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Flood disaster is one of the critical threats to cities. With the intellectualization tendency of Industry 4.0, re�ned urban �ood
models can e�ectively reproduce �ood inundation scenarios and support the decision-making on the response to the �ood.
However, the spatiotemporal variability of rainfall and the spatial heterogeneity of the surface greatly increase the uncertainties in
urban �ood simulations.�erefore, it is crucial to account for spatiotemporal variability of rainfall events and grids of themodel as
accurately as possible to avoid misleading simulation results. �is study aims to investigate the e�ect of temporal resolutions of
rainfall and spatial resolutions of the model on urban �ood modeling in small urban catchments and to explore a proper
combination of spatiotemporal schemes. �e IFMS Urban (integrated �ood modeling system, urban) is used to construct a one-
dimension and two-dimension coupled urban �ood model in the typical inundated area in Dongguan, China. Based on �ve
temporal resolutions of rainfall input and four spatial resolutions, the compound e�ect of spatiotemporal resolutions on the
accuracy of urban �ood simulations is systematically analyzed, and the variation characteristics are investigated. �e results show
that the �ner the temporal resolution is, the higher the simulation accuracy of the maximum inundated water depth. Considering
the spatial resolution, as the spatial grid becomes smaller, the relative error of the maximum inundated water depth decreases, but
it also shows some nonlinear characteristics. �erefore, the smaller grid does not always mean a better simulation. �e spatial
resolution has a greater impact on the �ood simulation accuracy than the temporal resolution. �e simulation performance
reaches the best when the grid interval is 100m and the rainfall input interval is 5min, 10min, or 15min. A�ected by other factors
such as terrain slope, the simulation accuracies under di�erent spatiotemporal resolutions present complex nonlinear char-
acteristics. �e mechanisms of the compound e�ect of the spatiotemporal resolutions on the model simulation and the e�ect of
underlying surface and topography on model simulation will be the focus of in-depth exploration for the future urban
�ood model.

1. Introduction

With booming urbanization, the �ood-inducing factors and
hazard bearing bodies have experienced great changes in
recent years. Many large andmedium-sized cities around the
world have su�ered from frequent �oods, which seriously
threaten the safety of life and property of urban residents
[1–3]. As an important basis for urban �ood emergency
control and risk management, the urban �ood model is very
important in real-time simulation, early warning, and risk
assessment of �oods. In recent years, under the background

of Industry 4.0, the algorithms, calculation data, and
computing power have greatly improved [4]. �e spatio-
temporal resolutions of urban �ood models are becoming
higher, and the decision-making is more intelligent. How-
ever, the �ne-resolution simulation brings computational
pressure and increases the uncertainties in the urban �ood
simulation. Due to the diverse underlying urban surface, the
fast runo� process, and the short response time, its hy-
drological characteristics in urban regions show high spa-
tiotemporal heterogeneity [5, 6]. �erefore, the urban �ood
model generally has strong resolution dependence, and the
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simulation accuracy is constrained by the spatiotemporal
resolutions [7–9]. To improve the simulation accuracy, we
need to conduct in-depth and systematic research on the
impact of spatiotemporal resolutions on the simulation
accuracy of urban flood models.

Rainfall is one of the key driving factors of urban hy-
drological processes and is of high spatiotemporal variability
[10, 11]. Variations of the rainfall spatiotemporal resolutions
can affect the rainfall-runoff response time and water yield in
the hydrological model [11]. (erefore, it is important to
simulate the hydrological response with an appropriate
spatiotemporal resolution of rainfall [12, 13]. A large
number of studies have proved that for small urban
catchments, urban flood simulation should use the rainfall
data on at least 1–15min time resolution and 100–1000m
spatial resolution [14–16]. Bruni et al. [17] analyzed the
relationship between the urban catchment area and the
required spatiotemporal resolutions of rainfall data and
showed that for small urban catchments with less than
700 hectares, the urban hydrological simulation requires the
rainfall data with at least a 5min time resolution and a
1.7 km spatial resolution. In addition, the sensitivity of
different hydrological models to the spatiotemporal reso-
lutions of rainfall differs significantly, with the physical
model being more sensitive than the conceptual model
[18–20]. Aronica et al. [21] found that the Storm Water
Management Model (SWMM) is more sensitive to rainfall
temporal resolution than hydrological parameters. Meselhe
et al. [22] compared the HMS (hydrologic modeling system)
conceptual model with the physics-based hydrological
model MIKE SHE. (ey found that the latter is more
sensitive to rainfall temporal resolution. Gires et al. [23]
found that the 1D/2D (one-dimension/two-dimension)
coupled model, Multi-Hydro, is more sensitive to rainfall
variability than the simpler 1D model. Many other studies
also found that in small urban catchments, the time-scale
variation of rainfall data has a greater impact on urban
hydrodynamic models [24, 25]. To sum up, for a densely
built and highly impermeable urban catchment, the output
of the urban flood model is very sensitive to the rainfall
spatiotemporal resolutions, and the bias of output increases
obviously as the resolutions decrease.

