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(e quality control process for sintered ore is cumbersome and time- and money-consuming. When the assay results come out
and the ratios are found to be faulty, the ratios cannot be changed in time, which will produce sintered ore of substandard quality,
resulting in a waste of resources and environmental pollution. For the problem of lagging sinter detection results, Long Short-
TermMemory and Genetic Algorithm-Recurrent Neural Networks prediction algorithms were used for comparative analysis, and
the article used GA-RNN quality prediction model for prediction. (rough correlation analysis, the chemical composition of the
sintered rawmaterial was determined as the input parameter and the physical andmetallurgical properties of the sintered ore were
determined as the output parameters, thus successfully establishing a GA-RNN-based sinter quality prediction model. Based on
150 sets of original data, 105 sets of data were selected as the training sample set and 45 sets of data were selected as the test sample
set. (e results obtained were compared to the real value with an average prediction error of 1.24% for the drum index, 0.92% for
the low-temperature reduction chalking index (RDI), 0.95% for the reduction index (RI), 0.40% for the load softening temperature
T10%, and 0.43% for the load softening temperature T40%, with all within the running time thresholds. (e study of this model
enables the prediction of the quality of sintered ore prior to sintering, thus improving the yield of sintered ore, increasing
corporate efficiency, saving energy, and reducing environmental pollution.

1. Introduction

(e increasing demand for steel has contributed to the rapid
development of the steel industry. For blast furnace
smelting, the main source of raw material is sinter ore, the
quality of which has a direct impact on the quality of the iron
obtained after this process, so, for environmental protection
and blast furnace smelting, it is particularly crucial to

improve the quality of sinter ore. (e quality inspection
process for production sintering is cumbersome and time-
and money-consuming and the test results are delayed.
When the assay results come out and the ratios are found to
be faulty, the ratios cannot be changed in time, which results
in the production of sintered ore of substandard quality,
resulting in a waste of resources and environmental pol-
lution. (erefore, predicting the quality of sintered ore
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before sintering in order to optimize the sintering process
and control the quality of sintered ore is very important for
blast furnace smelting as well as for environmental pro-
tection [1–10].

In the exploration of sinter quality prediction, Han
developed a LIBS-based sinter alkalinity analysis technique
based on the characteristics of sinter ore samples to achieve
rapid detection of sinter alkalinity [11]. Chen et al. used the
ironmaking principle, material balance principle, and expert
knowledge as the theoretical basis to develop a sinter-blast
furnace ironmaking whole process furnace charge structure
intelligent optimization system [12]. Xiang Xiaoping
designed a sintering process optimization and transforma-
tion plan to improve quality and reduce consumption.
(rough the “multipoint sectional” water refilling trans-
formation, low negative pressure ignition transformation,
bottom material grading fabric transformation, single roll
Sandwich funnel optimization, and other measures, the
sintering production cost was reduced and the quality of
sintered ore production was steadily improved [13]. Based
on the deep excavation of the microstructure of the mineral
phase, Liang et al. identified the dependence of the sintered
mineral phase characteristics on the metallurgical properties
[14]. Yao et al. studied the equilibrium phase composition of
sintered ores with different aluminium contents and the
effect on the metallurgical properties of sintered ores using
sample analysis by means of mineral phase microscopy,
XRD, SEM, and EDS [15]. Zhang et al. used FactSage 7.1
thermodynamic software to simulate and analyse the effect
of MgO on the liquid phase formation properties of sintered
ore and investigated the effect of MgO on the liquid phase
formation properties and microstructural properties of
sintered ore [16]. (e above research has laid the foundation
for intelligent prediction of sintered ores.

With the development of deep learning and the im-
provement of blast furnace massification and smelting
technology, deep network algorithms are being used in
sinter quality prediction. Zhang et al. made a general analysis
of the sintering process from the perspective of the operating
characteristics of the auxiliary materials. A BP neural net-
work algorithm with a quantitative term and variable
learning rate was used to develop a sinter quality prediction
model [17]. Wang et al. used online prediction of sinter
quality based on Elman neural network. (e experimental
results showed that the online prediction significantly re-
duced the material conditioning time, improved the sin-
tering process quality, and predicted the results more
accurately [18]. Liu et al. established static BP neural net-
work and dynamic Elman recurrent neural network for
sinter quality prediction, respectively. Simulation experi-
ments show that the prediction accuracy of the static BPNN
prediction model built by applying industrial data training is
higher than that of the Elman RNN model [19]. Li et al.
proposed an intelligent integrated prediction model for the
quality of cascade structure sinter ore, which was predicted
by using a time series integrated prediction algorithm based
on T-S fuzzy fusion and an information entropy integrated
prediction model based on BP neural network with least
squares support vector machine hierarchically, respectively.

(e sintered ore iron grade, alkalinity and drum index were
effectively predicted [20].

