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Digitalizing and translating a scanned document image entails detecting the characters using a detector and translating the
characters in the order they were detected with a translator. However, it is impossible to translate these characters correctly
because the detector often detects them in any order. As a result, since it is critical to organize the recognized characters for proper
translation, we propose ordering characters from documents with multiple variations using the strength of the learning-based
model that learns the necessary operations from the data. In this task, it is difcult to order the characters written on antique
handwritten documents that have deviations such as a bent or split line, as opposed to ofcial records that have lines placed
uprightly one by one. Because dealing with these many variants using a human-designed algorithm is problematic, we arrange
characters printed on papers with diverse variations by taking advantage of a training model that can learn the appropriate
function from data. Our method outputs both line id and y-axis and combines them to assign the sequential index. It is difcult to
train using simply local regions because sequential character indexes in a large range include long-range dependencies. To solve
this problem, we use network architecture to expand the receptive feld as wide as possible.Te network must learn to give various
indexes to characters in similar places for each document because the number and area of characters vary for each document. We
ofer the ground truth assign method based on the absolute position to assign similar indexes to characters in similar places.
Furthermore, even if the network uses absolute ground truth, the networkmay assign the incorrect line if the center coordinates of
characters are biased in one direction. As a result, we employed the Region of Interest (ROI) from the pretrained coordinate layer,
which contains position and trend information. We used the modifed edit distance to compare the similarity of character indexes
from the ground truth and our technique. In addition, we computed the modifed fsher criterion to assess the degree of the
clustering line. Consequently, our edit distance is just 0.43 times that of the human-designed algorithm, and our fsher criterion is
1.46 times that of the human-designed algorithm, improving the performance of human-designed algorithm.

1. Introduction

Digitalization is the process of converting characters on
scanned documents or photographs into digital data,
which has made it possible to search for document content,
perform statistical analysis, create high-quality content,
send or receive information, and support the creation of
digital archives. Optical character recognition (OCR),
which automatically enters all characters in photographs
into a computer without the typing of human, is a typical
example of digitalization. We computerize vast amounts of
image data quickly and efciently by utilizing this feature,

saving signifcant time and storage space in managing
large-capacity paper documents. Digitalization is also
useful for translating foreign papers. Te processing
procedure is to frst output the coordinate values of the
detected character region and the probability of the
presence of the characters and then to input the detected
characters into the translator to perform translation.
However, the characters are input to the translator in an
order that is unrelated to the translation because there is
no order value for each detected character that corre-
sponds to the translation, and this may result in incorrect
translation.
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To the best of our knowledge, there is no existing work
that assigns a corresponding order to text translations. Of
course, there are some works dealing with document layout,
such as text line extraction [1, 2], text line segmentation [3, 4],
and scene text detection [5]. Tere are also several works on
recognizing characters such as Gurmukhi [6–11] and De-
vanagari [12], as well as a work on machine translation [13].

We need to assign orders to the detected characters for
correct translation because putting them into the translator in
random order causes translation problem. Since there is no
related prior research, we defne a character reordering ap-
proach based on a learning network that detects patterns in
the data on its own. Figure 1 is a schematic diagram of the
character ordering process. We assign orders separated in line
and y-axis after putting an old document picture data to the
network and then assign a series of orders using line clustering
and a rearrangement procedure. In addition, we calculate the
edit distance and the fsher criterion to assess the accuracy of
the order, and we show that our system outperformed the
nonlearning-based method on all measures.

Our contributions are as follows in brief:

(i) We defne a new problem by dealing with tasks that
have not been preceded so far and propose the
method for ordering characters in a document using
a learning model that learns necessary operations
from data.

(ii) Te network infers the order value into two di-
mensional indices, line and y-axis, to increase the
amount of learning information for correct
learning.

(iii) We propose a ground truth (GT) generation ap-
proach in which characters in similar positions have
a similar order independent of the document and
convey the order trend by injecting the coordinates
and size of the character region into the index layer
to make network learning easier.

(iv) Ours outperformed the human-designed algorithm
in the edit distance and fsher criterion accuracy. In
particular, ours surpassed on split lines because our
learning-based network has high clustering
performance.

2. Background

We can presume that our working, character ordering, is a
spatial relation learning since it assigns line ids by inferring
left-right relations of characters and assigns y-axis ids in the
same line by inferring the top-down relation. Relation
learning has previously been widely explored as visual re-
lation learning which deals with interactions such as in-
ferring visual object-object [14] or human-object relations
[15, 16]. Tis work relates to image understanding tasks that
mix computer vision and natural language such as image
retrieval [17], image captioning [18–20], and visual question
answering [21]. It also infers relationships such as relative
position (“behind, above”), action (“eat, ride”), and com-
parison (“taller than”) [22, 23].

Relationship inference has been carried out as a task with
each visual relationship represented as a triplet in the form of
subject-predicate-object [24–27]. For example, Sadeghi and
Ali[25] proposed training a complex visual composite such
as person-riding-horse to improve the localization of person
and horse. Tese visual phrases make it easier to detect items
since they consider the appearance changes and occlusions
caused by diferent views and the interaction between ob-
jects. Learning the triplets as independent classes, on the
other hand, has the limitation that it cannot be conducted on
a big data set since the combinations of items are too diverse.

Recent works ofered a strategy for learning objects and
predicates separately and combining them to infer relational
inferences even on huge data sets. If two or more tuple sets
(e.g., truck-on-street and car-on-street) share the same
predicate, they are classifed as belonging to the same cat-
egory [28]. However, combining one predicate with multiple
objects increases the variability and can result in an issue that
does not train well [29]. As a result, new research has
presented a model for inferring relationships with statistical
dependency using graphical models [30, 31], language dis-
tillation [32], or semantic context [33].

