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In order to study the impact of continuous vaccination and voluntary isolation for the COVID-19, a susceptible-exposed-infected-
recovered-quarantine-vaccines (SEIR-QV) model is proposed. A basic regeneration number R0 is de�ned to determine the
extinction or persistence of the disease. We numerically analyze the impact of key parameters based on actual parameters of
COVID-19, such as the vaccination rate, population importation rate, and natural (or causal) mortality transmission rate on the
dynamics of disease transmission. �en we obtain sensitivity indices of some parameters on R0 by sensitivity analysis. Finally, the
stability of the system and the e�ectiveness of the optimal control strategy are veri�ed by numerical simulation.

1. Introduction

Since the outbreak of the coronavirus disease 2019
(COVID-19), it has been signi�cantly impacting the world
economy and our lives. Globally, as of 4:00 pm CET, 28
February 2022, there have been 434,154,739 con�rmed cases
of COVID-19, including 5,944,342 deaths, reported to the
WHO. As of 26 February 2022, a total of 10,585,766,316
vaccine doses have been administered.

With the emergence of multiple mutant strains of novel
coronavirus, including Alpha, Beta, Gamma, Delta, and
Omicron, many scholars further explore the transmission
and epidemic pattern of COVID-19 from di�erent view.
�ese research results are helpful to learn about the
transmission and mode of infectious diseases and provide
reliable information for the prediction and control of in-
fectious diseases.

In the study of the dynamics of infectious diseases, the
susceptibility-infection-recovery (SIR) model was mainly
established by Kermack and McKendrick in 1927 with the
kinetic method. In order to better study the characteristics of
infectious diseases and obtain the best prevention strategies,
scholars propose many improved models based on the

traditional SIRmodel for di�erent situations. By introducing
time variation factors, Chen et al. [1] present a new SIR
model, which has stronger adaptability and robustness in
predicting the number of con�rmed cases and in§ection
points of infectious diseases. Wang et al. [2] propose a SIR
model with time-varying isolation protocol. In this model,
the dynamic evolution of infectious diseases can be com-
prehensively analyzed and evaluated. In addition, Hota et al.
[3] introduce a closed-loop framework combined with the
SIR model and expound the signi�cance of early detection
through two feasible optimization questions.

In view of the latent characteristics of some infectious
diseases, SEIR models are further proposed based on the SIR
model. Li et al. [4] �t the basic regeneration number curve
based on the SEIR model. Trends in COVID-19 outbreaks in
China, the USA, India, and Iran are predicted and analyzed.
�e results show that the rapid and e©cient isolation
measures adopted in China are signi�cant in suppressing
COVID-19. In addition, some new models take into account
the in§uence of di�erent factors on infectious diseases, such
as the presence of temperature and humidity [5, 6]. It is
concluded that COVID-19 is more infectious and lethal at
low temperatures and humidity. Besides, many research
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studies show that the different epidemic prevention mea-
sures, such as mandatory isolation, wearing masks, vacci-
nation, and government control policies, have significant
effects on preventing the rapid spread of COVID-19 [7–9].

Due to the problem of asymptomatic infected persons in
infectious diseases, Yu et al. [10] propose an SEIR-AQmodel
by considering factors including prevention and control
efforts, isolation strategies, and asymptomatic infected
persons. *e SEIR-AQ model can well anticipate the spread
trend of COVID-19, providing technical support for the
scientific assessment of the infectious disease situation.
Analysis from the SEIR-AQ model shows that prevention
and control isolation, medical follow-up isolation, and other
measures have a significant inhibitory impact on the spread
of COVID-19. In addition, some scholars use deep learning
methods to study the impact of the COVID-19 outbreak on
human society [11]. Some other scholars have analyzed and
studied the transmission trends of the COVID-19 outbreak.
*e spatiotemporal evolution and transmission trends of the
COVID-19 epidemic are analyzed using an ontological
modeling approach by Liu et al. [12].

Although control measures, vaccination, latent infec-
tivity, and other factors are considered in these studies, the
stability and existence of the model are not discussed from
the mathematical view point. *erefore, we establish a new
susceptible-exposed-infected-recovered-quarantine-vac-
cines (SEIR-QV) model based on the latent period and the
influence of prevention and control measures of COVID-19.
In mathematical theory, the extinction or persistence of a
disease can be determined based on the basic reproduction
number and the Lyapunov function. We numerically sim-
ulate and analyze the impact of key real-world parameters of
COVID-19. What’s more, our sensitivity analysis indicates
that the related parameters have significant effects on the
stability and existence of the SEIR-QV model.

