
faces, and it is expected that there are as many as 5 kinds or
more. Figure 1 shows the schematic diagram of MDF/HDF
raw material panels, particle board raw material panels, and
veneer panels, respectively.

Second, the surface of the texture of many kinds of
textures and complex textures are problems to be solved.
Take the veneer panel as an example, usually a custom home
furnishing enterprise produces as many as 40 kinds of
panels, whose texture has different shades of color, shade,
and shape, which brings great difficulties to the identification
of its surface defects.

Third, there are many kinds of surface defects, including
corner damage defects, edge damage defects, glue spots, oil
spots, black spots, water spots, coarse fibers/shavings, cracks,
coarse sand/sand leakage, slab edge sanding defects, sanding
indentation, sand marks, pad marks, trembling marks, holes,
pits, bulging, delamination, rough areas, pockmarks, tra-
choma, gaps, yin and yang, debris, and more than 20 kinds of
defects. These defects are different in the performance of raw
material panels and veneer panels. In addition to the dif-
ference in background material, even the same bulge is very
different for the raw material board and the finished board at
the image end.
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Figure 1: Different plates.

Fourth, there is a certain openness in the types and
manifestation characteristics of defects. With the plate
processing and manufacturing work, the front-end
manufacturing equipment and processes may bring new
defect characteristics.

3. Image Preprocessing

In this paper, image preprocessing consists of two parts:
texture background smoothing and data enhancement.
Texture background smoothing is a texture smoothing al-
gorithm that blurs the wood panel texture background to a
certain degree while maintaining structural edge details to
reduce the impact of complex and variable texture back-
ground on scratch defect recognition.

The wood panel surface has a complex and variable
texture background, and the panel defects account for a
small proportion of the whole image, both of which can
affect the defect detection effect. Therefore, an appropriate
texture smoothing algorithm is required during image
preprocessing to blur the texture background to some extent
while maintaining the details of the structure edges. This can
increase the accuracy and robustness for detecting defects
under different texture backgrounds.

Currently, texture smoothing is usually done using fil-
tering methods, which are mainly classified as Gaussian
filtering, bilateral filtering, and global optimization filtering
algorithms. Gaussian filtering is better for texture back-
ground smoothing but leads to blurring of structure edge
details, which is not good for defect feature retention. Global
optimization filtering is required in the process of texture
smoothing to ensure that the difference between the image
after texture smoothing and the original image is minimized.

Lizl) = { max(L(w,t) + 1),

Global optimization filtering can achieve strong gradient
texture smoothing, with the disadvantage that it cannot
smooth scale varying textures.

Bilateral filtering algorithm excels in the field of texture
smoothing. Bilateral filtering is based on Gaussian filtering,
considering both the gray value around the pixel point and
the position relationship between the pixel points, and the
pixel gray value calculation can be expressed as

(=22 + (=D IX(x0p) - X (@D

2 >
20;
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d
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Xp(x,p)= 5
z,Im

(1)

where x, y, z, | are the pixel location coordinates. X (x, y) is the
grayscale value of the (x, y) pixel point. o is the smoothed
weight value associated with the spatial location. o, is the
smoothed weight value associated with the pixel. X, (x, y) is
the grayscale value of the pixel point after smoothing.

After testing, it was found that the defects also became
blurred after the bilateral filtering algorithm for the wood
panel images. The reason is that the defect features are too
fine, and the pixel gray value is easily blurred out by the
surrounding pixel gray value. Therefore, the concept of pixel
edge length is proposed and applied to the bilateral filtering
algorithm in this paper. The improved algorithm considers
the edge detail length relationship between pixel points in
the weight calculation and can well keep the edge structure,
while the texture background is smoothed. The pixel edge
length is calculated as shown in the following formula:

ifflw-2)(t-1)|< =1land X (w,t) = X (z,1),

, for else.

(2)
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FIGURE 2: Part of the surface texture of the veneer panel schematic.

TaBLE 1: Comparison of SSIM indicators with improved bilateral filtering algorithm.

Number of test images
" & Bilateral filtering

Average SSIM value

I t (%
Improved bilateral filtering mprovement (%)

200 0.8031

0.8862 10.35

where L(w,t) is the edge length of the pixel point (w, 1),
calculated by recursion. If the gray value of the pixel is the
same as that of the neighboring pixels, the pixel edge length
of the pixel is the largest edge length value of the neighboring
pixels plus one.