Zhang et al. [34] presented a strategy for dealing with
combinatorial complexity by mapping subject and object
into a low-dimensional relation space and modelling a re-
lation triplet as a relation translation vector, i.e.,
subject + predicate ≈ object. For example, the network
creates a consistent relational translation vector independent
of subject (e.g., person) or object (e.g., horse, bike) given the
riding photos. Tis method allows relational inference by
learning only the relation translation vector in relation space
rather than learning the many appearances of the triplet,
even if the subject and object are very diverse.

When the attributes of each object are clearly defned,
these methods can be useful. However, it is difcult to assign
the correct ids in the same way as other approaches because
the properties of objects are the same as characters in the
ancient document in our character ordering task.

Some research studies [35, 36], on the other hand, defne
the relationship between symbols by combining language
logic and mathematics to infer the relationship. Relation
Networks (RNs) [37] proposed inferring the relationship
between various pixels because creating associations be-
tween symbols is difcult. In this case, RN infers a potential
relationship by examining the relationship between all pixel
pairings regardless of whether an item exists in one pixel or
whether there is a signifcant association.

Without knowing the properties of the object, this algorithm
can deduce the relationship by evaluating all pixel combinations.
However, the number of permutations between pixels grows
rapidly when the feature map size grows, resulting in limitations
of high memory utilization and waste due to meaningless pixel
combinations. Also, there are some methods such as text line
extraction [1, 2], text line segmentation [3, 4], scene text de-
tection [5], machine translation [13], and recognizing characters
such as Gurmukhi [6–11] and Devanagari [12]. But they do not
propose the assigning translation order and do not evaluate the
ordering performance like ourmethoddoes. So, comparing ours
to these related works is not appropriate.
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3. Method

Character ordering is the problem of inferring the spatial
relationship of characters within a document. Te ancient
documents we deal with are written line by line from left to
right and top to bottom. As a result, this section describes
how to identify the character order that corresponds to the
translation order in the document by considering the left-
right (line) and top-bottom (y-axis) order of characters.

3.1. Two Dimensional Indices and Network. We propose a
method to increase the quantity of information during the
learning process which learns 2-dimensional indices (2-dim
indices) separated into line and y-axis as illustrated in
Figure 1 rather than 1-dimensional indices (1-dim indices).
Figure 2 depicts the variation in information amount based
on the number of dimensions. We can only utilize one
combination (yellow box) for learning one index (red box)
for 1-dimensional indices (Figure 2(a)) which requires ex-
amining all nearby characters. 2-dimensional indices
(Figures 2(b) and 2(c)), on the other hand, can employ
Sh

Sw (Sw
Sh ) combinations (yellow box) to learn one line or y-

axis (red box) by picking data line by line or y-axis by y-axis.
Sw and Sh represent the width and height of the feature map,
respectively. When we partition the learning attribute in this
way, we reduce the learning range while increasing the
amount of learning information. As a result, the network
may learn the order values.

For 2-dim indices character ordering, we added two
index layers to RPN network-based faster R-CNN object
detection [38] as illustrated in Figure 3. Tese index layers
generate 2-dimensional indices. Te frst element (line en-
coder and decoder) represents the lines which is the as-
cending value from right to left in the whole document
image according to the translation order illustrated in the
Figure 1 red dash box. Te second element (y-axis encoder

and decoder) represents the order which is increasing from
top to bottom inside a single line as indicated in the Figure 1
blue dash box.

Learning with a small receptive feld of the convolution
kernel is challenging because these two values are organic
and consecutive throughout the document. For example, if
an ancient text has ten lines, the restricted kernel size, 3 × 3,
learns the line values 3, 4, and 5 and then slides to learn the
line values 4, 5, and 6. However, the fnal line value to be
assigned is 1 to 10. In other words, it is difcult to predict
order values with long-range dependencies because the
kernel accommodates a limited area of feature maps. As a
result, we stack the pooling layer to increase the receptive
feld until the size of the feature map is smaller than the size
of the kernel. Te feature map is too small to match the GT
shape and calculate the loss after downsampling to ac-
commodate the full document in this manner. To construct
the fnal feature map for use in the loss computation, we
expand the size of the feature map by upsampling and re-
inforce the lost information by utilizing skip connection
[39].

Te character ordering, we will do necessitates under-
standing spatial relationships, but the corresponding ap-
proaches [30, 37] have drawbacks such as requiring object
properties or a large amount of memory. So, we stack
pooling layers to broaden the receptive feld and infer spatial
relationships such as left-right and top-bottom in amemory-
efcient manner without distinguishing the attributes of
objects rather than using combinations of objects or pixels to
infer spatial relationships such as left-right and top-bottom.

3.2. Absolute Ground Truth. We should defne a loss func-
tion between the prediction and the ground truth (GT) to
optimize the network. Assigning the ground truth value just
to the spot where the character exists as with the GT map
used for ROI learning [40–42], causes difculty labeling
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Figure 1: Te character ordering process of 2-dimensional indices.

Computational Intelligence and Neuroscience 3



diferent values at similar locations (Figures 4(a) and 4(b) in
sec. Efectiveness of absolute ground truth) because various
documents contain variable amounts of characters and areas
flled by characters.

