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In this study, the predefined time synchronization problem of a class of uncertain chaotic systems with unknown control gain
function is considered. Based on the fuzzy logic system and varying-time terminal slidingmode control technology, the predefined
time synchronization between the master system and the slave system can be realized by the proposed control method in this
study. /e simulation results confirm the theoretical analysis.

1. Introduction

In recent decades, chaotic synchronization has been a
research hotspot. /e main reason is its wide application,
such as in the fields of secure communication, biological
systems, and so on [1–6]. Up to now, there are many
synchronization methods between two chaotic systems,
such as adaptive control [7–11], active control [12–14],
impulsive control [15–17], and sliding mode control
[18–23]. Among them, sliding mode control is deeply
concerned by scholars because of its simple control
principle and good robustness. Under the influence of
unknown parameters and disturbances, two kinds of
sliding mode synchronization methods were studied in
[19]. Subsequently, to realize the state transient perfor-
mance of the controlled system, many terminal sliding
mode control methods were proposed. For example, a
terminal sliding mode control method was employed in
[22] and the synchronization of coronary artery system
was realized. For fractional-order chaotic systems, [23]
proposed a fractional-order terminal sliding mode control
method, which synchronized two uncertain fractional-
order systems. It should be pointed out that the initial
value of the system should not be too far from the sliding
mode; otherwise, the control performance will be affected.

It should also be considered that the gain of the dis-
continuous controller should not be large, which will
increase the serious chattering problem. In order to solve
the above problems, a varying-time terminal sliding mode
control method will be used to realize the predefined time
synchronization of two uncertain chaotic systems.

In this study, the predefined time synchronization of the
main system and the slave system is considered. /e main
highlights are as follows: the synchronization of two un-
certain chaotic systems is realized by the varying-time
sliding mode control method, and the case where the
controller gain is unknown is considered. /e rest of this
study is organized as follows. Some preliminaries are given
in Section 2. A preset time terminal sliding mode is proposed
and main results are investigated in Section 3. A synchro-
nization example is shown in Section 4. Finally, Section 5
gives a brief conclusion.

2. Preliminaries

/e master system is described as
_ξ1 � ξ2,
_ξ2 � f1 t, ξ1, ξ2( 􏼁,

⎧⎨

⎩ (1)
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where ξ1, ξ2 ∈ R are the states of system (1), and
f1(t, ξ1, ξ2) ∈ R is a nonlinear function.

/e slave system is described as

_η1 � η2,

_η2 � f2 t, η1, η2( 􏼁 + g t, η1, η2( 􏼁u,
􏼨 (2)

where η1, η2 ∈ R are the states of system (2),
f2(t, η1, η2) ∈ R is a nonlinear function, u ∈ R is the control
input, and g(t, η1, η2) is a control gain function.

Define synchronization errors e1 � η1 − ξ1, e2 � η2 − ξ2.
/e aim of this study is to design a varying-time terminal
sliding mode control method, so that the synchronization
error e1 reaches a small neighborhood of zero in the pre-
defined time. According to (1) and (2), one gets the syn-
chronization error system as

_e1 � e2,

_e2 � f2 t, η1, η2( 􏼁 − f1 t, ξ1, ξ2( 􏼁 + g t, η1, η2( 􏼁u.
􏼨 (3)

In order to design the controller in this study, the fol-
lowing assumptions need to be made.

Assumption 1. States ξ1, ξ2, η1, η2 are measurable, and initial
values ξ2(0) � η2(0).

Assumption 2. f1(t, ξ1, ξ2) and f2(t, η1, η2) are unknown
but bounded.

Assumption 3. g(t, η1, η2) is unknown strictly positive and
there exists a positive constant χ, such that g(t, η1, η2)> χ.

Remark 1. ξ2(0) � η2(0) in Assumption 1 is to ensure that
the initial value of error system (3) belongs to the sliding
mode, which will be designed later. Assumption 2 ensures
that the fuzzy logic system can be used to estimate the
unknown function.

In order to achieve the aim of this study, the time-
varying terminal sliding mode is considered:

z �
e2 + βe1 + 2λ1t + λ2 + λ3 e1 + λ1t

2
+ λ2t + α􏼐 􏼑

q/p
, t≤T,

e2 + βe1 + λ3e
q/p
1 , t>T,

⎧⎪⎨

⎪⎩

(4)

where T is a preset time, 0< q/p< 1, q and p are the odds,
α, β are the design positive constant, and λ1, λ2, and λ3 satisfy
the following conditions:

(1) In order to ensure that the initial value of system (3)
belongs to the sliding mode (4), i.e.,

βe1(0) + λ2 + λ3 e1(0) + α( 􏼁
q/p

� 0. (5)

(2) /e sliding mode (4) is continuous at t � T, i.e.,

2λ1T + λ2 � 0,

λ1T
2

+ λ2T + α � 0.
􏼨 (6)

(3) In order to ensure that sliding mode (4) can quickly
approach the origin, i.e.,

λ3 > 0. (7)

Let

Δ �
e1 + λ1t

2
+ λ2t + α, t≤T,

e1, t>T.