In summary, in the exploration of predicting the quality
of sintered ore, related scholars have made some progress in
predicting the alkalinity R and drum index of sintered ore.
However, few studies have been conducted to predict the
physical and metallurgical properties of sintered ores to-
gether by the chemical composition of the sintered raw
materials. Since the physical and metallurgical properties of
sintered ore can more fully verify the quality of sintered ore,
it is particularly important to establish a predictive model of
the chemical composition of sintered raw materials on the
physical and metallurgical properties of sintered ore. Based
on this, this paper uses the GA-RNN model to predict the
physical and metallurgical properties of sintered ore by the
chemical composition of sintered raw materials, to verify the
quality of sintered ore, and to establish the prediction model
of the chemical composition of sintered rawmaterials on the
physical and metallurgical properties of sintered ore. It ef-
fectively solves the problem of lagging sintering ore test
results and can predict the quality of sintered ore before
sintering, thus improving the quality of sintered ore, im-
proving efficiency for enterprises, reducing pollutant
emissions and protecting the environment.

(is paper first constructs an initial sample set of pre-
diction samples and introduces the relationship between the
chemical composition of sintered raw materials and the
physical and metallurgical properties of sintered ore and the
influence of metallurgical performance indicators on the
quality of sintered ore. (e variable parameters are then
analysed theoretically and the input parameters are corre-
lated with the output parameters. Finally, a sinter quality
prediction model is developed by predicting the output
parameters.

2. Prediction Sample Initial Sample
Set Construction

2.1. Relationship between the Chemical Composition of the
SinteringRawMaterialand thePhysical andMetallurgical
Properties of the Sintered Ore

2.1.1. Alkalinity. As the quality of sintered ore depends on
its mineral composition, the mineral composition of sin-
tered ore depends on alkalinity. (e alkalinity of the sin-
tering process is determined by the SiO2 and calcium CaO
content, and the strength and metallurgical properties of the
sintered ore are closely related to the alkalinity.

2.1.2. MgO. For sintered ore quality, it can also be influ-
enced by the MgO content, which can improve the low-
temperature reduction chalking properties of sintered ores.
WhenMgO is sintered, it reacts with Fe3O4, which will result
in the formation of magnesium magnetite, thus inhibiting
the oxidation reaction of Fe3O4, so that the production of the
calcium ferrate phase is inhibited, resulting in a reduced
reduction of the finished sintered ore and lower cold
strength. (e addition of MgO when sintering is carried out
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allows the blast furnace ironmaking slag to be made more
fluid, thus allowing its dealkalisation and desulphurisation
needs to be met.

2.1.3. TiO2. Blast furnace protection requires the addition of
a small amount of TiO2. However, the presence of TiO2 in
the sintered ore in the form of the high melting point
minerals chalcocite and titania reduces the amount of sin-
tered liquid phase, thus reducing the strength of the sinter.

2.1.4. SiO2. SiO2 has an important influence on the quality
of sintered ore, which forms a large amount of slag phase
during sintering, and a study of its slag phase shows that the
most abundant substance is SiO2. When its content is less
than 4.6%, it does not affect the strength of the sintered ore.
When its content is higher than 5.3%, it will affect not only
the metallurgical properties of the sintered ore but also the
strength of the sintered ore.

2.1.5. Al2O3. For the quality of sintered ore, Al2O3 plays an
important role in influencing it. A certain amount of SiO2
and Al2O3 is essential when sintering if you want the
composite calcium ferrate to be produced. Furthermore, if
there is no Al2O3 present, then no calcium complex ferrate is
produced during sintering. It is important to clarify that a
higher content of Al2O3 is not better; if its content is higher
than 2.0% then it will affect not only the RDI index of the
sinter but also the cold strength of the sinter.

2.2. Influence of Physical Property Indicators on the Quality of
Sintered Ore. (e drum index is a physical property index
reflecting the mechanical strength of sintered ore. (e single
determination value is based on the percentage of the total
weight of the specimen with a particle size greater than the
specified standard after the specimen has been tested in a
special drum. (e higher the drum index, the higher the
mechanical strength of the ore measured [21–23].

Drum indexM �
Q particle size greater than specified standard

Q total specimenweight
. (1)

Drum indexM refers to the ratio ofQ particle size greater than
the specified standard and the total weight ofQ samples. In (1),
M refers to the drum index, the unit sign is %; Q particle size
greater than the specified standard refers to the weight syn-
thesis of sample particle size greater than the specified standard
after testing, the unit symbol is T; and the total weight of sample
Q refers to the total weight of sample, the unit symbol is T.

2.3.)e Influence ofMetallurgical Performance Indexes on the
Quality of Sinter

2.3.1. Reducibility of Sinter. (e research and analysis of
sintered ore can be clear, which refers to the index used to
measure the difficulty of combining reducing gas and iron
under certain temperature conditions, which can evaluate
the quality of ore. (erefore, if the ore has poor reducibility,
after being loaded into the blast furnace, it will have an
impact on the utilization rate of the upper gas, which will
affect its indirect reduction and ultimately affect its output
and fuel ratio [24–29]. It is generally believed that RI less
than 60% is poorly reducible sinter, and RI more than 80% is
good reducible sinter. For sinters with high basicity
(R� 1.9–2.3), RI> 85% is conventionally required.

2.3.2. Low-Temperature Reduction Powdering Performance.
At 400–600 degrees, the crystal lattice changes when the
high-valent iron in the sinter is reduced to low-valent iron,
and its volume will change at this time. If carbon monoxide
is present, then this can lead to carbon precipitation and
eventually to cracks and so forth. In this case, the perme-
ability of the column will be affected, as will the porosity and
ultimately the production of the blast furnace. Generally,
RDI+3.15 is required to be greater than 65%. Most sinter

production in China is equipped with a certain amount of
magnetic fine powder, so RDI+3.15 is above 70% [30–33].