(x=2'+ (= _IX(x»-X@IF _|LzD-Lexyl]

The pixel edge length is introduced into the weight
calculation formula. The weights are calculated as shown in
the following formula:

m = exp Py
d

where 07 is the value of the smoothing weight associated with
the pixel edge length.

The improved bilateral filtering algorithm smooths the
texture background, while the thin scratches on the wood
panel surface are better maintained, as shown in Figure 2. In
order to quantitatively evaluate the effect of texture
smoothing of the improved bilateral filtering algorithm, the
Structural Similarity (SSIM) index is used for evaluation, and
the closer its value is to 1, the higher the similarity of the two
images. As can be seen from Table 1, the improved bilateral
filtering algorithm can maintain the defect characteristics
better while smoothing the texture background.

4. Algorithm of This Paper

Faster R-CNN consists of four parts. The proposed improved
Faster R-CNN model combines a variable convolutional
residual network, ResNet50, with an improved path ag-
gregation feature pyramid network (PA-FPN) and feeds the
extracted multiscale feature maps into attention region
proposal network (A-RPN) with a fused convolutional

20

(3)

2

2
r 2 Y]

attention module. The extracted multiscale feature maps are
entered into the A-RPN with ROI Align to further complete
the detection of plate defects. The model structure is shown
in Figure 3.

4.1. Multiscale Feature Extraction Network. The work in this
paper detects defects in plate images. However, cut plate
defects are characterized by large scale variations and dif-
ferent shapes. The existing Faster R-CNN directly utilizes the
features output as the subsequent classification regression.
As the feature information contained in the shallow layer
network is easily lost, there will be small defects appearing as
missed detections. Based on the FPN, PA-FPN is proposed
to be combined with the variable convolutional residual
network ResNet50 to improve the model’s ability to rep-
resent the features of multiscale defects.

PA-FPN adds bottom-up path aggregation to the FPN to
preserve shallow features considering the importance of
shallow network information for small target detection. As
shown in Figure 4, the solid arrows indicate the bottom-up
feedforward computation of the FPN to generate features
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FI1GURE 3: Improved Faster R-CNN based surface defect detection algorithm for plates.
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FIGURE 4: Block diagram of PA-FPN.

{C,,C5,C,, Cs}. The solid arrows indicate the bottom-up
computation of the FPN to generate features. FPN adds top-
down computation to build a feature pyramid to acquire
feature with rich semantic information {U,,Us,U,,U;}. The
FPN adds top-down computation and lateral connectivity to
build feature pyramids to obtain multiscale feature maps
with rich semantic information. To preserve the shallow
feature of the image, a bottom-up path aggregation is added,
as shown by the dashed arrow in Figure 4, to better preserve
the shallow feature information with less than ten layers of
feature aggregation, and to obtain {T,,T,T,,T5}. For
subsequent classification and regression of the predicted
targets, where T, is the same as U,, PA-FPN will improve the
adaptability of the model to detect defects at different scales
in the image, especially to small-sized wood panel defects.

4.2. ResNet50 Network with Deformable Convolution.
Faster R-CNN feature extraction layer generally adopts
multilayer convolutional networks, and commonly used

network structures include VGG-16, ResNet50, and
ResNet101. ResNet network introduces short connections to
addressing the challenges of gradient disappearance and
gradient explosion while deepening the network to ensure the
improvement of the overall network performance. Therefore,
ResNet50 is used as the feature extraction layer in this paper.
To increase the robustness of detection to different
shapes of wood panels, Deformable Convolutional Networks
(DCNs) are introduced into ResNet50 in this paper. De-
formable Convolution is to add displacement variables to the
traditional convolutional layers. The feature map is com-
bined with the displacement variable to form a new feature
map, which changes the perceptual field from the original
rectangular region to a polygonal region with variable shape,
thus improving the network’s ability to extract features from
targets of different shapes. Displacement variables can be
obtained by backpropagation learning. This can effectively
cope with changes in geometry and improve the shape
modeling capability of the convolutional neural network.
Raw convolutional layer output is shown as

J(uo) = Z m(u,) - i(u, +u,), (4)

u, eR

where u, is the coordinate of the pixel point at the center of
the convolution kernel. R is the image area covered by the
convolution kernel. 1, are the coordinates of the pixel points
within the convolution kernel other than u,.

Output of the convolution layer after introducing the
offset is shown as

j(uO) = ug@ m (ux) : i(”o Tu,t Aux)' (5)

With the introduction of offsets, the grid points of the
original convolution kernel can vary in the i and j directions.
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FIGURE 5: Residual block after introducing deformable convolution.

