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Ship detection is one of the fundamental tasks in computer vision. In recent years, the methods based on convolutional neural
networks have made great progress. However, improvement of ship detection in aerial images is limited by large-scale variation,
aspect ratio, and dense distribution. In this paper, a Critical and Align Feature Constructing Network (CAFC-Net) which is an
end-to-end single-stage rotation detector is proposed to improve ship detection accuracy. .e framework is formed by three
modules: a Biased Attention Module (BAM), a Feature Alignment Module (FAM), and a Distinctive Detection Module (DDM).
Specifically, the BAM extracts biased critical features for classification and regression. With the extracted biased regression
features, the FAM generates high-quality anchor boxes. .rough a novel Alignment Convolution, convolutional features can be
aligned according to anchor boxes. .e DDM produces orientation-sensitive feature and reconstructs orientation-invariant
features to alleviate inconsistency between classification and localization accuracy. Extensive experiments on two remote sensing
datasets HRS2016 and self-built ship datasets show the state-of-the-art performance of our detector.

1. Introduction

Ship detection is a technology aiming at distinguishing and
locating ships of interest. It is widely used in port man-
agement, cargo transportation, maritime rescue, and defense
buildup [1]. Ships are characterized by their large-scale
variation, large aspect ratio, and dense arrangement, making
themmore difficult to detect than other objects [2, 3], such as
aircrafts [4, 5], vehicles [6, 7], and buildings [8]. Although a
number of traditional methods [9–12] have been developed
to identify ships and much progress has been made, they still
suffer from limitations in efficiency, robustness, perfor-
mance, and more.

In recent years, CNN has emerged as a mainstream
approach to support target detection. With the powerful
feature extraction capability of CNN, CNN-based methods
can deliver much improved target detection performance.
.e region-based convolutional neural network (RCNN)
[13] generates region proposals by selective search, extracts
features with CNN, and classifies targets by the SVM linear

classifier. Despite its obvious limitations in speed and
storage space, RCNN offers better detection performance
than traditional detection methods. Fast-RCNN [14] is an
enhanced version of RCNN. It leverages shared computation
to help improve the detection efficiency and reduce the space
required for storage. Faster-RCNN [15] is a further im-
provement based on Fast-RCNN. It uses CNN to generate
region proposals and can yield much higher detection speeds
by running the whole detection process on the GPU. Al-
though these methods have achieved great success, their
performance will decline sharply when they are used for ship
detection in aerial images. .is is because they have to deal
with the following three challenges. (1) Large-scale variation:
the ships in aerial images often vary greatly in their scale; (2)
large aspect ratio: ships are usually long strips with a large
aspect ratio; and (3) dense arrangement: ships for detection
are often densely arranged.

To resolve these challenges, a common practice is to
prepare a large number of anchor boxes with different
angles, scales, and aspect ratios, from which a sufficient
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number of high-quality anchor boxes can be obtained to
help improve the detection performance. However, exces-
sive prior anchor boxes can lead to two problems as follows.

Slowed Detection Speed. Many useless anchor boxes lead to
severely redundant calculation, which will inevitably slow
down the detection speed. In contrast with RCNN-based
detectors, single-stage detectors directly regress bounding
boxes on feature maps without going through the proposal
region generation stage. .e architecture offers high com-
putational efficiency and can therefore solve the speed
problem. However, single-stage detectors are plagued by
misalignment problems [16] (Figure 1), making them per-
form poorly in accuracy.

Impaired Accuracy. As shown in Figure 2, there is an in-
tersection over union (IoU) larger than 0.5 between the
anchor boxes, whether they are in the color of green or red,
and the GT boxes, so these anchor boxes are considered as
positive samples. However, the red anchor boxes do not
capture any critical features necessary for ship detection.
Despite their high localization accuracy, these anchor boxes
reduce the detection performance and should preferably be
discarded. .e inconsistency between the training sample
division and the regression results will further lead to a gap
between the classification scores and localization accuracy of
the detection. Furthermore, the critical features for re-
gression and classification need to be extracted separately.
.ese findings agree with those of some previous studies
[17, 18]. .e anchors having the ability to capture the critical
features of the objects are key to detecting objects in remote
sensing imagery.