2.3.3. Load Softening Performance. (e load reduction and
softening performance of sinter refers to that after it is loaded
into the blast furnace, as the temperature rises and the charge
decreases, its reduction reaction continues, which affects the
furnace waist and the lower part of the furnace body and finally
makes the sinter volume change occur so that it softens. If the
alkalinity of the sinter is high, it will begin to soften when the
temperature exceeds 1100°C. It should be clear that the soft-
ening temperature of the sinter is related to the pore strength of
the mineral, and the pore strength is related to the composition
of the mineral. When the softening temperature changes, it is
affected by the strength of the pore structure. (erefore, it can
be considered that the main factor that affects the softening
temperature of minerals is the mineral composition [34–36].

3. Comparison of LSTM and GA-
RNN Algorithms

3.1. Long Short-TermMemoryNeural Networks. Long Short-
Term Memory (LSTM) neural network was proposed by
Sepp Hochreiter and Jrgen Schmidhuber in 1997. It is a
special kind of RNN, which solves the problem of long-
distance dependence arising from the training process of
ordinary RNNs, and is built not by traditional neural net-
work nodes but by introducing a “gate” mechanism [37–41].

3.2. GA-RNN Prediction Model

3.2.1. Genetic Algorithm Design. (e study and analysis of
genetic algorithms make it clear that they include not only
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computer technology but also biological theory. In the field
of research, the algorithm is often used to perform simu-
lation studies of biological systems [42, 43]. (e algorithm
allows the simulation of biological processes, including
mutation and selection, and it uses global search and op-
timization. When evaluating the merit of a solution, the
fitness function is used. When rating the source of material,
chromosomes are used. In the genetic algorithm, the rep-
resentative of the solution is the chromosome. When
evaluating, the evaluation results can be linked to the genetic
probability. By using this approach during continuous it-
erations, the optimal solution can be obtained. Next, how to
optimize the neural network results will be described:

(1) First, let the populations initialize. In this step, the
population can be allowed to initialize so as to form
different RNN populations, taking that population as
the first generation.

(2) In the second step, the fitness of the population is
evaluated.(e protection by search finds the smallest
individual, and the best structured RNN is repre-
sented by that individual.

(3) In the third step, genetic manipulation is performed.
By using mutations, crossovers, and so forth, new
individuals can be produced.

(4) In the fourth step, iterative operations are performed.
By continuously performing iterations until the end
condition appears, there is no uniform guarantee
when setting parameters, and although it has been
studied by different research scholars, no uniform
results have been obtained. In setting the parameters,
the article argues that the optimal solution should not
be too concentrated, but it should not be too dispersed
either. (erefore, the article concentrates the optimal
solution near the local solution, so that the signifi-
cance of its optimal solution appearance is enhanced.
(e parameters set in the article are as follows: the
algebra of termination evolution is 3, the maximum
population size is 72, the minimum population size is
6, the maximum mutation is 0.1, the minimum
mutation is 0.0001, and the mutation rate is 0.1.

3.2.2. Design of RNN Algorithm. In the article, the RNN
algorithm is designed with four chromosomes so that dif-
ferent neural nets can be described. Designing these four
chromosomes allows the optimal structure of the search
space of the RNN algorithm [44, 45]. (e parameters set in
the article are as follows: the maximum number of hidden
layer neurons is 144, the minimum number of hidden layer
neurons is 6, the maximum hidden layers number is 5, and
the minimum hidden layers number is 2.

3.2.3. Design of GA-RNN. (earticle uses genetic algorithm to
optimize the RNN neural network to get the optimal initial
weights and thresholds, and the initial weights and thresholds of
the network are the solutions sought. (is allows the weights
and thresholds of the RNN to be mapped to population

individuals in the genetic algorithm. A set of weights and
thresholds correspond to a population of individuals, and the
length of an individual is the sum of the number of network
weights and thresholds. According to the law of genetic algo-
rithm, the number of individuals of the population and the
coding method are appropriately selected to complete the
initialization of the population, and then individual fitness
values are calculated and selection, crossover, and mutation
operations are performed. (e most important of these steps is
the selection of the fitness function. Since the adjustment of
weights and thresholds in RNN is aimed at minimizing the
output error of the network, the fitness function can be chosen
as the RNN error function in the genetic algorithm, so that the
RNN can be combined to complete the optimization of the
network.(e adaptive functions are as in equations (2) and (3).

Find the fitness function ffit(f(x)) when the objective
function f(x) is the maximum value:

ffit(x) � f(x). (2)

Find the fitness function ffit(f(x)) when the objective
function f(x) is minimum as

ffit(x) �
1

f(x)
. (3)

(e calculation is performed by the fitness function, and
a large value of individual fitness predicts better results.
When individuals have high fitness values, they are better
suited to their environment, have a greater chance of being
selected, and have a greater probability of passing on good
genes to the next generation.

(e specific steps of the genetic algorithm to optimize
the RNN are as follows:

(1) Determine the network topology of RNN. (e RNN
model generally consists of three parts: hidden layer,
output, and input layer.