2. The SEIR-QV Model

In this paper, the susceptible-exposed-infectious-recovered-
asymptomatic-quarantine-vaccines (SEIR-AQV) model is
developed based on the traditional SEIR model. *e SEIR-
AQV model takes into account the effect of isolation based
on the traditional model and divides the population into
unisolated susceptible people (S), unisolated exposed people
(E), unisolated infected people (I), isolated susceptible
people (Sq), isolated exposed people (Eq), asymptomatic
infected people (A), hospitalized people (H), and recovered
people (R).

*e SEIR-AQV model has the following assumptions:
first assumption: medical resources are adequate, i.e., iso-
lated exposed people can be directly converted to hospi-
talized people after diagnosis; second assumption: once
infected with COVID-19, one must undergo inpatient
treatment to recover, i.e., infected people are unlikely to
recover on their own; third assumption: both isolated ex-
posed people and hospitalized people are isolated from the
outside world, i.e., they are not infectious; fourth assump-
tion: the infected people will be immune after recovery, i.e.,
he or she will not become susceptible again after recovery.

*e bin transformation relationship is shown in Figure 1.
*e equations of the SEIR-AQV model are as follows:

dS

dt
� Λ −

cβ
δ

S(I + θA + υE) + λ2Sq − λ1 + η( 􏼁S,

dSq

dt
� λ1S − λ2 + η( 􏼁Sq,

dE

dt
�

c(1 − q)β
δ

S(I + θA + υE) − (σ + η)E,

dEq

dt
�

cqβ
δ

S(I + θA + υE) − b3 + η( 􏼁Eq,

dI

dt
� σeE − b1 + α1 + η( 􏼁I,

dA

dt
� σ(1 − e)E − b2 + α2 + η( 􏼁A,

dH

dt
� b1I + b2A + b3Eq − r + α3 + η( 􏼁H,

dR

dt
� rH − ηR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where c means the rate of exposure; η means the natural
mortality rate; q represents the proportion of isolated; δ
represents the vaccine coverage rate; β represents the
probability of transmission; θ stands for the ratio of A

relative to the transmission capacity of I; υ stands for the
ratio of E relative to the transmission capacity of I; b1, b2, b3
stand for the conversion of I, A, andEq, respectively to H; λ1
represent the rate of conversion of S into Sq; λ2 stands for the
rate of conversion of Sq into S; σ stands for the ratio of E to I

conversion and σ � 1/Incubation period; e means the ratio
of E to I conversion; α1, α2, α3 mean the rate of conversion of
I, A, and the rate of cause-specific death of H; r means the
rate of recovery of H; and Λ means the rate of population
importation.

However, given the reality of the COVID-19 epidemic,
the status of isolated susceptible people is unlikely to persist
over time, and isolated susceptible people have no trans-
lational relationship to hamlets other than unisolated sus-
ceptible people. *erefore, the population type of isolated
susceptible people and the parameters involved in it are
removed. Considering also that the proportion of asymp-
tomatic infected people is very small and has minimal effect
on the overall transmission trend of the COVID-19 out-
break, the population type of asymptomatic infected people
and its involved parameters are also removed. *erefore, we
improved the SEIR-AQV model in the context of the
COVID-19 outbreak. We construct a new seasonal sus-
ceptible-exposed-infected-removed-quarantine-vaccines
(SEIR-QV) model with the population transformation re-
lationship bin view shown in Figure 2.
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�e equations of the SEIR-QV model are as follows:

dS
dt
� Λ −

cβ
δ
S(I + υE) − ηS,

dE
dt
�
c(1 − q)β

δ
S(I + υE) − (σ + η)E,

dEq
dt

�
cqβ
δ
S(I + υE) − b2 + η( )Eq,

dI
dt
� σE − b1 + α1 + η( )I,

dH
dt

� b1I + b2Eq − r + α2 + η( )H,

dR
dt
� rH − ηR,




(2)

where α1, α2 represent the rate of cause-speci�c death of
unisolated infected I and hospitalized H, respectively, and

b1, b2 represent the rate of conversion of unisolated in-
fected I and isolated exposed Eq to hospitalized H,
respectively.