To address the misalignment problem in single-stage
detectors and extract critical features for detection, we pro-
pose a Critical and Align Feature Constructing Network
(CAFC-Net) consisting of three modules: a Bias Attention
Module (BAM), a Feature Alignment Module (FAM), and a
Distinctive DetectionModule (DDM)..e BAM can generate
different critical features for classification and regression
tasks. .e FAM employs an Anchor Optimization Network
(AON) and an Alignment Convolution (ACL). Based on the
critical features for regression tasks, the AON allows high-
quality anchor boxes to be generated. Unless other methods
with dense prior anchor boxes, our method employs only one
squared anchor box for each location in the feature map and,
with the help of the AON, refines them into high-quality
rotated anchor boxes. .en, the ACL, a variant of deformable
convolution, automatically aligns features according to the
shapes, sizes, and orientations of the corresponding anchor
boxes. In the DDM, orientation-invariant features can be
generated by pooling orientation-sensitive features, and then
orientation-invariant features can be reconstructed with bi-
ased critical features for classification. Finally, we feed the
orientation-sensitive features and the reconstructed orienta-
tion-invariant features into a regression subnetwork and a
classification subnetwork to produce final predictions. Ex-
tensive experiments on the HRSC2016 dataset and a self-built
ship dataset demonstrate that our proposed method can
deliver strong ship detection performance.

.e main contributions of this paper are summarized as
follows:

(1) Biased attention is proposed to construct different
critical features for various tasks. Biased critical
features provide more useful semantic information
for individual tasks, facilitating accurate classifica-
tion and location.

(2) For the misalignment between axis-aligned convo-
lution features and arbitrarily oriented objects, we
propose a new Alignment Convolution. .e Align-
Conv costs almost same amount of time compared
with standard convolution and can be easily em-
bedded in many detectors.

(3) .rough constructing DDM, inconsistency between
classification and regression can be bridged.

With the BAM and the FAM embedded, we design a
light single-stage detector which can generate biased critical
features for classification and regression and align features
for accurate ship detection in aerial images.

.e rest of this paper is organized as follows. In Section
2, we briefly review previously published studies on ship
detection. Section 3 describes in detail the proposed method.
Section 4 presents the experiments on two aerial image
datasets and the analysis process. Finally, Section 5 con-
cludes the paper with a discussion on the results.

2. Summary Review of Previous Studies

Traditional methods for ship detection in SAR images
[19–21] perform sea-land segmentation and then object
detection and recognition based on manually produced
features. However, such methods have high false alarm
probability, consume a large amount of time, and perform
poorly for detection in nearshore areas. With the ad-
vancement of CNN, a series of CNN-based ship detection
frameworks have been reported [22–25]. Inspired by the idea
of deep networks, Zhang et al. [22] presented a faster region-
based CNN method to detect ships from high-resolution
remote sensing imagery. Huang et al. [23] proposed a novel
network architecture named Squeeze Excitation Skip-con-
nection Path Networks (SESPNets) to improve feature ex-
traction capability and used soft nonmaximum suppression
to raise detection accuracy. However, these methods are
based on the Horizontal Bounding Box (HBB). Due to the
arbitrary orientation and large aspect ratio of ships, HBB-
based detectors often produce a lot of redundant infor-
mation, which may mislead the detection, as shown in
Figure 3(a). To alleviate this problem, some studies have
tried to use the Rotated Bounding Box (RBB) (Figure 3(b)) to
locate ships [26–28]. For instance, Liu et al. [26] proposed a
Rotated Region-based CNN (RRCNN) to predict the arbi-
trary direction of ships. Zhang et al. [27] utilized a Rotation
Region Proposal Network (RRPN) and a Rotation Region of
Interest (RRoI) pooling layer to detect arbitrarily oriented
ships. However, to ensure high overlaps with the rotated
objects, these methods adopted densely arranged anchor
boxes with different angles, scales, and aspect ratios. Most of
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the anchor boxes have no intersection with the targets,
which brings heavy computation and the severe imbalance
problem. Some studies addressed these challenges by setting
fewer anchor boxes without compromising the detection
performance [29, 30]. Ding et al. [29] proposed a RoI
Transformer to transform a horizontal RoI into a rotational
RoI by spatial transformation, which eliminated the need for
a large number of prior anchor boxes and alleviated the
misalignment problem. R3Det [30] achieved state-of-the-art
performance by re-encoding the position information to
align the features of horizontal anchor boxes. In contrast
with the above methods, the proposed CAFC-Net can