Therefore, the deformable convolution layer has a richer
feature representation capability. Compared with the orig-
inal convolution, the deformable convolution can approx-
imate the real shape of the target object by positional
transformation in the sampling point distribution, so the
deformable convolution has stronger feature extraction
ability.

ResNet50 consists of 5 phases. Each stage consists of 2
basic residual blocks. The role of the residual blockl is to
change the dimensionality of the network, and the residual
block2 is to deepen the network depth. By introducing
deformable convolution into ResNet50, the 3 x3 convo-
lution layer in the residual block is replaced with a de-
formable convolution layer, and the result is shown in
Figure 5.

After replacing the original convolution layer of Faster
R-CNN with a shape-shifting convolution, ResNet50 can
automatically adjust the scale or perceptual field. This en-
gagement allows for better characterization of plate trace
defects and improves the robustness of the network in
detecting defects of different shapes.

4.3. RPN Networks with Converged Attention

4.3.1. Anchor Settings. Regional recommendation network
RPN is a significant improvement of Faster R-CNN, which
assigns k anchor boxes to each point of its input feature map
by sliding window, and further recommends target regions
by classifier and bounding box regression principle. When
setting the anchor, not only the scale parameter of different
scales, but also the aspect ratio parameter of the target
should be considered based on the base anchor box size.

To generate anchor frames that are closer to the actual
target defect size in the dataset and to improve the per-
formance for position regression, k-means provides guid-
ance on the setting of anchor size. The clustering is
performed for the target defect size in a specific dataset; that
is, the intersection ratio (IOU) between the manually labeled
ground-truth and the cluster center is calculated. The
clustering is performed with the 1-IOU distance metric, and
the RPN is guided to generate anchors that better match the
shape of the actual defect to further localize and detect the
defect. The implementation process is as follows.

(1) Given w clustering centroids (M, B,), x € {1,2,...,
w}, where M, B, denote the width and height of
anchor. Since their positions are not fixed, the co-
ordinates (i, j) of the centroids are not given.

(2) The file containing the target locations generated
during the dataset annotation process has (i,
jypmyby),  y€{l,2,...,T} That is, the coordi-
nates of the ground-truth are relative to the original
map, where (i, j,) are the coordinates of the cen-
troid of the box. (m,,b,) is the width and height. T is
the number of labeled boxes.

(3) Calculate the distance d between the labeled boxes in
the dataset and the centroids of the w clusters.

d =1-10U((iy, j,.m,.b,), (i), j,, M, B,)]. ~ (6)

The labeled box is divided to its nearest (M,, B, )
point according to the size of d.

(4) Until all labeled boxes are assigned, calculate the final
cluster centroids for each cluster.

M;:Tixzmx, szTixsz. 7)

(5) Stop the iteration when (M, B,) changes very less.
For the plate defect dataset, a more suitable aspect
ratio of anchor is found by k-means clustering,
which is {0.25, 0.5, 1, 1.66, 2.1, 3.3}, respectively, to
improve the stability of the prior frame generated by
RPN. Experimentally, it is demonstrated that the
increase in training time is not significant by in-
creasing the number of anchors.

4.3.2. A-RPN. In order to improve the model’s focus on
plate defect features and suppress features from complex
backgrounds, A-RPN is used. The improved network can
detect the location of defects more accurately under the
complex background interference of plate images. As shown
in Figure 6, after feature extraction, the results are fed into
the A-RPN. Firstly, the feature F is obtained after 3x3
convolution of the input feature map. After that, the feature
map is convolved along the convolutional block attention
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FIGURE 6: Regional recommendation network detection model with fused attention CBAM.

module (CBAM) to obtain finer features F'’ for subsequent
and more accurate target classification and regression by
A-RPN.

CBAM consists of two complementary modules, which
are connected to suppress features of complex back-
grounds while highlighting defects and focus on the spatial
location of defects in plate images against complex
backgrounds. Channel attention focuses on the “what” of
the target. By assigning more weight to channels con-
taining more defect information and less weight to
channels containing more background information,
channel attention selects channels that contain useful
defect features. Spatial attention tells the network “where”
the defects are and helps the network locate the defects in
the feature map. The proposed attention region recom-
mendation network A-RPN can generate more accurate
defect recommendation regions under the interference of
complex backgrounds and further improve the target
detection effectiveness of the model.