⎧⎨

⎩ (8)

Remark 2. /e derivation of Δq/p with respect to time t may
appear singular problem, and we modify Δq/p−1 _Δ as

Δq/p− 1 _Δ �

Δq/p− 1
e2 + 2λ1t + λ2( 􏼁 , for t≤T andΔ≠ 0,

0 , for t≤T andΔ � 0,

Δq/p− 1
e2 , for t>T andΔ≠ 0,

0 , for t>T andΔ � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

3. Main Result

Since ξ1, ξ2, η1, η2 are measurable, unknown functions
f1(t, ξ1, ξ2), f2(t, η1, η2), and g(t, η1, η2) can be estimated
by fuzzy logic systems [24, 25]. For f1(t, ξ1, ξ2), f2(t, η1, η2),
and g(t, η1, η2), there exist θ∗T

f1
φf1

(ξ1, ξ2), θ
∗T
f2

φf2
(η1, η2),

and θ∗T
g φg(η1, η2), such that

f1 t, ξ1, ξ2( 􏼁 � θ ∗T
f1

φf1
ξ1, ξ2( 􏼁 + εf1

ξ1, ξ2( 􏼁,

f2 t, η1, η2( 􏼁 � θ∗T
f2

φf2
η1, η2( 􏼁 + εf2

η1, η2( 􏼁,

g t, η1, η2( 􏼁 � θ∗T
g φg η1, η2( 􏼁 + εg η1, η2( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where εf1
(ξ1, ξ2), εf2

εg(η1, η2), and εg(η1, η2) are the
bounded fuzzy estimation errors, θ ∗T

f1
, θ∗T

f2
, and θ∗T

g are the
ideal weight vectors, and φf1

(ξ1, ξ2), φf2
(η1, η2), and

φg(η1, η2) are the Gaussian functions.
From (3) and (4), the derivative of z with respect to t can

be obtained as

_z � f2 t, η1, η2( 􏼁 − f1 t, ξ1, ξ2( 􏼁 + βe2 + g t, η1, η2( 􏼁u

+

2λ1 + λ3
q

p
Δp/q− 1 _Δ, t≤T

λ3
q

p
Δp/q− 1 _Δ, t>T

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� θ∗T
f2

φf2
η1, η2( 􏼁 − θ ∗T

f1
φf1

ξ1, ξ2( 􏼁 + βe2 + εf2
η1, η2( 􏼁

− εf1
ξ1, ξ2( 􏼁 + θ∗T

g φg η1, η2( 􏼁ue + g t, η1, η2( 􏼁u

+

2λ1 + λ3
q

p
Δp/q− 1 _Δ, t≤T,

λ3
q

p
Δp/q− 1 _Δ, t>T.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)
Now, design the controller as
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u � ue + us,

ue �

􏽢θ
T

gφg η1, η2( 􏼁

􏽢θ
T

gφg η1, η2( 􏼁􏼒 􏼓
2

+ 1

−􏽢θ
T

f2
φf2

η1, η2( 􏼁 + 􏽢θ
T

f1
φf1

ξ1, ξ2( 􏼁 − k1z − βe2

+

−2λ1 − λ3
q

p
Δp/q− 1 _Δ, t≤T

−λ3
q

p
Δp/q− 1 _Δ, t>T

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≜
􏽢θ

T

gφg η1, η2( 􏼁Π

􏽢θ
T

gφg η1, η2( 􏼁􏼒 􏼓
2

+ 1
,

us � −
|Π|sign(z)

􏽢θ
T

gφg η1, η2( 􏼁􏼒 􏼓
2

+ 1􏼠 􏼡χ
,

(12)

where k1 is a design positive constant, and 􏽢θf1
, 􏽢θf2

, and 􏽢θg

are the estimations of θ∗f1
, θ∗f2

, and θ∗g. /e parameter ad-
aptation laws of 􏽢θf1

and 􏽢θf2
are given by

􏽢θ
.

f1
� cf1

−zφf1
ξ1, ξ2( 􏼁 − δf1

􏽢θf1
􏼐 􏼑,

􏽢θ
.

f2
� cf2

zφf2
η1, η2( 􏼁 − δf2

􏽢θf2
􏼐 􏼑,

􏽢θ
.

g � cg zueφg η1, η2( 􏼁 − δg
􏽢θg􏼐 􏼑,

(13)

where cf1
, cf2

, cg, δf1
, δf2

, and δg are the design positive
constants. Let ε(t) � εf1

(ξ1, ξ2) + εf2
(η1, η2) + εg(η1, η2)ue.