generate high-quality anchor boxes by refining horizontal
anchor boxes into rotated anchor boxes, improving the
detection speed with a reduced number of anchor boxes.

.e detection by an object detector usually involves two
parallel tasks: object classification and bounding-box re-
gression, which share the same features from the backbone
network. However, classification and regression based on
shared features do not deliver satisfactory performance.
Liao et al. [31] observed that sharing features would de-
grade the performance due to the inconsistency between
classification and regression tasks, so they constructed
rotation-invariant and rotation-sensitive features for each.

Alignment
Convolution

Figure 1: Misalignment problems in single-stage detectors.

Figure 2: Variations between different boxes.

Figure 3: Schematic illustration of HBB and RBB.
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Wu et al. [32] proposed to construct different head ar-
chitectures for different tasks, i.e., fully connected head for
classification and convolution head for regression. Inspired
by [18, 33], we build the BAM to extract biased critical
features and use them for classification and regression
tasks, respectively.

3. Proposed Method

.e overall architecture of the proposed CAFC-Net is
shown in Figure 4. First, we use RetinaNet [34] as the
baseline of our network. Different critical features are
constructed for classification and regression through the
BAM. .en, the AON can generate high-quality anchor
boxes based on the critical regression features. Next, the
ACL can align features according to the corresponding
anchor boxes. Finally, through the DDM, the features used
for classification are reconstructed, which are different
from those used for regression. In this way, the inconsis-
tency between classification and regression can be allevi-
ated and the detection performance can be effectively
improved. .e architecture of the proposed CAFC-Net is
described in detail as follows.

3.1. RetinaNet. RetinaNet consists of a backbone network
and task-specific subnetworks. A feature pyramid network
(FPN) [35] is adopted as the backbone network to extract
multiscale features. Both the classification and regression
subnetworks are convolutional networks. Moreover, focal
loss is used to address category imbalance caused by ex-
cessive background during training.

RetinaNet is suitable for multiclass object detection, for
which four parameters (x, y, w, h) are used to locate an
HBB. To facilitate the detection of arbitrarily oriented
ships, five parameters (x, y, w, h, θ) are used to represent
rotation anchor boxes. Lying in the range of [− π/2, 0), θ
denotes the acute angle between the box and the x-axis, and
for the other side, we denote it as h. .erefore, we add an
angular offset to the predictive regression subnet, which is
represented as follows:

dx �
x − xa( 􏼁

wa

,

dy �
y − ya( 􏼁

ha

,

dw � log
w

wa

􏼠 􏼡,

dh � log
h

ha

􏼠 􏼡,

dθ � θ − θa,

d
∗
x �

x
∗

− xa( 􏼁

wa

,

d
∗
y �

y
∗

− ya( 􏼁

ha

,

d
∗
w � log

w
∗

wa

􏼠 􏼡,

d
∗
h � log

h
∗

ha

􏼠 􏼡,

d
∗
θ � θ∗ − θa, (1)

where y, w, h, and θ indicate the center coordinates, width,
height, and angle of the box, respectively. Variables
x, xa, andx∗ represent the predicted box, anchor box, and
ground-truth box, respectively.