As shown in Figure 6, suppose that the input feature map
is F € R&*B*M and the attention map is first obtained by the
channel attention module W, € R*'*! | The W is weighted
for each channel of the input feature F, and then the refined
feature is obtained F'. Then, the attention map is obtained by
the spatial attention module. W, € R"P*M_ W (F') and the
features F' are multiplied together to get tF".

For the channel attention module, which focuses on
“what is,” average pooling (represented by U, in the

formula) and maximum pooling (represented by U, .. in the
formula) are carried out on the feature maps firstly, and two
features are extracted to describe F¢,, and F¢ . Secondly,
these two different features are fed into the intermediate
shared network layer separately. After the shared network is
applied to the Fg, and Fy, features, the corresponding
elements of the two obtained features are summed, and then
W, € R& s acquired. The calculation formula is as
follows:

W_(F) = U(UMLP(Uan (F)) +Umrp (Umax(F)))
= o( M (Mo(Fyp)) + M, (M (Fr,)-

where the shared network layer represents a multilayer
perceptron (MLP, denoted by U p in formula.) containing
two layers of the neural network. ¢ represents the sigmoid
activation function. M, and M, represent the parameters of
the two layers of the multilayer perceptron model. And M,
and M, features between them are processed using ReLU as
the activation function. Finally, W (F) is multiplied with its
input features to obtain the fine feature map adjusted by
channel attention F'.

For spatial attention, the feature maps are obtained by
average pooling and maximum pooling F,, € R*#* and
Fs .. € RPPM ‘then the feature maps are merged, and the
new spatial attention map is obtained using a 7 x7 con-
volution kernel with a Sigmoid activation function W (F).

W) = o (U (P ) = o™ ([P P ). ®

where o represents the sigmoid activation function.
g7 represents the convolution operation with a
convolution kernel size of 7 x 7. Finally, W (F') is mul-
tiplied with its input features to obtain the final feature

map F".

4.4. Region of Interest Calibration (ROI Align). In the original
Faster R-CNN model using region of interest pooling (ROI
Pooling) to roughly pool the candidate regions of different
sizes into the same size feature map, this process generates
quantization error twice. The steps are as follows:



(1) Based on the input image, the candidate region is
mapped back to the corresponding position of the
feature map. The coordinates are rounded down to
matrix coordinate values.

(2) The obtained area is divided equally into z x z (7 x 7)
cells (bins). The coordinates of the floating-point
cells are quantized and rounded.

The impact of the deviations generated by the above two
steps on the detection of small defects is huge. For example,
the pixel size of surface defects for dirty spots is often 20
below. After feature extraction by the ResNet-50 pretrained
network of deformable convolutional networks, both defects
and images are scaled to 1/32 of the original image. A de-
viation of just 0.7 pixel can lead to a loss of information
about this surface defect, also called the region mismatch
(misalignment) problem.

In this paper, we use ROI Align to avoid region mis-
match (misalignment) issue instead of rough ROI Pooling.

ROI Align differs from ROI Pooling not by simply
quantifying and then pooling, but by using a regional feature
aggregation approach to transform it into a continuous
operation. This is shown in Figure 7.

(1) Iterate over all candidate regions and keep the
mapped candidate region floating point coordinates
unquantized.

(2) The candidate region is divided into zx z (2 x 2 in the
figure) cells, and each cell is also not quantified.

(3) Determine 4 positions of a sample point in each cell.
The floating-point coordinates of the sampled points
are calculated using a bilinear interpolation method
to find the value of 4 positions. Then, the ROI output
in a fixed dimension can be gotten.

where the large dashed grid represents the feature map
(5x5). The solid grid is the variable-size ROI, that is, the
candidate region. The 4 sampling points determined in each
cell are obtained by dividing the cell into 4 small squares
equally and taking the center points of the squares sepa-
rately. With the above processing, the region mismatch
problem can be avoided, and the model can obtain more
accurate candidate feature regions. This can make the de-
tection network further enhanced for fine defects detection
and obtain higher accuracy.

5. Analysis of Experimental Results

5.1. Data Set. In this paper, Labellmg is used to calibrate the
image samples. To improve the training effect and the
generalization performance of the model, data enhancement
methods are used for the dataset. Since changing different
orientations and angles does not change the image sample
features, this paper uses both horizontal flip and vertical flip2
data enhancement methods. In the annotation process, a
total of 4956 target objects in 3216 images are annotated.
All images are renamed according to VOC2007 data
format and set to jpg format. Before training and testing, the
images containing various types of defects (3216) were first
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TaBLE 2: Number of partially defective images.