2.1. Proof of Stability of the SEIR-QV Model. To study the
stability of equation (2), it is su©cient to study the stability of
the following three formulas in (2) [13, 14]:

dS
dt
� Λ −

cβ
δ
S(I + υE) − ηS,

dE
dt
�
c(1 − q)β

δ
S(I + υE) − (σ + η)E,

dI
dt
� σE − b1 + α1 + η( )I.




(3)

Considering the biological signi�cance of the system, the
dynamical properties of equation (3) are discussed mainly in
the closed set Ω � (S, E, I)∈ R3

+S|≥ 0, E≥ 0, I≥ 0{ }, where
R3
+ denotes the �rst trigonometric limit of R3 and contains

the boundary.
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Figure 1: Bin view of the population transformation relationship of the SEIR-AQV model.
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Figure 2: Bin view of the population transformation relationship of the SEIR-QV model.
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2.1.1. Existence of Equilibrium Point. *e equilibrium point
of (3) satisfies

dS

dt
� 0,

dE

dt
� 0,

dI

dt
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

When I � 0, (3) has the point of diseased equilibrium
P0 � (S0, E0, I0) � (Λ/η, 0, 0).

When I≠ 0, from dI/dt � 0, we get I � σE/α1 + b1 + η;
from dE/dt � 0, we get S(I + υE) � δ(σ + η)E/cβ(1 − q),
from dS/dt � 0, we get S(I + υE) � (δ/cβ)(Λ − ηS), so
S � (Λ/η) − ((σ + η)E/(1 − q)η).

Bring I � σE/α1 + b1 + η and S � (Λ/η) − ((σ + η)E/
(1 − q)η) into S(I + υE) � δ/cβ(Λ − ηS) to obtain the en-
demic equilibrium point P∗ � (S∗, E∗, I∗), where

S
∗

�
δ(σ + η) α1 + b1 + η( 􏼁

cβ(1 − q) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃
,

E
∗

�
Λ(1 − q)

σ + η
−

δη α1 + b1 + η( 􏼁

cβ σ + υ α1 + b1 + η( 􏼁􏼂 􏼃
,

I
∗

�
σΛ(1 − q)

(σ + η) α1 + b1 + η( 􏼁
−

σδη
cβ σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

.

(5)

2.1.2. Basic Regeneration Number. *e basic regeneration
number (R0) indicates the number of people infected by a
patient during the average disease period when all are
susceptible at the beginning of the disease. R0 � 1 can be
used as a threshold to decide whether the disease is extin-
guished or not. When R0 < 1, the disease will become extinct.
When R0 > 1, the disease will persist. *e basic regeneration
number is closely related to the stability of the endemic
equilibrium point.

Next, we study the basic regeneration number R0 of
equation (3). Let x � (E, I, S)T, then equation (3) can be
rewritten as

dx

dt
� F(x) − V(x), (6)

where

F(x) �

c(1 − q)β
δ

S(I + υE)

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V(x) �

(σ + η)E

α1 + b1 + η( 􏼁I − σE

ηS +
cβ
δ

S(I + υE) − Λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

*e Jacobi matrices of F(x) and V(x) at the disease-free
equilibrium P0 � ((Λ/η), 0, 0) are, respectively,

DF P
0

􏼐 􏼑 �

F2×2 0

0 0
⎛⎝ ⎞⎠

�

c(1 − q)βυΛ
δη

c(1 − q)βΛ
δη

0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

DV P
0

􏼐 􏼑 �

V2×2 0

cβυΛ
δη

cβΛ
δη

η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

σ + η 0 0

− σ α1 + b1 + η 0

cβυΛ
δη

cβΛ
δη

η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

where

F �

c(1 − q)βυΛ
δη

c(1 − q)βΛ
δη

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V �

σ + η 0

− σ α1 + b1 + η

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(9)

*e basic regeneration number, denoted by R0, is thus
given by the following equation:
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R0 � ρ FV
− 1

􏼐 􏼑

�
cΛβ(1 − q)

ηδ(η + σ)
υ +

σ
α1 + b1 + η

􏼢 􏼣.

(10)

2.1.3. Proof of Stability of the SEIR-QV Model

Theorem 1. For equation (3), the disease-free equilibrium
P0 � ((Λ/η), 0, 0) is locally asymptotically stable if R0 < 1.