3.2.BiasedAttentionModule (BAM). .e overall structure of
the BAM is shown in Figure 5. For classification, we tend to
select significant global features to reduce noise interference.
For regression, we pay more attention to the features of
object boundaries and less to those of irrelevant regions.

Given input feature F ∈ RC×H×W, the BAM constructs
biased features as follows:

M(F) � ψ MC(F) + MS(F)( 􏼁,

F′ � F + F⊗M(F),
(2)

where ⊗ denotes element-wise multiplication.
First, we extract channel attention map MC and spatial

attention map MS through two separate branches. .e
channel attention network can assign different weights to
each channel according to its contribution to the detection
task. .e weight of each channel is extracted by global
average pooling and fully connected layers. .e channel
attention is computed as follows:

MC(F) � σ W1 W0AvgPool(F)( 􏼁( 􏼁, (3)

where W0 ∈ RC/r×C and W1 ∈ RC×C/r are the weights and σ
represents the sigmoid function.

Correspondingly, spatial attention is applied to establish
the dependencies between pixels of the input image. It can be
computed as follows:

MS(F) � σ f
1×1
3 f

3×3
2 f

3×3
1 f

1×1
0 (F)􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑, (4)

where f denotes a convolution operation and the super-
scripts denote the convolution filter size. .ere are two 1×1
convolutions for channel reduction. .e intermediate 3×3
dilated convolutions are applied to expand the receptive
field.

Next, by combining the channel attention MC(F) and
the spatial attention MS(F), we get attention response map
M(F). Due to their different shapes, the two attention maps
are expanded to RC×H×W before being combined. Further-
more, we build powerful biased critical features through
different functions ψ(•). For classification, we exploit an
excitation function to focus the attention of the detector on
significant parts of the objects. .e excitation function is
defined as follows:
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ψcls(x) �
1

1 + e
− (x− 0.5)

. (5)

Since the significant areas of critical classification features
are sufficient for accurate classification, there is no need to
attend to additional information. .erefore, the effects of the
significant areas are excited, while the irrelevant features with
an attention weight less than 0.5 are suppressed. In this way,
the classifier can pay less attention to the irrelevant regions
and reduce the risk of overfitting and missclassification.

Meanwhile, for the regression branch, the detector needs
to pay more attention to the contour and context infor-
mation of the objects. .us, the following depression
function is implemented:

ψreg(x) �
x, x< 0.5,

1 − x, otherwise.
􏼨 (6)

In (6), the regions with high response are suppressed,
which forces the model to look for potential features for
accurate localization. .e curve of the function ψ(•) is
shown in Figure 5.

Finally, biased attention maps are element-wisely
multiplied with the original feature map F to extract critical
features. As shown in (2), the original feature map F and
the critical feature map are merged by element-wise
summation to obtain powerful feature representations. .e
visualization results of biased critical features are shown in
Figure 6. It can be seen that the BAM is capable of
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Figure 5: Schematic illustration of the BAM.
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Figure 4: Architecture of the proposed CAFC-Net.
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efficiently extracting the critical features required by dif-
ferent tasks. Specifically, the features used for classification
are more concentrated in areas that are easy to identify,
avoiding interference from other parts of the ship. Features
used for regression are widely distributed across the ship,
which helps to identify the boundary and thus enables more
accurate localization.

3.3. Feature AlignmentModule (FAM). .e FAM consists of
an Anchor Optimization Network (AON) and an Alignment
Convolution (ACL), as shown in Figure 4. In this section, we
will introduce them in detail.

3.3.1. Anchor Optimization Network. We take each pixel of
the feature map as an anchor to generate a horizontal anchor
box and adjust it through preliminary regression. Based on
the IoU between the anchor box and the ground truth, an
RBB filter is used to remove anchor boxes with an IoU less
than 0.3. .en, the AOM is used to reduce the number of
anchor boxes and generate high-quality proposals.