As a result, we propose an absolute GT approach that
assigns consecutive numbers to all pixel regions, including
the background area where there are no characters. And we
only use the locations where characters exist as GT. Figure 5
shows an example of generating GT using the way we
proposed. Te white boxes in the line GT and y-axis GT
represent the background in this case, while the blue, red,
and green boxes represent each character in the handwritten
document. Te goal of this GT is to generate a 2-dim ab-
solute GT map for three consecutive characters (blue, red,
and green boxes) in the image of an ancient handwritten
document (input image in Figure 5). Te original line in the
orange dashed box of Figure 5 is created by the procedure
used to generate the existing ROI GT [40–42]. However,
there is an issue with characters in similar positions in the
two diferent input images having diferent line id GTvalues.
To solve this, frst, draw a base absolute line that allocates
consecutive numbers in the same order as the translation
order from right to left for each column. Following that, the
absolute line is determined by taking the average of the

values chosen for each line because the line ids may not be
placed on a straight line on the feature map depending on
the center coordinates of the character. Tis absolute line is
assigned a similar line GT at a similar location regardless of
the document. Te absolute y-axis (purple dashed box in
Figure 5), which is generated in the same way as the absolute
line, has a sequential order from top to bottom for each
column, and we do this by taking the translation order into
account. Similar values can thus be labeled at similar lo-
cations allowing networks to learn similar values at similar
locations.

3.3. ROI Transfer. If the center coordinates of some char-
acters in a specifc document are skewed in another di-
rection, the network may infer a value that difers from other
values in the same line even using Absolute GT. To address
this issue, we ofer an ROI transfer approach that adds the
coordinate and size of the objects (x, y, width, and height)
extracted from the ROI network to the line and y-axis en-
coders (blue lines in Figure 3). Te coordinate information
of the inserted ROI gives a tendency to assist in assigning ids
in the translation order. If these variables have similar values,
the network assigns similar ids, which aids in line clustering.
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Te feature map extracted from the feature extractor is
now referred to as a graphical input feature map (GIF)
because it contains graphic information. Te one with the
detection box information extracted from the coordinate
layer is referred to as an ROI input feature map (RIF), and
the one that concatenates these two feature maps is referred
to as a GIF +RIF.

3.4. Objective Loss and Post Processing of Line Clustering.
We compute the line and y-axis losses (Lline and Ly−axis) from
the network output to train the index layer. Equations (1)
and (2) are L2 distances calculated by dividing the diference
between the network output order (line, y − axis) and GT
(linet, y − axist) by the number of characters in the docu-
ment (N). And equation (3) is a weighted sum of these two
losses using λline and λy−axis.

Lline �
line − linet( 􏼁

2

N
, (1)

Ly−axis �
y − axis − y − axist( 􏼁

2

N
, (2)

Linde x � λline · Lline + λy−axis · Ly−axis. (3)

After training the network to minimize index loss
(Lindex), we cluster the lines that satisfy equation (4) where
threshold is the experimentally established hyper-parameter
and then rearrange them in translation order so that the line
and y-axis, the network output, have consecutive integer
values. Ten, we rearrange the order for each line using the
y-axis value predicted by the network, and we generate a
series of integer values.

∣ linei: N−1 − linei+N: 1 ∣ < threshol d, i � 1.N − 1. (4)

4. Experiments

Tis section examined the efects and physical meanings of
our learning-based character ordering network by gradually
adding the components indicated in the method. We in-
vestigated the reasons for using 2-dimensional (2-dim) in-
dices, the efect of absolute ground truth, and the efect in
conveying ROI information. We defned the human-
designed algorithm because there was no previous study to

(a) (b)

Figure 4: Original ground truth (left) and absolute ground truth (right). (a) Original ground truth. (b) Absolute ground truth.
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compare it to. To evaluate the performance of the two
methods, we compared the edit distance (ED) [43] and
Fisher criterion (FC) [44] values.

4.1. Experimental Setup. We used the coordinate and score
layers of a multiscaled faster R-CNN [38] (Figure 3 yellow
and green box) to detect all characters in the ancient doc-
ument independent of character size.

We obtained 150 handwritten documents from the
Korean Studies Institute [45] and used 40 for training, 10 for
validation, and 100 for performance evaluation as a dataset.
And the number of words in each paper varies between 10
and 450 for each document. Te characters in these ancient
documents are written vertically and line by line. Each line is
ordered in ascending order from right to left, and the y-axis
values in each line are arranged in ascending order from top
to bottom.

We arbitrarily cropped it to train the data we have
whenever an ancient document entered the network. In
addition, we chose 1024 × 1024 as the closest power of two to
854 and 1253 pixels which are the average width and height
of 40 ancient documents. At this point, we resize it while
retaining the aspect ratio and then crop if the minimum
width or height of ancient documents did not meet 1024.We
evaluated the proposed method in the same manner as
training, but we cropped sequentially from top left to bottom

right to consider the entire page. At this step, we overlapped
the cropped image by 512 pixels to compensate for the
characters that were cut due to cropping. If the cropped
image does not reach 1024 pixels in size, we maintain the
aspect ratio by adding white padding to the lower right
corner.

We pretrained the coordinate and score layers of the
RPNNetwork at a learning rate of 10− 3 for detector learning,
and we trained the index layer (red box in Figure 3 green
dash box) to minimize Lin de x (Equation (3) for ordering. We
used Adam optimizer [46] with the learning rate of 10− 5,
λline � 10, λy � 1, batch size 1, and epoch number 15000 on
Pytorch v1.8.0 with CUDA v11.3, CuDNN 8.0.2, and
NVIDIA GTX 1080 TI.