Obviously, ε(t) is bounded, i.e., there exists a positive
constant ε∗, such that |ε(t)|≤ ε∗.

Theorem 1. Under Assumptions 1–3, if the time-varying
terminal sliding mode (4), controller (12), and parameter
adaptive laws (13) are employed, then all signals in (14) are
bounded.

Proof. Consider the following Lyapunov function:

V1 �
1
2
z
2

+
1

cf1

􏽥θ
T

f1
􏽥θf1

+
1

cf2

􏽥θ
T

f2
􏽥θf2

+
1
cg

􏽥θ
T

g
􏽥θg, (14)

where 􏽥θf1
� θ∗f1

− 􏽢θf1
, 􏽥θf2

� θ∗f2
− 􏽢θf2

, and 􏽥θg � θ∗g − 􏽢θg.
From (11), derivation of V1 with respect to t yields

_V1 � z _z −
1

cf1

􏽥θ
T

f1
􏽢θ
.

f1
−

1
cf2

􏽥θ
T􏽢θ

.

f2

� z

θ∗T
f2

φf2
η1, η2( 􏼁 − θ ∗T

f1
φf1

ξ1, ξ2( 􏼁 + βe2 + ε(t)

+θ ∗T
g φg η1, η2( 􏼁ue + g t, η1, η2( 􏼁us

+

2λ1 + λ3
q

p
Δp/q− 1 _Δ, t≤T

λ3
q

p
Δp/q− 1 _Δ, t>T

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
1

cf1

􏽥θ
T

f1
􏽢θ
.

f1
−

1
cf2

􏽥θ
T

f2
􏽢θ
.

f2
−

1
cg

􏽥θ
T

g
􏽢θ
.

g

� z

􏽥θ
T

f2
φf2

η1, η2( 􏼁 − 􏽥θ
T

f1
φf1

ξ1, ξ2( 􏼁 + βe2 + ε(t)

􏽢θ
T

f2
φf2

η1, η2( 􏼁 − 􏽢θ
T

f1
φf1

ξ1, ξ2( 􏼁 + 􏽥θ
T

gφg η1, η2( 􏼁ue

+􏽢θ
T

gφg η1, η2( 􏼁ue + g t, η1, η2( 􏼁us

+

2λ1 + λ3
q

p
Δp/q− 1 _Δ, t≤T

λ3
q

p
Δp/q− 1 _Δ, t>T

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
1

cf1

􏽥θ
T

f1
􏽢θ
.

f1
−

1
cf2

􏽥θ
T

f2
􏽢θ
.

f2
−

1
cg

􏽥θ
T

g
􏽢θ
.

g.

(15)

Substituting (12) and (13) to (15) yields

_V1 � −k2z
2

−
zΠ

􏽢θ
T

gφg η1, η2( 􏼁􏼒 􏼓
2

+ 1
−

g t, η1, η2( 􏼁|z‖|π|

􏽢θ
T

gφg η1, η2( 􏼁􏼒 􏼓
2

+ 1􏼠 􏼡χ

+ zε(t) + δf1
􏽥θ

T

f1
􏽢θf1

+ δf2
􏽥θ

T

f2
􏽢θf2

+ δg
􏽥θ

T

g
􏽢θg

≤ − k2z
2

+ zε(t) + δf1
􏽥θ

T

f1
􏽢θf1

+ δf2
􏽥θ

T

f2
􏽢θf2

+ δg
􏽥θ

T

g
􏽢θg.

(16)

Since the following inequalities hold:
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zε(t)≤
1
4
z
2

+ ε∗2,

δf1
􏽥θ

T

f1
􏽢θf1
≤
δf1

2
−􏽥θ

T

f1
􏽥θf1

+ θ∗T
f1

θ∗f1
􏼒 􏼓,

δf2
􏽥θ

T

f2
􏽢θf2
≤
δf2

2
−􏽥θ

T

f2
􏽥θf2

+ θ∗T
f2

θ∗f2
􏼒 􏼓,

(17)

substituting (12) into _V1 yields

_V1 ≤ − k1 −
1
4

􏼒 􏼓z
2

−
δf1

2
􏽥θ

T

f1
θf1

−
δf2

2
􏽥θ

T

f2
􏽥θf2

+ R
∗
, (18)

where R∗ � ε∗2 + δf1
/2θ ∗T

f1
θ∗f1

+ δf1
/2θ ∗T

f2
θ∗f2

. Selecting k1,
δ1, and δ2, such that ı1 ≜ min 2k1 − 1/2, cf1

δf1
, cf2

δf2
􏽮 􏽯> 0,

then
_V1 ≤ − ı1V1 + R

∗
. (19)