Proof. Linearizing equation (3) at the disease-free equilib-
rium point P0 � ((Λ/η), 0, 0), we obtain the linearization
matrix at point P0 � ((Λ/η), 0, 0) as the following equation:

J P
0

􏼐 􏼑 �

− η −
cβυΛ
δη

−
cβΛ
δη

0
c(1 − q)βυΛ

δη
− (σ + η)

c(1 − q)βΛ
δη

0 σ − α1 + b1 + η( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

*e characteristic equation of this matrix is
det(λL − J(P0)), where L is a 3 × 3 unit matrix. Expanding it
gives

(λ + η) λ2 + α1 + b1 + η( 􏼁 +(σ + η) −
c(1 − q)βυΛ

δη
􏼠 􏼡λ + α1 + b1 + η( 􏼁(σ + η) 1 − R0( 􏼁􏼠 􏼡 � 0. (12)

Obviously, this characteristic equation has a negative
characteristic root λ � − η. *e other characteristic roots
satisfy the following equation:

λ2 + α1 + b1 + η( 􏼁 +(σ + η) −
c(1 − q)βυΛ

δη
􏼠 􏼡λ + α1 + b1 + η( 􏼁(σ + η) 1 − R0( 􏼁 � 0. (13)

It is known that R0 � ρ(FV− 1) � (cΛβ(1 − q)/ηδ(η+ σ))

[υ + (σ/α1 + b1 + η)]≤ 1.
Let R1 � R0 − (cΛβ(1 − q)/ηδ(η + σ)) · (σ/α1 + b1 + η)

� (cΛβ(1 − q)υ/ηδ(η + σ))< 1, then

α1 + b1 + η( 􏼁 +(σ + η) −
c(1 − q)βυΛ

δη

� α1 + b1 + η( 􏼁 +(σ + η) 1 −
c(1 − q)βυΛ
δη(σ + η)

􏼢 􏼣

� α1 + b1 + η( 􏼁 +(σ + η) 1 − R1( 􏼁.

(14)

So we can obtain

λ2 + α1 + b1 + η( 􏼁 +(σ + η) 1 − R1( 􏼁( 􏼁λ
+ α1 + b1 + η( 􏼁(σ + η) 1 − R0( 􏼁 � 0. (15)

It is easy to verify for R0 < 1 and R1 < 1

α1 + b1 + η( 􏼁 +(σ + η) 1 − R1( 􏼁( 􏼁 α1 + b1 + η( 􏼁(σ + η) 1 − R0( 􏼁> 0,

(16)

that the roots of the quadratic equation are as follows:

λ2 + α1 + b1 + η( 􏼁 +(σ + η) 1 − R1( 􏼁( 􏼁λ

+ α1 + b1 + η( 􏼁(σ + η) 1 − R0( 􏼁 � 0.
(17)

All have negative real parts, i.e., the disease-free equi-
librium point P0 � ((Λ/η), 0, 0) of equation (3) is proved to
be locally asymptotically stable. □

Theorem 2. For equation (3), the disease-free equilibrium
P0 � ((Λ/η), 0, 0) is globally asymptotically stable if R0 ≤ 1.

Proof. By considering the Lyapunov function,

V(t) � x1E(t) + x2I(t). (18)

Clearly, the solution of V(t) along equation (3) has
V(t)≥ 0 and V(t) � 0 when and only when E(t) � 0 and
I(t) � 0. *e full derivative of the solution of the function
V(t) along equation (3) is as follows:
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dV(t)

dt
� x1

dE(t)

dt
+ x2

dI(t)

dt

� x1
c(1 − q)β

δ
S(I + υE) − (σ + η)E􏼢 􏼣 + x2 σE − b1 + α1 + η( 􏼁I􏼂 􏼃

� x1
c(1 − q)β

δ
SI +

x1c(1 − q)βυ
δ

S − x1(σ + η) + x2σ􏼢 􏼣E − x2 b1 + α1 + η( 􏼁I

≤
c(1 − q)βΛ

δη
x1I − b1 + α1 + η( 􏼁x2I +

c(1 − q)βυΛ
δη

x1 − (σ + η)x1 + σx2􏼢 􏼣E.