4.2. Efectiveness of Two Dimensional Indices. We calculated
the edit distance depending on the number of training di-
mensions using the detector and dataset described in sec.
Experimental Setup to see how much more accurate the
order value is assigned by the network learned with the line
and y-axis separately versus the network learned with 1-
dimensional indices. We evaluated character ordering
without eliminating false detection which is a limitation of
the detector. We may not remove the false alarm in actual
cases because there may not be a correct label for the
document data.
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Our edit distance (ED) calculated the number of inac-
curate indexings (Equation (6) in the original formula
(equation (5) [43]) and the relative diference equation (7)
between the order network predicted (pre d indi) and the
ground truth order (target indi) for the i-th character.
Furthermore, we give the wrong index number (ED′) a
higher priority than the relative diference (L1) by multi-
plying it (ED′) by the number of letters (N) as indicated in
equation (8). Ten we divide that by the number of char-
acters to get the ED values for each character. Te lower the
value, the greater the similarity to the correct answer because
this value denotes string similarity.

ED′ � 􏽘
N

i�1
δpred indi,target indi

, (5)

δm,n �
0, ifm � n,

1, otherwise,
􏼨 (6)

L1 � 􏽘
N

i�1
pred indi − target indi, (7)

ED �
N × ED′ + L1

N
. (8)

Table 1 shows the ED value for 100 test data sheets
based on index dimensions. It shows the ED for the box
corresponding to the correct character because there is no
correct order corresponding to false detection. Table 1 (a)
shows no character ordering, Table 1 (b) shows character
ordering with 1-dim indices, and Table 1 (c) shows
character ordering with 2-dim indices. If the output boxes
of the detector are not rearranged, the order of the
characters is determined at random (262.27). It decreases
0.77 times with 1-dim indices (203.49) and 0.42 times with
2-dim indices (108.86) when rearranged compared to the
random arrangement.

Tis is because 1-dim indices have only one amount of
information available to learn one index, but 2-dim indices
(Figures 2(b) and 2(c)) have expanded the quantity of in-
formation by picking data for each line and y-axis of the
ancient document (a combination of Sh

Sw and Sw
Sh) as

mentioned in sec. Two dimensional indices and network.
Te width and height of the feature map are represented by
Sw and Sh, respectively.

Another reason is that the learning range is restricted,
and the learning complexity is reduced by dividing the
learning dimension into x-axis and y-axis. We can know that
the order is better assigned as the learning dimension in-
creases, so the following experiment was conducted with 2-
dimensional indices.

4.3. Efectiveness of Absolute Ground Truth. To determine
which the ground truth (GT) map best optimizes the net-
work for ordering, we compared the ED of the network
trained using our absolute GT to the ED of the network
trained using the original GT [40–42]. Te ED of the net-
work trained using the original GT is 108.86 (Table 1 (c)),

and the ED of the network trained with our absolute GT is
0.25 (Index (c) in Table 2) indicating that our method had a
lower ED.Tis is because our absolute GTfacilitates network
learning by labeling similar values at similar positions.

We analyzed the GTmaps for two example papers with
drastically varied text areas to see how diferent values are
labeled at similar positions according to the GT generating
approach. Figures 4(a) and 4(b) depict the GT lines given to
each character in two diferent documents, one for the
original GT and one for our absolute GT. We compared the
value of the third line for each document. Te line values of
the two documents are 0.30 and 0.32 respectively with a
diference of only 0.02 if we use our absolute GT, but the line
values are 0.22 and 0.50 with a diference of 0.28 if we use the
original GT. Tis indicates that similar values are labeled at
similar positions throughout all papers when the absolute
location is considered when constructing GT. But if the
absolute position is ignored, the diferent values are tagged
to characters even at similar locations between documents
because consecutive ids are assigned. We employed our
absolute GT to help to learn for our method because we
found this tendency in other ancient documents.

4.4. Performance between Human-Designed Algorithm and
Our Method. We compute the average edit distance (ED)
and fsher criterion (FC) for 100 ancient documents to
evaluate the ordering performance of our method. After-
ward, we compare the performance of the human-designed
algorithm and our method in Performance for Real Ancient
Documents.

We prevented underftting by increasing the number of
epochs so that the model learned training data sufciently,
and we prevented overftting by stopping training when the
loss on validation data increased or converged during
training. Furthermore, we demonstrated that underftting
and overftting were avoided through the experiment result
of a low edit distance and a high fsher criterion in Per-
formance for Real Ancient Documents. However, even if the
experimental results are good, overftting still can be sus-
pected when the train and test data of the ancient document
are very similar. In this regard, we demonstrated high or-
dering performance for synthesized data with low similarity
between the train and test data in sec. Performance for
synthesized documents with split lines, proving that over-
ftting does not occur even when the train and test data are
not similar.

Table 1: ED represents the edit distance between 1-dimensional
and 2-dimensional index. Te diference (m/a, m� a or b or c)
represents the ratio between methods.