3.3.2. Alignment Convolution Layer (ACL). In a standard 2D
convolution, we first sample over the input feature map X by
a regular grid R � (rx, ry)􏽮 􏽯 and then sum up the sampled
values weighted by W. .e grid R represents the receptive
field size and dilation. For example,

R � (− 1, − 1), (− 1, 0), . . . , (0, 1), (1, 1){ }, (7)

defines a 3×3 kernel and dilation 1.
For each location p on the output featuremapY, we have

Y(p) � 􏽘
r∈R

W(r) · X(p + r), (8)

where r enumerates the locations in R.
Unlike a standard convolution, the Alignment Convo-

lution (AlignConv) can be expressed as follows:

Y(p) � 􏽘
r∈R;o∈ϑ

W(r) · X(p + r + o) · Δm,
(9)

where Δm is a learnable modulation scalar for each location
and lies in the range [0, 1]. Each modulation scalar can be

viewed as a weight, and more accurate feature extraction can
be achieved by assigning different weights to the offset-
corrected regions. For each location, the offset field ϑ is
computed as the difference between the anchor-based
sampling position and the regular sampling position (i.e.,
p + r) and can be computed as follows:

ϑ � 􏽘
r∈R

L
r
p − p − r􏼐 􏼑. (10)

.e corresponding anchor box at location p can be
represented by five parameters (x, y, w, h, θ). For each r ∈ R,
the anchor-based sampling location Lr

p can be defined as
follows:

L
r
p �

1
S

cos θ − sin θ

sin θ cos θ
⎛⎝ ⎞⎠

x

y

⎛⎝ ⎞⎠ +
1
k

w

h

⎛⎝ ⎞⎠ · r⎛⎝ ⎞⎠, (11)

where k indicates the kernel size and S denotes the stride of
the feature map.

In this way, the axis-aligned convolutional features
X(p) of a given location p can be transformed into ar-
bitrarily oriented ones based on the corresponding an-
chor box.

As shown in Figure 4, for an H × W × 5 anchor
prediction map, we first convert the relative offset
(Δx,Δy,Δw,Δh,Δθ) into absolute anchor boxes
(x, y, w, h, θ). .en, the offset field calculated by (10)
along with input features is fed into the AlignConv to
extract aligned features. .e ACL has notable advantages
in which it is a light convolutional layer and that the time
it takes for offset computation is negligible.

3.4. Distinctive DetectionModule. As shown in Figure 4, the
DDM can alleviate the inconsistency between classification
scores and localization accuracy. An active rotating filter
(ARF) [36] is adopted to obtain orientation-sensitive fea-
tures. An ARF is a k × k × N filter that actively rotates N − 1
times during convolution to produce a feature map of N

orientation channels (N is 8 by default), which explicitly
encodes the orientation information. Since the ARF con-
volves a feature map X, the k − th orientation output of Y

can be computed as follows:

PAM PAM PAMBAM BAM BAM

classification
features

regression
features

Figure 6: .e visualization results of FAM and BAM.
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Y
(k)

� 􏽘
N− 1

n�0
F

(n)
θk

· X
(n)

,

θk � k
2π
N

, k � 0, . . . , N − 1,

(12)

where Fθk
is the clockwise θk − rotated version of F and F

(n)
θk

and X(n) are the n − th orientation channel of Fθk
and X,

respectively. Applying the ARF to the convolution layer, we
can capture rotation-sensitive feature maps and improve the
generalizability of the rotating samples. Orientation-sensi-
tive features are preferred for bounding-box regression
tasks, while rotation-invariant features are required for
object classification tasks. Following [36], the DDM obtains
rotation-invariant features by pooling the orientation-sen-
sitive features. .e rotation-invariant features can be easily
extracted by selecting the orientation channel with the
strongest response as output feature Xpooling.