(19)

Take x1 � σ, x2 � σ + η(c(1 − q)βυΛ/δη).
*en,

dV(t)

dt
≤

c(1 − q)βΛσ
δη

I − b1 + α1 + η( 􏼁 (σ + η) −
c(1 − q)βυΛ

δη
􏼢 􏼣I

�
c(1 − q)βΛσ

δη
+ b1 + α1 + η( 􏼁

c(1 − q)βυΛ
δη

− b1 + α1 + η( 􏼁(σ + η)􏼨 􏼩I

�
c(1 − q)βΛ

δη
σ + b1 + α1 + η( 􏼁υ􏼂 􏼃 − b1 + α1 + η( 􏼁(σ + η)􏼨 􏼩I

� b1 + α1 + η( 􏼁(σ + η)
c(1 − q)βΛ
δη(σ + η)

υ +
σ

b1 + α1 + η
􏼢 􏼣 − b1 + α1 + η( 􏼁(σ + η)􏼨 􏼩I,

� b1 + α1 + η( 􏼁(σ + η) R0 − 1( 􏼁I,

(20)

where the inequality sign is obtained based on S≤ S0. When
R0 ≤ 1, there is dV(t)/dt ≤ 0. *us, dV(t)/dt≤ 0 when and
only when I(t) � 0. *erefore, if R0 ≤ 1, the maximum tight
invariant set (S, E, I) ∈ Ω|(dV(t)/dt) � 0{ } is the single
point set P0􏼈 􏼉. *erefore, if R0 ≤ 1, the disease-free equi-
librium point P0 of equation (3) is globally asymptotically
stable in Ω. □

Theorem 3. S∗, E∗, I∗ are positive when R0 > 1.

Proof

S
∗

�
δ(σ + η) α1 + b1 + η( 􏼁

cβ(1 − q) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃
. (21)

It is known that the parameters are positive and q< 1, so
S∗ > 0 obviously holds the following equation:

E
∗

�
Λ(1 − q)

(σ + η)
−

δη α1 + b1 + η( 􏼁

cβ σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

�
cβΛ(1 − q) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃 − δη α1 + b1 + η( 􏼁(σ + η)

cβ(σ + η) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

�
(cβΛ(1 − q)/(σ + η)) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃 − δη α1 + b1 + η( 􏼁

cβ σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

�
(cβΛ(1 − q)/δη(σ + η)) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃 − α1 + b1 + η( 􏼁

(cβ/δη) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

�
α1 + b1 + η( 􏼁 (cβΛ(1 − q)/δη(σ + η)) υ + σ/ α1 + b1 + η( 􏼁( 􏼁􏼂 􏼃 − 1􏼈 􏼉

(cβ/δη) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

�
α1 + b1 + η( 􏼁 R0 − 1( 􏼁

(cβ/δη) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃
.

(22)

It is known that R0 > 1, q< 1 and the parameters are
positive, so E∗ > 0.
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I
∗

�
σΛ(1 − q)

(σ + η) α1 + b1 + η( 􏼁
−

σδη
cβ σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

� σ ·
cβΛ(1 − q) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃 − δη(σ + η) α1 + b1 + η( 􏼁

cβ(σ + η) α1 + b1 + η( 􏼁 σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

� σ ·
(cβΛ(1 − q)/δη) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃 − (σ + η) α1 + b1 + η( 􏼁

(cβ/δη)(σ + η) α1 + b1 + η( 􏼁 σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

� σ ·
(cβΛ(1 − q)/δη(σ + η)) α1 + b1 + η( 􏼁 υ + σ/ α1 + b1 + η( 􏼁( 􏼁􏼂 􏼃 − α1 + b1 + η( 􏼁( 􏼁

(cβ/δη) α1 + b1 + η( 􏼁 σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

� σ ·
(cβΛ(1 − q)/δη(σ + η)) υ + σ/ α1 + b1 + η( 􏼁( 􏼁􏼂 􏼃 − 1

(cβ/δη) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

� σ ·
R0 − 1

(cβ/δη) σ + υ α1 + b1 + η( 􏼁􏼂 􏼃
.

(23)

It is known that R0 > 1, q< 1 and the parameters are
positive, so I∗ > 0. □

Theorem 4. For equation (3), the endemic equilibrium P∗ �

(S∗, E∗, I∗) is locally asymptotically stable if R0 > 1.

Proof. Linearize equation (3) at the endemic equilibrium
point P∗ � (S∗, E∗, I∗) and obtain the linearization matrix at
point P∗ � (S∗, E∗, I∗) as follows:

J P
∗

( 􏼁 �

−
cβ
δ

I
∗

+ υE
∗

( 􏼁 − η −
cβυ
δ

S
∗

−
cβ
δ

S
∗

c(1 − q)β
δ

I
∗

+ υE
∗

( 􏼁
c(1 − q)βυ

δ
S
∗

− (σ + η)
c(1 − q)β

δ
S
∗

0 σ − α1 + b1 + η( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

*e characteristic equation of this matrix is
det(λL − J(P∗)), where L is a 3 × 3 unit matrix. Expanding it
gives λ3 + Aλ2 + Bλ + C � 0, where