Dimension of index ED Diference
W/o character
ordering

(a) 1-dimensional
indices 262.27 1

w character
ordering

(b) 1-dimensional
indices 203.49 0.77

(c) 2-dimensional
indices 108.86 0.42

Computational Intelligence and Neuroscience 7



4.5. Character Ordering Based Human-Designed Algorithm.
Te human-designed algorithm (Algorithm 1) demonstrates
the step-by-step process of assigning indexes by allocating 2-
dimensional indices using the coordinates and sizes of boxes
placed in a random order such as sec. Two dimensional
indices and network in our method. We defne a collection
to gather line values (L) and set the frst box line id (b1) to 0
(line 8) to assign line ids based on the coordinates and sizes
(B) of randomly arranged boxes. Ten we measure the
Euclidean distance [47] between the coordinates to be or-
dered and the coordinates already been ordered (line 14 and
15). We assign the same order (line 17) if the distance
between the characters satisfes two conditions (Equations
(9) and (10)) otherwise we assign a new order (line 20) and
collect in the set L.

∣ xt − x ∣ ≤wt × threshold, (9)

�����������������

xt − x( 􏼁
2

+ yt − y( 􏼁
2

􏽱

< min. (10)

Equations (9) and (10) indicate the conditions for
measuring the closeness of two characters in order to assign
the correct line ids. Given the coordinates of the box already
ordered (xt, yt, wt, ht) and the coordinates of the box to be
ordered (x, y, w, h), we calculate both the diference between
the x coordinates of two boxes (Equation (9)) and the
diference between the center coordinates (Equation (10)
Ten assign the same line ids if the values are less than the
constraint condition. Te threshold in equation (9) is a ratio
that reduces wt and conducts fexible line clustering by
modifying the threshold based on the width of the box rather
than limiting the fxed threshold based on the distance
between the x coordinates. As indicated in line 18 of al-
gorithm 1, the min in equation (10) is the least value of the
distance between center coordinates and is updated
whenever there is the nearest character. To make robust in
the diagonal direction, these equations consider the center
coordinates of all boxes and assign the same order as the
nearest box previously had.

We sort the line ids assigned from the network to cluster
if they are in the same order in the set L, and we sort again to
maintain their correspondence with the set of detection
boxes using the order (in d) used for sorting (line 21 and 22).
Te same id is assigned if it is in the same line, but the frst
line is assigned a random order not zero. So, we reassign a
sequential order from right to left, identical to the translation
order, for each line (line 23). Ten we sort values from small
to large for each line using y-axis ids (line 25), and we
maintain their correspondence with the set of detection
boxes (line 26). Finally, we assign consecutive values using
ids separated by line and y-axis.

4.6. Performance for Real Ancient Documents. To confrm
the trustworthiness of the learning-based model, we train
ten networks for the input feature maps, i.e., graphical
input feature map (GIF), ROI input feature map (RIF), and
both feature map (GIF + RIF), specifed by sec. ROI transfer
while testing the performance of our method. Ten we
calculated the index ED for each input feature map by
changing the threshold to fnd the appropriate threshold in
equation (4) of our method and equation (9) of the human-
designed algorithm. Figures 6 and 7 depict the average and
standard deviation of the index ED based on the threshold.
Te human-designed approach performs best when the
threshold � 0.51 regardless of the input feature map, while
our method has the least index ED when the thresh-
old � 0.025. So, we compare the performance using that
threshold. Furthermore, the coefcients of variation (CV)
of ten randomly initialized models in our method are
relatively signifcant with 23, 19, and 33% in the order of
GIF, RIF, and GIF + RIF. So, we compared the performance
of the human-designed algorithm and our models except
for one that had the greatest divergence from the average
index ED for each method based on input feature map to
minimize the CV to less than 20% so that the model could
be assumed stable [48].

Table 2 compares the edit distances of the human-
designed algorithm (Table 2 (a)) and our method (Table 2(b-
d)) for 100 ancient documents with the threshold and
number of models indicated in the preceding paragraph.
Table 2 shows the type of edit distance in the frst column,
the method in the second column, the edit distance average
(standard deviation) in the third column, and the ratio of our
method to the human-designed algorithm in the fourth
column (m/a, m� b, c, and d).

GIF (0.25) is lowered to 0.53 times that of the human-
designed method (0.47) in Index ED (Index in Table 2). Te
reason is that it is necessary to fnd the rules of all patterns
and enforce the conditions, but incorrect indexing may
occur due to conditions not considered in advance when
character ordering a handwritten document with a complex
pattern such as a diagonal line or a line splitting into two
lines with a human-designed algorithm. However, the
learning-based network assigns more similar values in the
same line than the human-designed algorithm, resulting in
the correct line ids even with relatively few conditions be-
cause it infers a spatial relation.

Table 2: Average edit distance (standard deviation) of the human-
designed algorithm (a) and our method (b, c, and d). Diference
rate indicates the ratio between methods (m/a, m� b,c, and d).

Type of
indexing Method Edit distance

↓
Diference

rate

Line

(a) Human-
designed 2.28 1

(b) RIF 11.92 (3.20) 5.23
(c) GIF 2.69 (1.03) 1.18

(d) GIF +RIF 1.85 (0.17) 0.81

Y-axis

(a) Human-
designed 1.86 1

(b) RIF 3.81 (0.51) 2.05
(c) GIF 1.64 (0.06) 0.88

(d) GIF +RIF 1.61 (0.05) 0.87

Index

(a) Human-
designed 0.47 1

(b) RIF 2.79 (0.49) 5.93
(c) GIF 0.25 (0.05) 0.53

(d) GIF +RIF 0.20 (0.01) 0.43
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Te RIF index ED (2.79) is increased to 5.93 times that of
the human-designed algorithm index ED (0.47). Te reason
for this is that RIF is a low-dimensional feature map
extracted from GIF, and there is no information such as
appearance, overlapping, or angle. Terefore, the right order
cannot be determined.