Xpooling � maxN− 1
n�0 X

(n) . (13)

Since the pooling operation is unordered and applied to
all the N response maps, the resulting feature maps are
locally invariant to object rotation. .en, we fuse the ori-
entation-invariant features with biased critical features and
enhance significant features by using a Sigmoid function.
.rough the reconstruction, the features for classification
are made compatible with orientation-invariant features and
biased attention. Finally, we feed the reconstructed orien-
tation-invariant features and orientation-sensitive features
into two subnetworks for classification and regression,
respectively.

4. Experiments and Analysis

4.1. Datasets. In the experiments, the HRS2016 [37] dataset
and a self-built dataset, called Ship, are used to verify the
effectiveness of the proposed method.

HRSC2016. .is is a high-resolution ship recognition
dataset which contains 1061 images and more than 20
categories of ships in various appearances, scales, and ori-
entations. .e image size ranges from 300 × 300 to 1500 ×

900. .e entire dataset is divided into a training set (849
images) and a test set (212 images). Horizontal flip is
adopted to enhance the training set, and all samples are
resized to 800 × 800 before training and testing.

Ship. We collect 1002 aerial images from Google Maps to
construct the Ship dataset. All the images are in the size of
600 × 1000. See Table 1 for details of the dataset. Although
the Ship dataset has fewer images than HRSC2016, it con-
tains more objects than the latter. Since the images in the
Ship dataset are mostly in the background of commercial
ports, commercial ships make up the majority of the images.
.is means that the richness of ships in the Ship dataset is
not as good as that in HRSC2016.

4.2. Experiment Implementation. .e backbone of the
CAFC-Net is ResNet-50 [38], unless otherwise specified. We

use a feature pyramid of P2, P3, P4, P5, andP6 (the strides
are 4, 8, 16, 32, and 64) to detect multiscale objects. For each
position of feature maps, only one anchor is set to regress
nearby objects.

All experiments are implemented on the TensorFlow
deep learning framework and executed on a graphic
workstation with dual Intel Xeon-E5 CPUs, a single
NAVIDIA TITAN RTX GPU (24GB of video memory), and
64GB of RAM. .e network is trained with an SGD opti-
mizer. .e learning rate is 0.001 and is divided by 10 at each
decay step..e weight decay and momentum are 0.0001 and
0.9, respectively.

4.3. Ablation Studies

4.3.1. Evaluation of Different Components. We conduct
component experiments to validate the contributions of the
proposed components. Table 2 shows the specific settings
and test results of each group of experiments. Since only one
anchor box is set on each feature map, it is difficult for the
baseline model to obtain enough critical features, and the
mAP value is only 75.62%. With the BAM used alone, the
detection performance is improved by 2.79%, indicating that
the critical features constructed by the BAM can facilitate the
matching of anchor boxes. With the FAM used alone, the
detection performance is improved by 4.24%, indicating that
the FAM can generate high-quality anchors with feature
alignment.With the BAM andDDMused together, themAP
value is improved by 4.97% compared with when the BAM
used alone, indicating that the DDM’s ability to construct
different features for two subnetworks helps to improve
detection accuracy. With the BAM and FAM used together,
the mAP value reaches 85.65%, which represents signifi-
cantly improved detection performance. Finally, the mAP of
the CAFC-Net reaches 91.18%, which is 15.56% higher than
that of the baseline model, proving the effectiveness of our
network.

4.3.2. Evaluation of BAM. Comparative experiments are
conducted to verify the effectiveness of the BAM..e results
are shown in Table 3. By adding an attention mechanism, the
detection performance is improved by 2.79% compared with
the baseline model. .e results show that the attention
mechanism can make the detector focus on the target area.
.e detection accuracy is improved by embedding an ex-
citation function and a depression function in the network.

To verify the effectiveness of the BAM in a more
straightforward way, the results of some features of the BAM
and PAM [18] are visualized in Figure 6. .e heat map
induced by the BAM responds to the area of task-sensitive
critical features more accurately. .e features required for
classification should be concentrated in the target area. .e
BAM outperforms the FAM in eliminating the influence of
irrelevant features. At the same time, the clues required for
regression are more likely to be distributed on the edge of
targets..e feature distribution of the BAM is more uniform
than that of the FAM, which is more conducive to higher
levels of localization accuracy.