A � −
c(1 − q)βυS

∗

δ
+(σ + η) + α1 + b1 + η( 􏼁 + η +

cβ I
∗

+ υE
∗

( 􏼁

δ
,

B � −
cη(1 − q)βυS

∗

δ
+ η(σ + η) + η α1 + b1 + η( 􏼁 −

cσ(1 − q)βS
∗

δ

+ α1 + b1 + η( 􏼁 −
c(1 − q)βυS

∗

δ
+(σ + η)􏼢 􏼣

+
cβ α1 + b1 + η( 􏼁 +(σ + η)( 􏼁 I

∗
+ υE
∗

( 􏼁

δ
,

C � cη +
cβ α1 + b1 + η( 􏼁(σ + η) I

∗
+ υE
∗

( 􏼁

δ
.

(25)
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*en,

AB − C≥
c
2β2(1 − q)

2υ υη + σ + υ α1 + b1 + η( 􏼁􏼂 􏼃

δ2
S
∗2

+ f1 + f2 + η( 􏼁 f1f2 + η f1 + f2( 􏼁􏼂 􏼃

−
c
2β2(1 − q) 2υ α1 + b1 + η( 􏼁 + 2υη + υσ + σ􏼂 􏼃

δ2
−

cβf1f2

δ
− cη

−
cβ(1 − q)Λ υf1f2 + υη f1 + f2( 􏼁 + υη + σ + υf1( 􏼁 f1 + f2 + η( 􏼁􏼈 􏼉

δη
,

(26)

where f1 � α1 + b1 + η and f2 � σ + η.
Due to I∗ + υE∗ ≥ I0 + υE0 and S∗ ≤ S0, AB − C> 0.
*erefore, the endemic equilibrium point

P∗ � (S∗, E∗, I∗) of equation (3) is locally asymptotically
stable on Ω0. □

Theorem 5. For equation (3), the endemic equilibrium P∗ �

(S∗, E∗, I∗) is globally asymptotically stable if R0 > 1.

Proof. Considering the Lyapunov function, we can obtain

V(t) � S − S
∗

− S
∗ ln

S

S
∗ + x1 E − E

∗
− E
∗ ln

E

E
∗􏼒 􏼓

+ x2 I − I
∗

− I
∗ ln

I

I
∗􏼒 􏼓.

(27)

*e full derivative of the solution of the function V(t)

along equation (3) is as follows:

dV(t)

dt
� 1 −

S
∗

S
􏼠 􏼡

dS

dt
+ x1 1 −

E
∗

E
􏼠 􏼡

dE

dt
+ x2 1 −

I
∗

I
􏼠 􏼡

dI

dt

� 1 −
S
∗

S
􏼠 􏼡 Λ −

cβ
δ

S(I + υE) − ηS􏼢 􏼣 + x2 1 −
I
∗

I
􏼠 􏼡 σE − b1 + α1 + η( 􏼁I􏼂 􏼃

+ x1 1 −
E
∗

E
􏼠 􏼡

c(1 − q)β
δ

S(I + υE) − (σ + η)E􏼢 􏼣

� (I + υE)
cβS
∗

δ
+ x1

c(1 − q)βS

δ
−

cβS

δ
− x1

c(1 − q)βE
∗
S

δE
􏼢 􏼣 + Λ − ηS −

ΛS∗

S

+ ηS
∗

− x1(σ + η)E + x1(σ + η)E
∗

+ x2σE − x2 b1 + α1 + η( 􏼁I − x2
σEI
∗

I
+ x2 b1 + α1 + η( 􏼁I

∗
.

(28)

Bringing in I∗ � σE∗/α1 + b1 + η, S∗ � (Λ/η) −

((σ + η)E∗/(1 − q)η) yields

Table 1: Values of disease-free equilibrium points q and δ.

q δ R0

0.9 0.1 0.7289
0.9 0.5 0.1458
0.9 1 0.0729
0.1 1 0.6560
0.5 1 0.3645
0.9 1 0.5729

Table 2: Values of endemic equilibrium points q and δ.

q δ R0

0.1 0.05 13.12
0.1 0.1 6.5602
0.1 0.5 1.3120
0.1 0.05 13.12
0.5 0.05 7.2891
0.9 0.05 1.4578
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dV(t)
dt