However, the GIF +RIF index ED (0.20) which com-
bines GIF and RIF is 0.43 times that of the human-designed
algorithm index ED (0.47) and 0.8 times that of the GIF

index ED (0.25). Tis is because GIF contains visual in-
formation that RIF does not have and RIF has the absolute
position and a trend related to translation order. Tus, if
coordinate values are similar, the network assigns similar ids
corresponding to the translation order. We can see that our
method outperforms the human-designed process in terms
of ordering and that ordering improves as the amount of
input feature information rises.

For line ED for each method, GIF (2.69) and RIF (11.92)
are larger than the human-designed algorithm (2.28), and
GIF+RIF (1.85) is smaller than the human-designed algo-
rithm. Te RIF (3.81) is larger than the human-designed
algorithm (1.86) for the y-axis ED for each method, and GIF
(1.64) and GIF+RIF (1.61) are smaller than the human-
designed algorithm. In this case, the y-axis ED has the same
trend as the index ED, but the line ED has a diferent ten-
dency. Furthermore, the line ED value is very large while the
index ED value for each method is small enough. Because an
inaccurate line id is assigned to a character in the ancient
document, all future orders are considered incorrect indexing
regardless of the actual quantity of incorrect indexing.

As a result, we used the fsher criterion (FC) [44] to
compare line ids performance with a more acceptable way
for each method. It evaluates how close ids are if they are on
the same line and how far apart ids are if they are on distinct
lines on the document.

Original FC indicates how well it distinguishes between
two classes in more than two dimensions space. In contrast,
our FC indicates how well it distinguishes multiple classes in
a one-dimensional space. Tis value is a ratio of the variance
for each line, and the distance between ith and i + 1th line
averages among C lines and a larger value indicates better
clustering.

SB �
1

C − 1
· 􏽘

C−1

i�0
μi − μi+1( 􏼁

2
,

SW � 􏽘
C

i�1
􏽘

1

j�0
lj − μi􏼐 􏼑

2
,

FC �
SB

SW

.

(11)

We calculated FC in the same setting that we calculated
ED. We used the normalized x coordinate of the detected
box to [0, 1] for the human-designed algorithm data to
evaluate performance in a fair scale setting, and we used line
ids predicted by the network for our method data.

Table 3 shows the average FC (standard deviation)
between the human-designed algorithm (Table 2 (a)) and
our method (Table 2(b-d)). In this case, the GIF (47.36) is
increased to 1.35 times that of the human-designed algo-
rithm (35.10). RIF (24.76) has low FC due to lack of in-
formation as discussed in the ED results of Table 2.
However, GIF + RIF (51.10) combined with GIF increases
to 1.46 times. Tis shows that our method clusters line
more easily than the human-designed algorithm and that
line clustering improves as the amount of input feature
information grows.
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Figure 6: Index edit distance based on the human-designed
algorithm.
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Figure 7: Index edit distance based on the input feature map of our
method.
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4.7. Performance for Synthesized Documents with Split Lines.
We want to compare the performance of each method on a
document with split lines where our method outperforms
the human-designed algorithm. To do this, we created a
document with split lines and estimated the index edit
distance related to the fnal ordering performance such as
Performance for Real Ancient Documents. In addition, we
calculated a fsher criterion that measures the degree of line
clustering which is a feature that impacts performance.

We used 100 character-free background images and
individual CASIA [49] character images to create the syn-
thesized data. When synthesizing a document, consider-
ations include the size of the background image, the number
and size of characters to be written in the background image,
the number of lines that will split into two lines, and the
distance between the lines divided into two lines.

We resized the shorter length of each background image
at random between 1000 and 1400 pixels while maintaining
the aspect ratio. In addition, we chose one of 0, 90, 180, or
240 degrees and rotated it to the augment data. We gen-
erated various sized characters by randomly selecting several
characters ranging from 30 to 250 and randomly scaling each
character to have a short length between 50 and 70 pixels.

We selected several lines divided into two lines that
range from one to four per document. And the distance
between the lines that split into two was calculated to be 0.3,
0.4, and 0.5 times the width of the characters in the line

before the split. We generated 13 pieces of training data, 3
pieces of validation data, and 33 pieces of test data for each of
these three ratios.

Te frst column in Table 4 is the index edit distance and
fsher criterion, the second column is the method, the third
column is the average of performance (standard deviation), and
the fourth column is the ratio of our method to the human-
designed algorithm (m/a,m� b, c, and d). Regarding Index ED,
GIF (15.77), RIF (28.27), and GIF+RIF (14.86) are reduced to
0.52 times, 0.93 times, and 0.49 times, respectively, than the
human-designed algorithm (30.42). Regarding FC, GIF (26.99),
RIF (10.52), and GIF+RIF (40.29) are increased to 3.49 times,
1.36 times, and 5.21 times, respectively, than the human-
designed algorithm (7.74). Tis result is similar to the index ED
trend (human� 14.88, RIF� 9.79, GIF� 6.40, and
GIF+RIF� 6.73) of documents that have split lines into two on
ancient documents, and it is also similar to the FC trend
(human� 4.00, RIF� 4.96, GIF� 13.46, and GIF+RIF� 18.73).

Some documents cannot be processed because the dis-
tance between the two lines is too close, resulting in a high
index ED and standard deviation on our method. However,
our method outperforms the human-designed algorithm
regarding ordering performance. Furthermore, adding the
absolute position and the trend corresponding to the
translation order in the RIF to the graphic information of
GIF in our method improves performance due to the efect
of increasing the amount of input feature information.