Training set Test set
Number of
Defect type Numbgr of targets/image
targets/image/
. number of
images .
images
Rough shavings 816 432 206 128
Watermark 776 526 201 146
Sand marks 803 569 293 132
Sundries 796 567 196 125
Gum spot 626 461 243 130

normalized to 300 x 300 x 3 size (300 x 300 indicates the
image resolution, and 3 means that there are 3 RGB color
channels).

To generate the test dataset, 20% of the images from the
annotated image dataset are selected as the test set. The test
set contains all 5 types of defect images to be detected and
approximately the same number of images for each defect
type. The labeled images are fine-tuned, and the image in-
formation and xml format files are saved separately. The
number of the surface defect images of the man-made board
is shown in Table 2.

5.2. Experimental Platform and Model Parameters. This ex-
periment is based on 64-bit windows 10 operating system:
GPU model is 11 GB GPU Ge Force GTX 1080Ti. Memory is
32 GB DDR4. Hardware, and software platform is built by
python language, using PyTorch based deep learning frame-
work and using CUDA version 8.0 computing framework.

After the selection of the tuning parameters, some of the
final model training parameters are as follows: the memory
factor (momentum) is 0.9, and the small batch size is 16. The
maximum number of iterations is 1000. And the learning
rate is 0.0003. The number of decay steps is 400 and 800, and
the weight decay factor is 0.0001. In the RPN network, a
sufficient number of proposals generated will avoid the
defect detection to a certain extent, but all of them will be
used for subsequent training, which will slow down the
training speed and increase the computational burden of
training. Therefore, we need to use NMS to complete the
proposal selection and set the threshold parameter of
nonmaximum suppression for RPN network training to 0.7.
The number of proposals after NMS is set to 2000.
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TaBLE 3: Scratch defect detection results.

Number of
samples

Defective texture

background detections

Number of successful

Number of
misses

Wrong number of Positive inspection rate
checks (%)

Same as the training set 100 98
Unlike the training set 40 36
Total 140 134

— 1 98.50
3 1 91.60
4 2 96.51

5.3. Experimental Results. To verify the performance for
detecting defects on real surfaces and its ability to generalize
the defect detection to different texture backgrounds, the
trained model is tested on a test set of plates with scratch
defects. The results of scratch detection on the test set using
the model proposed in this paper are shown in Table 3.

The number of missed detections in Table 3 refers to the
number of images where scratches exist on the surface of the
wood panel but are not recognized by the model. The
number of false detections refers to the number of images
where the model incorrectly identifies the grain background
as scratches. The positive detection rate represents the
percentage of images where the model correctly identifies
the scratches on the wood panel surface to the total number
of images. As can be seen from Table 3, the positive detection
rate of the model proposed in this paper is 96.51% on the test
set. Among them, when the texture background of the image
to be detected is the same as that of the training set, the
positive detection rate of real scratches reaches 98.5%, which
fully verifies the effectiveness of the scratch generation
method proposed in this paper as a data enhancement
method. When the texture background is different from the
training set, the positive detection rate decreases, indicating
that the detection ability of the model decreases when the
texture background changes. However, the positive detec-
tion rate is still around 91.6%, indicating that the proposed
model provides a decent generalization ability in detecting
scratches on wood panel surfaces with different texture
backgrounds.

The experiments were conducted on the plate dataset as
shown in Figure 8. As can be seen from the figure, the final
AP value is 89.07% when the original Faster R-CNN is
applied for multiscale defect detection. On top of that, the
AP of Faster R-CNN + ResNet50 with deformable convo-
lution is improved by 1.69%, while the AP value of ResNet50
with deformable convolution network combined with ROI
Align is improved by 3.36%. Then, after incorporating the
attention CBAM module into the model, the AP increased
by 6.52% compared to the original model, reaching 95.59%.
This indicates that using Attention CBAM focuses on de-
fective features and suppresses features of complex back-
grounds. In addition, using PA-FPN to extract multiscale
features can better improve the detection results of multi-
scale defects, especially small target defects. Currently, the
AP improves 9.31% over the original model to 98.38%. It is
worth noting that the AP values of fusing channel attention
and spatial attention into RPN based on the combination of
RPN are 92.33% and 91.41%, respectively. This indicates that
fusing only channel attention has little effect on the detection
effect of the model, and fusing only spatial attention de-
creases the detection result of the model by 0.92%.
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FIGURE 8: Performance of plate image detection based on Faster-
RCNN algorithm.