Most urban flood models are distributed hydrological
models based on grid data. (e hydrological process is also
sensitive to the spatial distribution of the underlying surface
of the watershed [9]. (e computational efficiency of the
model and the accuracy of the simulations are often affected
by the spatial resolution of the grid and the accuracy of input
data [26, 27]. In the early 1960s, the importance of the spatial
resolution of input data is recognized by scholars [28, 29].
Since then, many scholars have studied the spatial resolution
of hydrological models. (ey found that the conclusions are
different in different study areas. (e model of high spatial
resolution can lead to the systematic underestimation of
peak flow [30, 31]. Ichiba et al. [27] found that increasing
spatial resolution can reduce peak flow and total flow. (e
effect of spatial resolution of the grid on model performance
is nonlinear, and higher mesh accuracy does not necessarily
lead to better simulation. Zhang and Montgomery [32]

found that a spatial resolution of 10m can greatly improve
the simulations than 30m and 90m, while that of 2m or 4m
only improves the model slightly. (e above studies show
that the difference in spatial resolutions will change the loss
of underlying surface information and the complexity of the
surface runoff between adjacent grids, which has a nonlinear
impact on the simulations. (erefore, in the modeling
process of the urban flood, the appropriate spatial resolution
should be selected according to the comprehensive analysis
of the calculation characteristics of the model, the charac-
teristics of the underlying surface of the study area, and the
accuracy of the input data.

To sum up, there have been extensive studies on eval-
uating the accuracy of urban flood simulation unilaterally
from the temporal resolution of rainfall data or spatial
resolution of the grids. (ese studies show that the effects of
temporal resolution and spatial resolution on the simulation
accuracy are obvious and nonlinear. So, the compound
effects of grid spatial resolution and rainfall temporal res-
olution on the simulation accuracy should be more com-
plicated. However, there are few studies on this aspect. To
this end, we take the typical flooded area in Dongguan,
China, as the study area (Section 2.1) and collect topographic
and sewer network data (Section 2.2). (e distributed urban
flood model IFMS Urban (Section 3.1) is used to construct
the coupling model of the 1D urban drainage network model
and 2D surface hydrodynamic model in the study area, and
the model is validated by using the high temporal resolution
rainfall data and observed historical inundation events
(Sections 2.2 and 3.3). (en, we explore the effects of rainfall
temporal resolution and model spatial resolution on the
maximum inundation water depth and the submerged water
depth hydrograph based on five temporal resolutions of
rainfall input and four spatial resolutions(Sections 4.1 and
4.2). Furthermore, we analyze the compound effects of
different spatiotemporal resolutions on the accuracy of
urban flood simulations (Section 4.3). Conclusions can be
found in Section 5.

2. Study Domain and Data

2.1. Study Domain. (e study site, Guancheng District of
Dongguan City, is located on the south-central east coast of
the Pearl River estuary, Guangdong Province, China (within
E119°31′-114°15′, N22°39′-23°09′). It covers approximately
13.31 km2 (Figure 1(a)). (e study area represents a typical
urban area with a density of human structures such as
houses, commercial buildings, and roads. When the city is
hit by heavy rainfall, the topographic characteristics of the
study area make the flood converge to the middle from the
sides south and north and finally discharge into the Dongyin
Canal in the east.

2.2. Data Collection

2.2.1. Topographic Data. (e basic geographic data provided
by the Urban Planning Bureau of Dongguan City (UPBDC)
included a remote-sensing image and a digital elevation
model (DEM). (e resolution of the remote-sensing and
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DEM are 5m and 0.5m, respectively.�e former was used to
distinguish the land use types of the underlying surface, and
the latter was used to calculate the elevation and slope of the
2D grid.

2.2.2. Sewer Network Data. �e sewer network data
(Figures 1(b) and 1(c)) that were obtained from UPBDC is
mainly based on the combined system. Most of the pipelines
do not meet the design return period of one year, and most
of the pipelines are less than 1000mm in diameter, which is
easy to cause waterlogging in the lower terrain.

2.2.3. Rainfall Data. In this research, two rainstorm events
that occurred on August 30, 2018, and May 7, 2015, were
used for model calibration and impact study of temporal and
spatial scale, respectively. �e maximum 24-hour cumula-
tive rainfall of the two rainstorm events exceeded 50mm,
resulting in waterlogging in the study area. �ree rainfall
stations, which collect rainfall data at an interval of every
5min, are located in and around the study area (Figure 1(c)).
�e rainfall of 10min, 15min, 30min, and 1 h temporal scale
was accumulated from the rainstorm of May 7, 2015.

Meteorological Bureau of Dongguan City provided the
corresponding rainfall records.

2.2.4. Observed Historical Inundation Events. Generally, it is
di¡cult to calibrate and validate the urban inundation
model due to a lack of detailed observation of inundation
events [2]. �erefore, in many cases, either a partial cali-
bration/validation of the model or an indirect validation/
veri�cation based on testimonial reports is sought [33, 34].
In this research, the process of inundation depth in the
inundation area in Yonghuating, Dongcheng Road West,
and Dongzong Road on August 30, 2018, was observed for
the calibration and veri�cation of the urban �ood model.
�e data on maximum inundation depth and distribution of
inundation area on May 7, 2015, were collected and released
by the Water Authority of Dongguan City.