(1) Input: B � {b1, . . . , bN}
(2) bn: n-th detected bounding box which has (xn, yn, wn, hn)

(3) Output: B, I � {i1, . . . , iN}
(4) in: n-th index id corresponding to bn

(5) procedure Ordering(B)
(6) L← 0{ }

(7) for src in coordinates [1:] do
(8) x, y, w, h � src

(9) min �∞
(10) for j � 0 . length (L) do
(11) xt, yt, wt, ht � src[j]

(12) C�

�����������������

(xt − x)2 + (yt − y)2
􏽱

(13) X� ∣ xt − x ∣
(14) if X≤wt × threshol d AND C< min then
(15) l � L[j]

(16) min � C

(17) if min �∞ then
(18) l � max(L) + 1

L←L∪ l

(19) L, in d � sort(L)

(20) B � B[in d]

(21) L, in d � sort line(L)

(22) B � B[in d]

(23) L, in d � sort yaxis(L)

(24) B � B[in d]

(25) I, in d � serialization(L)

(26) B � B[in d]

(27) return B, I

ALGORITHM 1: Human-designed algorithm.

10 Computational Intelligence and Neuroscience



4.8. Result Image. We compared several images of the
human-designed algorithm and our method qualitatively.
We used the threshold (0.51 for human-designed algo-
rithm and 0.025 for our method) determined in Perfor-
mance for Real Ancient Documents. To compare with the
human-designed algorithm, we chose the model with the
smallest deviation from the average index ED as shown in
Table 2 from among the nine GIF, RIF, and GIF RIF
models determined in sec. Performance for real ancient
documents.

We compared the line ids (Figure 8(a)) of the human-
designed algorithm (Human) and our method (GIF, RIF,
and GIF+RIF) for an ancient document with diagonal lines.
Te upper part of these images shows the detected character
box and line ids in the ancient document, and the lower part
shows the line id dots are drawn using diferent colors for
each line on the x-axis.

Line ED in the sample images is all 0.00 regardless of
method and the characters corresponding to the diagonal
lines (black boxes) are marked with the same color dots
(purple) on the x-axis. We can fnd that documents with
diagonal direction lines do well in line clustering regardless
of the method.

Figure 8(b) is the results of assigning the y-axis ids to the
ancient document and fgure 8(c) is the results of giving a
series of fnal index ids. We can fnd that both the human-
designed algorithm (Human) and our method (GIF, RIF,
GIF +RIF) assign the proper ids to the characters in the
diagonal direction because two types of ED are 0.00 re-
gardless of the method.

Regarding FC, GIF +RIF (5.18) and GIF (4.52) have
higher values than the human-designed algorithm (4.17),
and RIF (4.16) has the smallest value. As mentioned in sec.
Performance for real ancient documents, our method has a
larger FC as the amount of the input feature information
increases and our method performs line clustering better

than the human-designed algorithm in the case of GIF +RIF
and GIF.

For an ancient document with lines that split into two
lines, we compared the line ids (Figure 9(a)) of the human-
designed algorithm (Human) and the proposed method
(GIF, RIF, and GIF +RIF). Te upper and lower images are
identical to those in Figure 8(a). Our method (GIF, RIF, and
GIF +RIF) assigns the correct line ids to the characters
written in two lines (black box) rather than the human-
designed algorithm and displays them on the x-axis line as
dots in diferent colors (pink and brown). On the other hand,
the human-designed algorithm (Human) assigns same ids to
characters written in two lines showing dots of the same
color (brown) on the x-axis line. In addition, our method
(GIF, RIF, GIF +RIF) assigns values that are larger than the
threshold (0.025) determined in sec. Performance for real
ancient documents to the line ids of characters as you can see
from the red and blue boxes in each fgure, whereas the
human-designed algorithm (Human) assigns values that are
smaller than the threshold (0.51). Te line ED of our method
(GIF, RIF, GIF +RIF) is 0.00, but the line ED of the human-
designed algorithm (Human) is high as 29.12 because of this
diference.

Figure 9(b) shows the y-axis id and Figure 9(c) shows
the fnal index id. Our method indicates that it assigns
rising numbers to the y-axis id from top to bottom for all
lines, including the split line (black box). It also indicates
that the correct index id is assigned to the line that has been
split into two lines (black box). Tis shows that our method
(GIF, RIF, and GIF + RIF) has lower y-axis ED and index
ED and better ordering than the human-designed algo-
rithm (Human).

GIF +RIF (9.62) and GIF (7.86) have greater FCs than
the human-designed algorithm (3.75) and RIF (2.96) has the
lowest FC. As stated in sec. Performance for real ancient
documents, our method (GIF, RIF, and GIF +RIF) has a

Table 3: Average fsher criterion (standard deviation) of the human-designed algorithm (a) and our method (b, c, and d). Diference rate
indicates the ratio between methods (m/a, m� b,c, and d).

Method Fisher criterion ↑ Diference rate
(a) Human-designed 35.10 1
(b) RIF 24.76 (1.59) 0.71
(c) GIF 47.36 (2.72) 1.35
(d) GIF +RIF 51.10 (4.20) 1.46

Table 4: Average index edit distance or fsher criterion (standard deviation) of the human-designed algorithm (a) and our method (b, c, and
d). Diference rate indicates the ratio between methods (m/a, m� b,c, and d).