�(I + υE)
cβ
δ
Λ
η
−
(σ + η)E∗

(1 − q)η[ ] + x1
c(1 − q)βS

δ
−
cβS
δ
− x1

c(1 − q)βE∗S
δE

{ }

+ Λ − ηS +
Λ
η
−
(σ + η)E∗

(1 − q)η[ ] η −
Λ
S

( ) − x1(σ + η)E + x1(σ + η)E∗ + x2σE

− x2 b1 + α1 + η( )I −
x2σ

2EE∗

I b1 + α1 + η( )
+ x2 b1 + α1 + η( )

σE∗

b1 + α1 + η( )

�
cβ
δ
(I + υE) S∗ + x1(1 − q) − 1[ ]S − x1

(1 − q)E∗S
E

{ } −
(Λ − ηS)2

ηS

+
(Λ − ηS)(σ + η)E∗

ηS(1 − q)
+ x2σ − x1(σ + η)[ ]E + x2σ + x1(σ + η)[ ]E∗

− x2 b1 + α1 + η( )I −
x2σ

2EE∗

I b1 + α1 + η( )
.

(29)

Take x1 � 2/1 − q and x2 � 2(σ + η)/σ(1 − q).
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Figure 3: Stability of disease-free equilibrium point (q � 0.9).
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Figure 4: Stability of disease-free equilibrium point (δ � 1).
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�en,

dV(t)
dt

�
cβ
δ
(I + υE) S∗ + S −

2E∗S
E

[ ] −
(Λ − ηS)2

ηS
+
(Λ − ηS)(σ + η)E∗

ηS(1 − q)

+
4(σ + η)
(1 − q)

E∗ −
2(σ + η) b1 + α1 + η( )I

σ(1 − q)
−

2σ(σ + η)EE∗

I b1 + α1 + η( )(1 − q)

�
cβ
δ
(I + υE) S∗ + 1 −

2E∗

E
( )S[ ] −

(Λ − ηS)
S

(Λ − ηS)
η

−
(σ + η)E∗

η(1 − q)[ ]

+ 2
2σ b1 + α1 + η( )(σ + η)E∗I − (σ + η) b1 + α1 + η( )I2 − σ2(σ + η)EE∗

σ(1 − q) b1 + α1 + η( )I
.

(30)

Since Λ − ηS<Λ and when E> (α1 + b1 + η), σ2E2 <
(σ2EE∗/α1 + b1 + η).
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Figure 5: Stability of disease-free equilibrium point (q � 0.1).

10 Computational Intelligence and Neuroscience



At this time,

dV(t)
dt
≥
cβ
δ
(I + υE) S∗ + 1 −

2E∗

E
( )S[ ] +

(ηS − Λ)
S

S∗ + 2(σ + η)
(I − σE)2

σ(1 − q)I
, (31)

and when E> 2E∗ and S>Λ/η, 1 − 2E∗/E> 0, and ηS − Λ> 0
holds, so dV(t)/dt≥ 0. �erefore, if R0 > 1, the endemic
equilibrium point P∗ � (S∗, E∗, I∗) of equation (3) is
globally asymptotically stable on Ω0. □

3. Numerical Experiments

3.1. Numerical Simulation. �e stability of disease-free and
endemic equilibrium points is discussed in this section, and
this section uses the software Matlab to numerically simulate
equation (3) to verify the above conclusions.

�e initial values of the system are (0.7,0.2,0.1), and
the parameters are assigned as c � 2, η � 0.00714, β � 0.1,
υ � 1, b1 � 0.8, σ � 1/7, α1 � 0.04, and Λ � 0.00334, where
q and δ are two variables. In this paper, we will take some
random values to simulate the change of S, E, and I ratio
when R0 < 1 and R0 > 1, respectively. When q � 0.9, δ takes

a random value between 0 and 1 so that R0 < 1 holds.
When δ � 1, q takes a random value between 0 and 1 so
that R0 < 1 holds. Its value of R0 is less than 1 (R0 < 1) when
q and delta take the values in Table 1. Its value of R0 is
greater than 1 (R0 < 1) when q and delta take the values in
Table 2.

�e global asymptotic stability of both disease-free and
endemic equilibrium points can be seen from�eorems 1–5.
Figures 3–6 illustrates the correctness of the results obtained
from the above theorem.