(2) Individual length is used to replace the initial RNN
weight threshold length, and the population indi-
viduals are coded by genetic algorithm. (e coding
method is real-valued coding, the population size is
set to 60, and the number of generations of genetic
evolution is set to 60.

(3) Individuals of the population are calculated by
equation (2) to obtain the fitness value of each in-
dividual, and selection, crossover, and mutation
operations are performed, respectively, according to
the laws of genetic algorithm.

(4) Calculate the fitness value, obtain the optimal
weights and thresholds if the conditions are satisfied,
and continue the selection, crossover, and variation
operations if the conditions are not satisfied.

(5) (e error is calculated, the weight threshold is
updated, the preset requirements are satisfied,
the simulation prediction is performed, and the
results are obtained. If the condition is not sat-
isfied, continue to calculate the error and update
the weight threshold until the condition is
satisfied.
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(e GA-RNN prediction model flow chart is shown in
Figure 1.

3.3. Comparison of LSTM and GA-RNN Algorithms. For the
LSTM andGA-RNN algorithms, themean decision percentage
error and goodness-of-fit analyses were performed with the
rotating drum index, low-temperature reduction chalking
index RDI, reduction degree index RI, load softening tem-
perature T10%, and load softening temperature T40%, respec-
tively, and the data analyses are shown in Table 1.

From Figures 2 and 3, it can be seen that the average
decision percentage error of GA-RNN is smaller than that of
LSTM algorithm, and GA-RNN has a better fit than LSTM
algorithm. (erefore, the GA-RNN algorithm is selected as
the prediction algorithm in this paper.

4. Theoretical Analysis of Variable Parameters

From research on the sintering process, combined with a
lot of practice at the same time, it is clear that the content of
iron in the finished product is not significantly different
from the content of iron in the mixture. However, due to
the large amount of energy lost during the sintering process
and the fact that it is calculated using percentages for each
chemical composition, when the fuel is consumed, the
percentage of iron will also change. A study of silicon and
calcium can find that there is no significant change in the
percentage of iron.
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Figure 1: GA-RNN prediction model flowchart.

Table 1: Comparison of GA-RNN and LSTM algorithms.
Indicators Algorithm MAPE R2

Drum index GA-RNN 1.24 0.9642
LSTM 3.96 0.8807

RDI GA-RNN 0.92 0.9273
LSTM 6.72 0.8656

RI GA-RNN 0.95 0.973
LSTM 1.71 0.886

T10%
GA-RNN 0.4 0.9985
LSTM 1.6 0.8627

T40%
GA-RNN 0.43 0.9304
LSTM 1.26 0.9023

0
1
2
3
4
5
6
7
8

Drum Index RDI RI T10% T40%

MAPE

GA-RNN
LSTM

Figure 2: MAPE between GA-RNN and LSTM algorithms.
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When constructing the model, it is constructed based on the
principle of conservation of materials, and the content of the
chemical composition of the raw material of the finished sinter
can be determined according to the rawmaterial parameters and
the batching parameters, as shown in the following formula:

TFe �


n
i�1 xiTFei


n
i xi 1 − di( 

,

SiO2 �


n
i�1 xiSiO2i


n
i xi 1 − di( 

,

Al2O3 �


n
i�1 xiAl2O3i


n
i xi 1 − di( 

,

CaO �


n
i�1 xiCaOi


n
i xi 1 − di( 

,

MgO �


n
i�1 xiMgOi


n
i xi 1 − di( 

,

TiO2 �


n
i�1 xiTiO2i


n
i xi 1 − di( 

.

(4)

In the above formula, CaO, Al2O3, SiO2, TFe, MgO, and
TiO2 represent the calculated values of sintered calcium oxide
content, aluminum oxide content, silicon dioxide content, total
iron content, magnesium oxide content, and titanium dioxide
content, respectively. (e total number of raw material types is
represented by the symbol n, the burning loss rate is repre-
sented by the symbol di, the iron grade of raw material i in the
sintered secondary ingredients is denoted by the symbol TFei,
the proportion of titanium dioxide content is represented by
the symbol TiO2i, the content of magnesium oxide is repre-
sented by the symbol MgOi, the calcium oxide content is
indicated by the symbol CaOi, the content of aluminum oxide
is represented by the symbol Al2O3i, and the content of silicon
dioxide is represented by the symbol SiO2i.

(e performance indicators of sinter are drum index,
RDI+3.15, RI, T10%, and T40%. Among them, drum strength is
the physical performance index indicating the mechanical
strength of sinter, and RDI+3.15 is the low-temperature re-
duction pulverization index of sinter. RI is the degree of
reduction of sintered ore, and T10% and T40% are expressed as
load softening performance. (e specific calculation method
is shown below.

4.1. Drum Strength. (e parameter of the rotating drum
experiment machine is 25 r/min speed, 200 revolutions.

To measure it, the drum index can get the following
result:

T �
m1

m0
× 100%. (5)

In the above formula, the mass of the grain size + 6.3mm
after the drum is represented by the symbol m1, and the unit
is kg. (e mass of the sample entering the drum is indicated
by the symbol m0 and the unit is kg.