To verify the sensitivity of the key parameters of the
model, ablation experiments are performed on the number
of deformable convolution layers. The experimental results
are shown in Table 4. In the different strategies, 3, 4, 5
indicates replacing the 3 x 3 convolution of ResNet50 stages
3-5 with the deformable convolution. From the experi-
mental results, adding shape-shifting convolution layer in
the case of unclear semantic information may lead to an
increase in false positive samples, which results in lower
accuracy and recall. Moreover, increasing the number of
deformable convolutional layers will lead to an increase in
computation, training time, and average detection time of a
single image. Therefore, in this paper, only the 3 x3 con-
volution in the stage 5 of ResNet50 is replaced with the
deformable convolution to ensure that the displacement of
the deformable convolution kernel can be learned from
better features and reduce the model computation.

The trained model is used to test newly taken 197 plates
with a processed size of 300 x 300 pixels, and the specific test
results are shown in Figure 9. It can be seen that this paper
can experiment plate defect detection with high detection
accuracy.

To further validate the superiority of the proposed model
for defect detection, comparative experiments are conducted
for the existing defect detection methods.

As can be seen from Table 5, the recognition accuracy
and recall rate of the proposed model are better than those
of other algorithms, and compared with Cascade R-CNN,
CBNet, and DetectoRS, which have better performance in
two-stage target detection network, the proposed model
has 3.15% higher accuracy and 2.02% higher recall rate
compared with the best performance. This indicates that
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TaBLE 4: Effect of the number of deformable convolution layers on model performance.

Ablation experiments zrlizrgeirelz Accuracy (%) Recall rate (%) Training time (h) Average detection (s)
3,4,5 92.16 85.38 22 0.61
Number of deformable convolutional layers 4,5 96.64 89.23 18 0.52
5 (V) 98.43 92.86 16 0.40
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FIGURE 9: Detection results for multiple defects.

TaBLE 5: Comparison of the model proposed in this paper with other algorithms.

Algorithm Accuracy (%)  Recall rate (%) Training time (h)  Average inspection time/image (s)
Classification network + attention U-Net 85.27 83.36 6 0.32
Mask R-CNN 94.55 89.23 11 0.35
Cascade R-CNN 92.16 86.70 18 0.52
CBNet 94.50 89.58 19 0.57
DetectoRs 95.28 90.84 16 0.43
EfficientDet 89.74 85.41 8 0.23
YOLOv4 87.67 84.35 5 0.11
The model proposed in this paper 98.43 92.86 16 0.4

the improvements proposed in this paper have a large
improvement on the model plate defect detection capa-
bility. The proposed model has improved training time and
average detection time for a single image compared with
U-Net, EfficientDet, and YOLOv4 using the lightweight
backbone network VGG-16, but the accuracy and recall
rate are much higher than them. In addition, the average
inspection time of the proposed model is 0.4's, which can
meet the real-time requirements of wood panel processing
production line.

6. Conclusion

An improved Faster R-CNN-based defect detection al-
gorithm is proposed for identifying and locating surface
defects for plates with complex textures. To enhance the
model’s ability to detect defects in different texture
backgrounds, this paper proposes 4 improvements: (1) an
improved bilateral filtering algorithm is proposed to
smooth the image texture background. (2) A PA-FPN
structure is used to fuse the multilayer features to obtain a
multiscale feature map to express more complex semantic
information, which is better for multiscale crack detection

especially for small-scale defects. (3) RPN incorporates
the attention module CBAM to improve the weight of the
network for crack defects and indistinguishable samples,
which improves the model’s ability to distinguish defects
from the background and improves the detection accuracy
well. (4) The introduction of deformable convolution
improves the feature extraction ability of the model for
different scratch shapes.

The model proposed in this paper was tested on a real
panel surface defect dataset, and the average positive
detection rate of the model reached 95.71%, and the
positive detection rate was 90% when tested using a new
textured background wood panel image, showing that the
model has good generalization capability. The comparison
experiments proved that the improved model has a huge
improvement in the detection ability of board defects.
Comparing the model with other algorithms with superior
performance verifies the superiority of the proposed
model for the detection of panel defects. The next step will
be to continue to investigate higher accuracy target de-
tection algorithms and further explore how to enhance the
defect features to suppress the interference of the
background.
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