Computational Intelligence and Neuroscience 7



4.3.3. Evaluation of AlignConv. We verify the effectiveness
of AlignConv by comparing it with Conv [39–41],
DeformConv [42], and DeformConv v2 [43]. .e experi-
mental results are shown in Table 4. Compared with stan-
dard convolution, AlignConv improves the mAP by 3.70%
while introducing a mere of 4ms latency into the detection
process. Although DeformConv and DeformConv v2 have
almost no latency compared with standard convolution, they
only deliver mAP values of 88.68% and 89.88%, respectively.
.e results show that AlignConv can effectively improve the
detection performance with negligible latency.

4.4. Comparison with Other State-of-the-Art Methods. We
evaluate the overall performance of the proposed network by
comparing it with other state-of-the-art methods on the Ship

dataset. As shown in Table 5, our proposed framework
delivers an mAP value of 91.18%, which represents higher
detection performance than R2CNN [44], RRPN [45],
R-DFPN [1], SCRDet [46], and R3Det [30]. .e qualitative
detection results are visualized in Figure 7. Specifically, the
green boxes are correctly detected ship targets, yellow boxes
are missed targets, and red boxes are false detection targets.
Compared with the above five algorithms, the CAFC-Net
produces fewer false predictions and more accurate locali-
zation when detecting densely arranged ships. Besides, from
the visualized mAP and performance results, we can easily
see that our method is particularly effective in detecting
ships with a large aspect ratio and a large-scale variation..e
F-values, as shown in Table 5, and P-R curves, as shown in
Figure 8, illustrate that the overall performance of the
CAFC-Net is even better.

Table 2: Effects of each component of CAFC-Net.

Methods Different variants
BAM × ✓ × ✓ ✓ ✓
FAM × × ✓ × ✓ ✓
DDM × × × ✓ × ✓
mAP (%) 75.62 78.41 79.86 83.38 85.65 91.18

Table 3: Ablation study of the proposed BAM.

Methods Different variants
Attention × ✓ ✓ ✓ ✓
Excitation function × × ✓ × ✓
Depression function × × × ✓ ✓
mAP (%) 75.62 76.43 77.70 78.21 78.41

Table 4: Comparison of AlignConv with other convolution methods.

Methods mAP (%) Speed (ms)
Conv 87.48 35
DeformConv 88.68 37
DeformConv v2 89.88 38
AlignConv 91.18 39

Table 1: Distribution of the Ship dataset.

Image number Target number
Training set 800 2834
Test set 202 623

Table 5: Comparisons with state-of-the-art methods on Ship.

Methods TP FP R (%) P (%) F (%) AP (%)
R2CNN 492 82 79.00 85.71 82.22 72.29
RRPN 516 444 82.83 53.75 65.19 75.24
R-DFPN 541 58 86.84 90.32 88.55 81.70
SCRDet 577 38 92.62 93.82 93.22 90.89
R3Det 574 110 92.13 83.92 87.83 88.34
CAFC-Net (ours) 572 28 93.26 94.63 93.94 91.18
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Figure 7: Results of detection of images in the Ship dataset.
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Figure 8: .e P-R curves of different methods.
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5. Conclusion

In this paper, we build an end-to-end single-stage rotation
detector, called the CAFC-Net, to improve the performance
of ship detection in aerial images. Several novel modules are
designed for the model. First, we design a biased attention
module, which can extract biased critical features for clas-
sification and regression. .en, high-quality anchor boxes
can be generated. .e features can be aligned according to
the corresponding high-quality anchor boxes. Finally, we
adopt a distinctive detection module which can construct
different features for classification and regression to alleviate
the inconsistency between classification and localization
accuracy. Experiments based on two different datasets
demonstrate that each part of our proposed network is
efficient, and its overall detection performance is superior to
other competing methods.
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