4.2. Determining the Low-Temperature Reduction Pulveri-
zation Performance. When measuring this parameter, it is
carried out in accordance with the relevant standards of our
country. (e time for isothermal reduction is 1 h. When it is
cooled to room temperature, it can be rotated by a rotating
drum for 300 revolutions. Its parameter is
Φ130mm× 200mm. (en it is sieved with a square hole
sieve with different parameters. Its parameters are 0.5mm,
3.15mm, and 6.3mm subsequently expressed by mass
percentage when expressing their performance, which are
expressed by the symbols RDI+6.3, RDI+3.15, and RDI-0.5,
respectively. RDI+3.15 is the evaluation index, and RDI+6.3
and RDI-0.5 are the reference indexes.

(e reducing gas component N2 is 60%, CO2 is 20%, CO
is 20%, 500± 1 g is the sample weight, the minimum sample
size is 10.0mm, the maximum is not more than 12.5mm,
15 L/min is the reducing gas flow, the time is 1 h, and 500°C
is the reduction temperature.

4.3. Measure the Load Softening Performance. When the
temperature rises, the softening start temperature is the
temperature when the column height shrinks 10%, and the
softening end temperature is the temperature when the
column height shrinks 40%.(e dyeing temperature range
is indicated by the symbol △T, and it the temperature
difference between the two. 40mm is the height of the
material column, 1 kg/cm2 is the load, the minimum
sample size is 2 mm, and the maximum is not more than
3mm.

5. Correlation Analysis

In order to explore the correlation between the batching
parameters and the properties of sintered ore, the TFe
content, SiO2 content, Al2O3 content, CaO content, mag-
nesium oxide MgO content, and titanium dioxide are used.
(e content of TiO2 predicts the drum index, low-tem-
perature reduction pulverization index RDI+3.15, reduction
index RI, and load softening temperatures T10% and T40% of
the sinter, respectively.

Correlation analysis is carried out on the batching
parameters of sinters with different batching ratios and
related indexes of sinter performance [46–49], and the
calculation formula of Pearson correlation coefficient is as
follows:

0.75

0.8

0.85

0.9

0.95

1

1.05

Drum Index RDI RI T10% T40%

Goodness of Fit

GA-RNN
LSTM

Figure 3: Goodness of fit between GA-RNN and LSTM algorithms.
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ρX,Y �
cov(X, Y)

σXσY

,

cov(X, Y) � E X − μX(  Y − μY( ( ,

σX �

�������������

E X
2

  − E(X)
2



.

(6)

In the above formula, ρX,Y represents the correlation
coefficient between x and y, cov(X, Y) represents the co-
variance coefficient between x and y, σX represents the
standard deviation of x, E(x) represents themean value of x,
Table 2 is the correlation analysis table of the batching
parameters and the sinter-related performance indicators (∗
represents the time; the correlation is significant).

It can be seen from Table 2 that the change of the
batching parameters can significantly affect the change of the
drum index. (e drum index of the sinter is related to the
TFe content, SiO2 content, and Al2O3 of the sinter. CaO
content and MgO content both have a significant (P≤ 0.05)
linear correlation. Among them, TFe content of the sinter is
highly negatively correlated with the drum index of the
sinter, and the Al2O3 content has a low degree of negative
correlation with the drum index of the sinter and the content
of SiO2.(ere is a low degree of positive correlation with the
drum index of sinter, the content of CaO and the drum index
of sinter are highly positively correlated, and the content of
MgO and the drum index of sinter are moderately positive.

It can be seen from Table 3 that the TFe content and the
MgO content of the sinter have a significant linear correlation
with the RDI+3.15 index of the sinter, and the TFe content is
related to the RDI of the sinter.(e +3.15 index has a low degree
of negative correlation, and the MgO content has a moderately
positive correlation with the RDI+3.15 index of sinter.

It can be seen from Table 4 that the RI index of sinter has
a significant (P≤ 0.05) linear correlation with the TFe
content and CaO content in the batching parameters.
Among them are the TFe content and the RI of the sinter.
(e index has a moderately negative correlation, and the
CaO content has a moderately positive correlation with the
RI index of sintered ore.

It can be seen from Table 5 that there is a significant
(P≤ 0.05) linear correlation between the T10% index of sinter
and the content of TFe and CaO in the batching parameters.
Among them are the content of TFe and the content of
sinter. (e T10% index has a low degree of positive corre-
lation, and the CaO content has a moderately negative
correlation with the T10% index of sinter.

It can be seen from Table 6 that the T40% index of sintered
ore has a significant (P≤ 0.05) linear correlation with the TFe
content and the Al2O3 content in the batching parameters.
Among them, the content of total iron (TFe) is negatively
correlated with the T40% index of sinter, and the content of
aluminum oxide (Al2O3) is negatively correlated with the T40%
index of sinter. (e T40% index of the ore has a low degree of
negative correlation, and the content of Al2O3 has a low degree
of negative correlation with the T40% index of the sinter. In
summary, the change of batching parameters can cause
changes in the properties of sinter, but this often involves

complex mechanisms. (ere is currently no mature quanti-
tative analysis between batching parameters and sinter per-
formance. (e article intends to establish a GA based on GA-
RNN model of sinter quality prediction model [50–56] to
predict the performance indicators of sinter according to the
batching parameters, so as to optimize the production process.