Type of performance Method Performance Diference rate

Index edit distance ↓

(a) Human-designed 30.42 (17.61) 1
(b) RIF 28.27 (17.95) 0.93
(c) GIF 15.77 (15.11) 0.52

(d) GIF +RIF 14.86 (15.41) 0.49

Fisher criterion ↑

(a) Human-designed 7.74 (5.92) 1
(b) RIF 10.52 (7.29) 1.36
(c) GIF 26.99 (39.60) 3.49

(d) GIF +RIF 40.29 (60.74) 5.21
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higher FC as the amount of input feature information rises,
and GIF +RIF and GIF perform line clustering better than
the human-designed algorithm (Human).

4.9. Processing Time. We tested the processing time for each
method with the same environment as sec. Performance for
real ancient documents to show whether real-time ordering

Human: line ED is 0.00 and FC is 4.17 GIF: line ED is 0.00 and FC is 4.52 RIF: line ED is 0.00 and FC is 4.16. GIF+RIF: line ED is 0.00 and FC is 5.18

(a)

Human: y-axis ED is 0.00 GIF: y-axis ED is 0.00. RIF: y-axis ED is 0.00. GIF+RIF: y-axis ED is 0.00.

(b)

Human: index ED is 0.00. GIF: index ED is 0.00. RIF: index ED is 0.00 GIF+RIF: index ED is 0.00

(c)

Figure 8: Te ids assigned to an ancient document with diagonal direction. (a) Te line ids. (b) Te y-axis ids. (c) Te index ids.
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is possible. However, we do not consider evaluating ordering
performance in real case, because ordering performance can
be infuenced by factors other than the ordering module.
Table 5 shows the time consumption for the ordering
pipeline.Te frst column of Table 5 shows the method, from
the second to ffth columns show the time taken for network
forwarding, line clustering, and the line and y-axis sorting
respectively, and the sixth column shows the total time
consumed.

Tere is no network forwarding process in the human-
designed algorithm because it is not based on learning,
whereas our method is based on learning, so there is a period
for network forwarding. However, this time consumption is
so small that it is not a problem in real-time processing. Te

process after network forwarding is a common process
regardless of the method. Tere is a slight time diference
because line clustering runs linearly in the human-designed
algorithm and parallelly in our method. Apart from this
procedure, our method takes less time demonstrating that it
is capable of real-time processing.

5. Conclusion

In this paper, we proposed a learning-based character or-
dering to assign the correct orders on the characters detected
in a random order for correct translation. Our method
increased the amount of learning information with 2-di-
mensional indices and learned to assign similar ids with

Human: line ED is 29.12 and FC is 3.75. GIF: line ED is 0.00 and FC is 7.86. RIF: line ED is 0.00 and FC is 2.96 GIF+RIF: line ED is 0.00 and FC is 9.62.
0.40.60.81.01.21.40.40.60.81.01.21.40.40.60.81.01.21.41.00.80.60.40.20.0

(a)

Human: y-axis ED is 14.27. GIF: y-axis ED is 0.00 RIF: y-axis ED is 0.00 GIF+RIF: y-axis ED is 0.00

(b)

Human: index ED is 14.24. GIF: index ED is 0.00. RIF: index ED is 0.00. GIF+RIF: index ED is 0.00.

(c)

Figure 9: Te ids assigned to an ancient document with a dividing line into two lines. (a) Te line ids. (b) Te y-axis ids. (c) Te index ids.

Table 5: Average (Standard deviation) running times (sec) for eachmodule in the ordering pipeline: (a)TeHuman-designed algorithm, (b)
RIF, (c) GIF, (d) GIF +RIF.

Network forwarding Line clustering Line sorting Sorting y-axis Total
(a) Human-designed N/A 4.3471 (4.4089) 0.0016 (0.0018 0.0001 (0.0000) 4.3487 (4.4107)
(b) RIF 0.0262 (0.0107) 0.0029 (0.0008) 0.0003 (0.0001) 0.0001 (0.0000) 0.0294 (0.0116)
(c) GIF 0.0289 (0.0111) 0.0031 (0.0009) 0.0003 (0.0001) 0.0001 (0.0000) 0.0324 (0.0120)
(d) GIF +RIF 0.0295 (0.0112) 0.0032 (0.0010) 0.0003 (0.0001) 0.0001 (0.0002) 0.0331 (0.0125)
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absolute ground truth which considers absolute position if
the characters in the document are in similar positions. We
also assigned line ids which can be clustered well using both
graphical and ROI information as an input. We addressed a
previously undiscovered problem, ordering character, sug-
gested a solution, and performed ordering character in a
document using a learning-based model that learns the
necessary computing operations from the document data.
Our method using the graphical input feature map reduced
the index edit distance by 0.53 times and enhanced the fsher
criterion by 1.35 times when compared to the human-
designed algorithm for 100 actual ancient documents.
Furthermore, adding ROI information to our method re-
duced the index edit distance by 0.43 times and increased the
fsher criterion by 1.46 times compared to the human-
designed algorithm.

We frst suggested an approach to the character ordering
problem, and we outperformed the human-designed algo-
rithm in character ordering. In particular, ours ordering
outperformed the human-designed algorithm for docu-
ments with split lines into two. For the horizontally written
documents, our method works for them by applying once we
have horizontal character orders as ground truth and make
absolute ground truth in horizontal direction.

However, we have some misordering of documents
with split lines and overlapping boxes. Misordering of some
overlapping bounding boxes is caused by the incorrect
result of box detection network. Once overlapping boxes
are detected, the incorrect boxes may cause temporary
incorrect orders. However, the relative orders of the fol-
lowing characters are not afected. For the misordering on
the split lines, dealing with this problem will be our future
work.
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