According to (19), we can conclude that all signals in (14)
are bounded. /is completes the proof. □

Remark 3. For t>T, e2 � _e1 � z − βe1 − λ3e
q/p
1 , with the

boundedness of z; there exists unknown constant b∗, such
that |z|≤ b∗. Let V2 � 1/2e21, and one has

_V2 � e1 _e1

� e1 z − βe1 − λ3e
q/p
1􏼐 􏼑

≤ − β −
1
4

􏼒 􏼓e
2
1 − λ3e

q/p−1
1 + b

∗2
.

(20)

Let β> 1/4 and define

Ωe � e1|λ3e
q/p−1
1 ≤

b
∗2

1 − ]
􏼨 􏼩, (21)

where ] ∈ (0, 1). Obviously, if e1∈Ωe, _V2 ≤−

λ3e
q/p+1
1 + b∗2 < − λ3]e

q/p+1
1 < 0, V2 will monotonically de-

crease only to enter Ωe. /erefore, we obtain the conver-
gence range of the tracking error e1.

4. Numerical Simulations

In this section, the chaotic gyroscope system [26] is taken as
an example to show the effectiveness of the proposed
method (12). For the master system (1), define f1(t, ξ1, ξ2) �

−102(1− cos ξ1)
2/sin3ξ1 + sin ξ1 − 0.5ξ2 − 0.05ξ 3

2 + 35.7 sin
(2t)sin ξ1. For the slave system (2), define f2(t, η1, η2) �

−102(1− cos η1)
2/sin3η1 + sin ξ1− 0.5η2 − 0.05η32 + 35.5

sin(2t)sin η1, g(t, η1, η2) � 5 + sin η2. Obviously, g(t, η1,
η2)> χ ≜ 3. /e initial values ξ1(0) � −1, ξ2(0) � 1,
η1(0) � 2, and η2(0) � 1. /e fuzzy membership functions
are selected as

φ(ρ) � exp −
1
2

ρ + 7.5 − 2.5j

1.2
􏼒 􏼓

2
􏼢 􏼣, (22)

where ρ � ξ1, ξ2, η1, η2; j � 1, 2, 3, 4, 5. First, select a group of
parameters as T � 2, k1 � 3, q � 3, p � 5, β � 3, α � −5, λ1 �

−5/4, λ2 � 5, λ3 � 14/23/5, and the simulation results are
shown in Figures 1–3. Figures 1 and 2 show that the state ξ1
of master system (1) and the state η1 of slave system (2) are
synchronized after T � 2s. In order to overcome the in-
fluence of unknown gain g(t, η1, η2), Figure 3 shows that the
controller u fluctuates at T � 2s, and then, the controller has
a small chattering phenomenon.

Extend the predefined time to T � 5s, and parameters
modify as λ1 � −1/5, λ2 � 2, λ3 � 11/23/5; other parameters
remain unchanged. /e simulation results are shown in
Figures 4–6. Figures 4 and 5 show that states ξ1 and η1 are
synchronized after T � 5s (Figure 6). /e controller u also
has a small fluctuation at t � 5s, and the chattering phe-
nomenon is very small.

Obviously, the proposed control method (12) in this
study can ensure the synchronization between master
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0.5
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Figure 1: Time response trajectory of e1 by using the proposed
method (12) with T � 2s.
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Figure 2: Time response trajectories of ξ1 and η1 by using the
proposed method (12) with T � 2s.

4 Computational Intelligence and Neuroscience



2 4 6 8 100
Time (second)

-40

-20

0

20

40

u

u

Figure 3: Time response trajectory of controller u by using the proposed method (12) with T � 2s.
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Figure 4: Time response trajectory of e1 by using the proposed method (12) with T � 5s.
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Figure 5: Time response trajectories of ξ1 and η1 by using the proposed method (12) with T � 5s.
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system (1) and slave system (2) at a predefined time and can
also overcome the influence of unknown gain g(t, η1, η2).

5. Conclusion

In this study, the predefined time synchronization problem
of uncertain chaotic systems was investigated. /e fuzzy
logic system was used to estimate the unknown function. A
time-varying sliding mode was constructed. /e proposed
varying-time terminal sliding mode control method in this
study made all signals bounded and the synchronization
error entered a small neighborhood of zero after the pre-
defined time. Simulation results show the effectiveness of the
method.
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