By analysing the process mechanism and characteristics
of the sintering process, the input parameters and output
parameters of the model were determined. (e input pa-
rameters are TFe content, SiO2 content, Al2O3 content, CaO
content, MgO content, and TiO2 content. (e output pa-
rameters are drum index, reducibility, low-temperature
reduction powdering degree, and load softening perfor-
mance. Finally, based on the experimental data, the corre-
lation between the batching parameters and the performance
of the sinter is studied, and it is found that there is a linear
relationship between the batching parameters and different
performance indicators, which lays the foundation for the
establishment of a sinter quality prediction model.

It can be seen that the chemical composition of the
sintering raw material is directly related to the physical and
metallurgical properties of the sintered ore. (erefore, the
GA-RNN model is established to calculate the TFe content
and SiO2 content of the sintering raw material. TFe content,

Table 2: Correlation analysis table of batching parameters and
drum index.

TFe SiO2 Al2O3 CaO MgO TiO2

Pearson −0.704∗∗ 0.294∗ −0.262∗ 0.858∗∗ 0.592∗∗ 0.011
P 0.000 0.018 0.037 0.000 0.000 0.930

Table 3: Correlation analysis table of ingredient parameters and
RDI+3.15.

TFe SiO2 Al2O3 CaO MgO TiO2

Pearson −0.339∗∗ −0.094 0.021 0.019 0.592∗∗ 0.011
P 0.006 0.462 0.868 0.879 0.000 0.930

Table 4: Correlation analysis table of ingredient parameters and RI.

TFe SiO2 Al2O3 CaO MgO TiO2

Pearson −0.528∗∗ 0.107 −0.187 0.668∗∗ −0.060 −0.070
P 0.000 0.400 0.140 0.000 0.636 0.581

Table 5: Correlation analysis table of ingredient parameters and
T10%.

TFe SiO2 Al2O3 CaO MgO TiO2

Pearson 0.305∗ −0.156 0.058 −0.472∗∗ 0.161 0.105
P 0.014 0.218 0.650 0.000 0.205 0.410

Table 6: Correlation analysis table of ingredient parameters and
T40%.

TFe SiO2 Al2O3 CaO MgO TiO2

Pearson −0.245 −0.135 −0.326∗∗ 0.115 0.234 −0.068
P 0.051 0.289 0.009 0.366 0.063 0.591
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CaO content, MgO content, Al2O3 content, and TiO2
content are input, and the drum index of sinter, RDI+3.15, RI,
T10%, and T40% are output; a quality prediction model for
sintered ore is established to effectively predict the quality of
sintered ore, which can greatly reduce the failure rate of
sintering, effectively save energy, and improve production
quality.

(erefore, the establishment of a GA-RNN sinter-based
quality prediction model is shown in Figure 4.

6. Model Prediction of Sinter Quality

Use the constructed network model to calculate the absolute
value of the error of the test sample, and obtain the average
error, as shown in equation (7). Use Matlab to perform RNN
network predictions and obtain prediction errors.

e �
1
n



n

i�1

y xi(  − y xi( 

y xi( 




× 100%. (7)

In the above formula, y
∧
(xi) is the predicted value of the

output parameter; y(xi) is the real value of the output
parameter; n is the number of test samples.

6.1. Prediction of Drum Index. (ere are 150 sets of data
samples, of which 70% are used for training and 30% are
used for testing. Take the first 105 sets of data from the data
samples for model training, and the last 45 sets of data for
model testing. Using Matlab to perform RNN network
prediction to obtain the predicted value of the drum index of
45 sets of test data, the comparison of the results is shown in
Table 7. (e average prediction error of the drum index
obtained by formula (7) is 1.24%, which is relatively small;
and get the predicted output results of Figures 5 and 6.

It can be seen from Figures 5 and 6 that there is a little
difference between the predicted value of the drum index
and the real value curve, the change trend of the two is the
same, and the prediction error fluctuates within the range of
±2. From Figure 7, it can be seen that the number of iter-
ations is 248. When the minimummean square error (MSE)
is 0.02992 and the prediction effect of the network is better, it
is indicated that the prediction of the sinter drum index can
be achieved from the composition of the sinter raw material.

6.2. Prediction of Low-Temperature Reduction Powdering
Index (RDI). Use Matlab to perform RNN network pre-
diction to obtain the low-temperature reduction pulveri-
zation index (RDI) prediction value of 45 sets of test data.
(e comparison of the results is shown in Table 8. By
formula (7), the average prediction error of the low-tem-
perature reduction pulverization index RDI is 0.92%, which
is relatively small; and get the predicted output results of
Figures 8 and 9.

It can be seen from Figures 8 and 9 that the predicted value
of the low-temperature reduction powder index RDI and the
real value curve have a small difference, the change trend of the
two is the same, and the prediction error fluctuates within the
range of ±1.5. From Figure 10, it can be seen that when the

number of iterations is 907, the minimum mean square error
(MSE) is 0.15599, and the prediction effect of the network is
better, indicating that the prediction of the low-temperature
reduction pulverization index RDI of the sinter can be achieved
from the theoretical composition of the sinter.

6.3. Prediction of Reduction Index (RI). Use Matlab to per-
form RNN network prediction to obtain the predicted value
of the reduction index (RI) of 45 sets of test data. (e
comparison of the results is shown in Table 9. (e average
prediction error of the reduction index (RI) obtained by
formula (7) is 0.95%, which is relatively small; and get the
predicted output results of Figures 11 and 12.