If R0 < 1, by numerically simulating the stability of the
disease-free equilibrium point, we can analytically conclude
the following points. Figure 3 shows the variation curves of
S, E, and I as the parameter δ varies when q is constant. �e
variation of S increases, and the rate of decrease and the rate
of increase both increase with the increase of δ. �e rate of
decrease of E and I decreases with the increase of δ. Finally,
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Figure 6: Stability of disease-free equilibrium point (δ � 0.05).
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S, E, and I all stabilized (see Figures 3(a)–3(c)). �e change
of S decreases, and the rate of decrease of E decreases with
the increase of q. But the change of I has no obvious pattern
with the increase of q. Finally, S, E, and I all tend to be stable
(see Figures 4(a)–4(c)). Figures 3 and 4 illustrate that when
R0 < 1, the changes of q and δ have signi�cant e�ects on the
trends of S, E, and I. And when R0 < 1, the disease-free
equilibrium point is tending to be stable.

In Figures 5 and 6, the curve of S, E, and I variation with
q and δ is simulated. By comparing the trend of S, E, and I
with q in Figure 5 and the trend of S, E, and I with δ in
Figure 6, we can draw the following conclusions. Increases in
both q and δ lead to larger §uctuations in S and delayed
stabilization times. It will lead to an increase in the value of S
as it stabilizes. What is more, as δ increases, the rate of

increase and decrease of E decreases. �e monotonically
increasing interval of I decreases and the rate of decrease of
the monotonically decreasing interval decreases with the
increase of δ. �e maximum peak value of both E and I
decreases with the increase of δ. And the time of reaching the
maximum peak value of E is delayed and the time of
reaching the maximum peak value of I is advanced. Fur-
thermore, as q increases, the rate of increase and decrease of
E decreases and E reaches its maximum peak earlier and at a
lower value. As q changes, there is no obvious pattern of
change in I, but it can be concluded that q has a signi�cant
e�ect on the change in the value of I. Figures 5 and 6 il-
lustrate that when R0 > 1, the changes of q and δ have
signi�cant e�ects on the trends of S, E, and I. And when
R0 > 1, the endemic equilibrium point is tending to be stable.
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Figure 8: Impact of control strategies on the maximum number of daily con�rmed cases of the epidemic in China: (a) δ � 0.2 and
(b) q � 0.5.
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Figure 7: Model of the amount of con�rmed cases in China per day.
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3.2.Model Simulation. *e real data of China in this paper
are from the official website of the WHO. We preprocess
the data, remove some bad points, and make the time
continuous so that the data can be better adapted to the
SEIR-QV model. *e Chinese COVID-19 outbreak is
fitted based on the SEIR-QV model. *e parameters used
in the model are listed as follows: c � 0.219, η � 0.00714,
q � 0.5, δ � 0.2, β � 1 × 10− 8, υ � 0.275, b1 � 0.05, σ � 1/7,
α1 � 0.035, Λ � 0.00334, b2 � 0.05, α2 � 0.035, and
r � 0.9493. *e simulation results and the actual data are
shown in Figure 7.

*e Chinese government has decisively taken strict
preventive and control measures following the emergence of
the COVID-19 outbreak. *ese prevention and control
measures, along with vigorous advocacy by the Chinese
government, have reduced exposure rates c and increased
isolation rates q and minimized the development of ag-
gregated outbreaks. *e COVID-19 outbreak has become
manageable and stable. As can be seen in Figure 7, the
simulated data fit better with the real data from January 20,
2020 to May 20, 2021. However, there is a small outbreak of
the epidemic in China in June 2021. *e main reason is that
the epidemic is out of control in many places abroad, and
people at home are taking it lightly and weakening the efforts
of prevention and control, thus giving the opportunity for
the epidemic to spread.

As can be seen in Figure 8, both the isolation ratio and
vaccine coverage play an important role in the control of the
outbreak. *e highest number of confirmed cases per day in
China decreases as both q and δ increase.

*e correlation coefficient is used to measure the ac-
curacy of the fit, and the value of R is found to be 0.9394.
*erefore, the results show that the SEIR-QV model can be
used for COVID-19 epidemic development status assess-
ment and has important implications.

4. Conclusion

An SEIR-QV model based on vaccination, isolation
strategies, and the impact of different parameters on the
development of infectious diseases is developed. *e
equilibrium point and stability of the new model are
proved by using the basic regeneration number and the
Lyapunov function theory. Simulation experiments show
that the new method has certain theoretical value for
analyzing and predicting the development of the
COVID-19 epidemic. We can get the conclusion that
there is a significant impact on the development of in-
fectious diseases by different vaccination and isolation
strategies.
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