It can be seen from Figures 11 and 12 that the predicted
value of the reduction index (RI) has a small difference with
the real value curve, the change trend of the two is the same,
and the prediction error fluctuates within the range of ±2.
From Figure 13, it can be seen that when the number of
iterations is 296, the minimum mean square error (MSE)
obtained is 0.087247, and the prediction effect of the network
is better, indicating that the theoretical composition of the
sinter can better predict the reduction index (RI) of the sinter.

6.4. Prediction of Load Softening Temperature T10%. Using
Matlab to perform RNN network prediction to obtain the
predicted value of load softening temperature T10% of 45 sets

Baching System

Mixing System

Sinter quality prediction 
model

Mixture Composition 

Sintering System 
Optimal

prediction
model

Sinter Quality

Optimize
ingredients

TFe SiO2
Al2O3 CaO MgO TiO2

Whether Drum index, RI, 
RDI+3.15, T10%, T40%

meet the requirements

Prediction of Drum index, RI,
RDI+3.15, T10%, T40%

Figure 4: GA-RNN sinter-based quality prediction model.
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of test data, the results are compared in Table 10. (rough
formula (7), the average prediction error of load softening
temperature T10% is 0.40%, which is relatively small; and get
the predicted output results of Figures 14 and 15.

It can be seen from Figures 14 and 15 that the predicted
value of load softening temperature T10% has a small dif-
ference with the real value curve, the change trend of the two
is the same, and the prediction error fluctuates within the
range of ±10; because the temperature base is 1000°C above,
the prediction error is relatively small. Figure 16 shows that
when the number of iterations is 311, the minimum mean
square error (MSE) is 0.20812, and the prediction effect of
the network is better, indicating that the theoretical com-
position of the sinter can better predict the T10% softening
temperature of sinter under load.

Table 7: Comparison between predicted value and real value of drum index.

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

1 64.9 65.2 16 61.3 60.9 31 64.4 63.6
2 63.9 64 17 62.9 61.8 32 62.9 63.1
3 57.1 56.8 18 55.8 56 33 62.8 63
4 56.1 55.4 19 53.7 54.6 34 61.6 62.8
5 51.4 51 20 62.0 61.7 35 55.2 54
6 48.6 48.9 21 62.1 63.2 36 57.1 58
7 54.1 54.7 22 59.7 60.4 37 60.7 61.4
8 54.6 54.5 23 60.8 59.9 38 62.3 61.2
9 64.9 65.2 24 63.2 62.6 39 59.4 60.1
10 50.2 51.6 25 62.2 62.1 40 55.6 54.2
11 50.9 50.6 26 60.3 60 41 58.1 58.6
12 60.5 59.4 27 60.5 59.5 42 57.1 58.5
13 58.1 58.7 28 62.3 63 43 58.8 57.9
14 53.9 54.4 29 62.9 63.1 44 55.1 56.4
15 51.5 53.2 30 61.9 61 45 52.7 53.9
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Figure 5: Drum index prediction output.
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6.5. Prediction of Load Softening Temperature T40%. Use
Matlab to perform RNN network prediction to obtain the
predicted value of load softening temperature T40% of 45 sets
of test data. (e comparison of the results is shown in
Table 11. (rough formula (7), the average prediction error
of load softening temperature T40% is 0.43%, which is rel-
atively small; and get the predicted output results of Fig-
ures 17 and 18.

It can be seen from Figures 17 and 18 that the predicted
value of the load softening temperature T40% and the real
value curve have a small difference, the change trend of the
two is the same, and the prediction error is floating within
the range of ±10; since the temperatures are above 1000°C,
the prediction error is relatively small. Figure 19 shows that
when the number of iterations is 392, the minimum mean
square error (MSE) is 0.28135, and the prediction effect of

Table 8: the predicted value and the real value of RDI.

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

1 75.4 74.9 16 71.2 70.1 31 77.5 78.1
2 76.5 76.8 17 72.2 72.1 32 73.4 72.3
3 78.1 78.9 18 75.2 76.2 33 75.9 75.3
4 74.1 74.1 19 74.5 75.6 34 77.6 78.3
5 76.4 75.6 20 67.9 68.8 35 78.5 79.1
6 77.5 77.9 21 70.3 71.8 36 72.8 73.9
7 79.0 79.6 22 72.3 71.5 37 75.1 75.6
8 70.4 70.8 23 74.8 75.9 38 79.3 78.4
9 73.7 73.7 24 70.4 70.3 39 79.1 79.4
10 76.7 75.8 25 71.9 72.5 40 71.9 72.4
11 79.0 79.8 26 74.3 73.5 41 72.4 73.7
12 70.6 70.5 27 76.8 76.3 42 73.9 74.4
13 72.1 72.7 28 72.1 71.8 43 75.3 76.4
14 75.0 75.4 29 73.5 74.7 44 69.4 70.8
15 75.7 76 30 78.3 77.8 45 71.5 72.7
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Figure 8: Schematic diagram of RDI output.
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100

10-2

10-4

10-6

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

m
se

)

0 100 200 300 400 500 600 700 800 907 1000 1100
1100 Epochs

Best Validation Performance is 0.15599 at epoch 907

Train
Validation
Test

Best
Goal

Figure 10: (e RDI iteration figure.

10 Computational Intelligence and Neuroscience



Table 9: predicted value and the real value of RI.

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real
valuey(xi)/%

1 81.1 81.3 16 90.4 89.8 31 71.3 72.8
2 83.9 82.1 17 88.9 89.1 32 84.3 85.6
3 79.8 81.2 18 88.0 87.3 33 81.1 81.3
4 83.7 84.5 19 84.3 85.2 34 80.2 79.1
5 83.2 83.2 20 78.6 80.3 35 73.3 74.3
6 82.4 82 21 77.1 78.1 36 85.5 86.3
7 82.2 81.8 22 72.9 73.4 37 84.6 83.2
8 86.7 85.9 23 65.6 66.9 38 78.9 79.8
9 83.5 84.3 24 81.9 82.1 39 75.7 76.1
10 82.4 83.1 25 78.3 79.1 40 85.8 86.9
11 82.4 82 26 73.8 74.1 41 84.7 84.3
12 88.6 87.1 27 67.1 68.3 42 80.7 80.5
13 86.5 85.6 28 84.3 85 43 78.9 78.2
14 85.2 84 29 81.9 82.3 44 87.4 87.9
15 82.8 83 30 77.7 78.4 45 85.9 85.6
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Figure 11: RI predictive output.
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Table 10: Comparison between the predicted value and the actual value of T10% softening temperature under load.

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

1 1222 1227 16 1199 1202 31 1202 1200
2 1227 1230 17 1193 1199 32 1199 1201
3 1226 1232 18 1197 1193 33 1193 1227
4 1210 1214 19 1202 1197 34 1197 1215
5 1218 1222 20 1203 1208 35 1208 1204
6 1219 1224 21 1205 1211 36 1211 1205
7 1229 1230 22 1203 1210 37 1210 1222
8 1201 1199 23 1191 1196 38 1196 1212
9 1205 1201 24 1209 1215 39 1215 1206
10 1179 1175 25 1214 1219 40 1219 1202
11 1189 1185 26 1212 1217 41 1217 1201
12 1195 1198 27 1211 1205 42 1205 1201
13 1204 1196 28 1212 1216 43 1216 1219
14 1198 1204 29 1223 1217 44 1217 1198
15 1195 1198 30 1209 1206 45 1206 1196

0 100 200 296 400 500 600 700 800 900
900 Epochs

102

100

10-2

10-4

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

m
se

)

Best Validation Performance is 0.087247 at epoch 296

Train
Validation
Test

Best
Goal

Figure 13: RI iterative figure.
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Table 11: Comparison between the predicted value and the actual value of T40% softening temperature under load.

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

Group Predicted value
y
∧
(xi)/%

Real value
y(xi)/%

1 1325 1330 16 1326 1334 31 1309 1307
2 1327 1332 17 1309 1301 32 1313 1306
3 1337 1340 18 1315 1323 33 1336 1330
4 1316 1309 19 1320 1319 34 1345 1338
5 1319 1327 20 1308 1300 35 1334 1328
6 1324 1320 21 1316 1311 36 1313 1309
7 1350 1345 22 1300 1294 37 1332 1327
8 1308 1304 23 1297 1305 38 1334 1329
9 1319 1311 24 1354 1349 39 1309 1304
10 1300 1291 25 1308 1301 40 1319 1327
11 1285 1278 26 1309 1315 41 1305 1311
12 1306 1314 27 1324 1330 42 1323 1316
13 1322 1330 28 1316 1314 43 1346 1354
14 1330 1332 29 1298 1300 44 1297 1301
15 1322 1328 30 1321 1315 45 1328 1330
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Figure 15: T10% prediction error of load softening temperature.
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Figure 16: T10% iteration diagram of load softening temperature.
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Figure 18: T40% prediction error of load softening temperature.
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the network is better, indicating that the theoretical com-
position of the sinter can better predict the T40% softening
temperature of sinter under load.

7. Conclusion

In view of the large time lag in the detection of sinter, the article
verifies the relationship between the chemical composition of
the sintering raw material and the physical and metallurgical
properties of the sinter through correlation analysis.(is led to
the determination of a GA-RNN quality predictionmodel with
total iron (TFe) content, silicon dioxide (SiO2) content, alu-
minium oxide (Al2O3) content, calcium oxide (CaO) content,
magnesium oxide (MgO) content, and titanium dioxide (TiO2)
content as input parameters and the sinter drum index, low-
temperature reduction pulverization index (RDI+3.15), reduc-
tion index (RI), and load softening temperatures T10% and T40%
as the output parameters of the GA-RNN quality prediction
model. (e GA-RNN algorithm is used to predict the five
quality indicators of sinter. (e average prediction error of the
drum index is 1.24%, the average prediction error of the low-
temperature reduction pulverization index (RDI) is 0.92%, the
average prediction error of the reduction index (RI) is 0.95%,
the average prediction error of the load softening temperature
T10% is 0.40%, and the average prediction error of the load
softening temperature T40% is 0.43%, and all are within the
operating time threshold. (e establishment of this model can
accurately predict the physical properties and metallurgical
properties of the sinter through the chemical composition of
the sintering rawmaterials before sintering, so as to predict the
quality of the sinter. It can save costs for enterprises and can
save energy, prevent environmental pollution, and protect the
environment.
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