3. Methodology

3.1. IFMS Urban. IFMS Urban couples the SWMM with a
2D surface hydrodynamic model that is conducted based on
an adaptive grid and �nite volume method, which can
automatically identify the region with a large parameter

City of Dongguan23
°0
′
N

22
°4

0′
N

113°40′E 114°0′E

0 0.3 0.6 1.2 1.8 2.4
km

(a)

(b)

(c)

Landcover DEM
153 m

1.66 m

Dongyin Canal
Densely built area
Road

Pavement
Water
Grass

Outlets
Study area
Manholes

Rainfall stations
Pipelines
Waterlogging points

N

Figure 1: (a) Location and landcover conditions of the study area in which �ve numbers from #1 to #5 labeled with distribution of
waterlogging points: #1 People’s Park; #2 Dongzong Road; #3 Yinshan Street; #4 Dongcheng West Road; #5 Yonghuating. (b) shows the
sewer network with manholes and outlets. (c) Top view of the DEM overlaid with the pipeline and rainfall station layer of the study area.
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gradient and the boundary between dry and wet, adjust the
grid size, accurately simulate the dynamic change of water
flow propagation, and can be applied to the actual flood
simulation [35]. (e IFMS Urban efficiently calculates the
urban flood process in the complex urban area with frequent
waterlogging and achieves good calculation accuracy, which
provides technical support for this paper.

3.1.1. 1D Urban Drainage Network Model. (e urban
drainage system consists of water inlets, drainage pipes,
drainage pumping stations, and river channels at the outlets
of the pipe network. (e 1D model can use three methods of
dynamic wave method, kinematic wave method, and steady
flow method to calculate the drainage pipeline confluence.
(e governing equation is specifically the following
formulas:
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� 0, (1)

where Q is the discharge, A is the discharge section area, t

represents the time, and x represents the distance.
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where H represents the water depth, g represents the
gravitational acceleration, and Sf is the slope gradient of
friction resistance.

3.1.2. 2D Surface HydrodynamicModel. In order to establish
a special well-balanced scheme technique for dealing with
source term due to bottom topography constructed, this
paper develops a well-balanced Godunov-type scheme of the
second-order accuracy for 2D shallow water equation with
mesh. As above, the MUSCL method is used to reconstruct
the variable values on both sides of the unit interface UL/R

i+1/2
and the Roe format is selected to solve interface flux in the
evolutionary step. Regarding the discretization of the source
term, the bed slope term is discretized by characteristic
classification, and the resistance source term is discretized
implicitly.

(e 2D shallow water equation of depth-averaged can be
abbreviated as follows:
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where h represents the water depth, u is the flow velocity of
x-direction, v is the flow velocity of y-direction; Sx and Sy

are the source terms.

3.1.3. Algorithm of Coupled Model. (e 1D urban drainage
network model and 2D surface hydrodynamic model are
coupled by calculating the exchange water volume, which is
substituted into their respective model for calculation and
update to the next step. (e exchange water volume can be
calculated through the following equation:

Q � M Hnode − Hsurface( Wcrest
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(4)

where HSurface is the head of land surface,Hnode is the head of
drainage pipeline, M is the discharge coefficient, Wcrest is the
width or perimeter of manhole, and Hg is the surface
elevation.

3.2. Evaluation of Modeling Results. (e calibration process
has been evaluated using error indicators including Nash-
Sutcliffe efficiency coefficient (NSE), maximum inundation
depth relative error (REP) , and maximum inundation depth
appearance time absolute error (AET) for the simulated and
observed values. (e error indicators are formulated as in
the following equations:

NSE � 1 −


N
i�1 q

obs
i − q

sim
i 

2


N
i�1 q

obs
i − q

obs
 

2, (5)

where qobsi is the observed value of an event i, qsimi is the
simulated value of an event i, N is the number of observed
values, and qobs is the average of observed values.
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× 100%, (6)

where qobsP is the observed value of maximum inundation
depth, qsimP is the simulated value of flood peak maximum
inundation depth.

AET � T
obs
P − T

sim
P , (7)

where Tobs
P is the observed value of maximum inundation

depth appearance time, and Tsim
P is the simulated value of

maximum inundation depth appearance time.
In order to compare the results from different rainfall

temporal resolution and 2D grid scale and also to compare
the effect of the composition of the rainfall temporal res-
olution and 2D grid scale, different measures were used. In
addition to the common error indicators such as REP and
AET, we also used the coefficient of determination (R2) to
compare the correlation of two inundation depth series. (e
closer R2 to 1, the higher the correlation between the two
inundation depth series. R2 is specifically as follows:

R
2

�
 YA − YA( 

2
−  YA − YB( 

2

 YA − YA( 
2 , (8)
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where YA is the value of the inundation depth series A, YA is
the mean value of the inundation depth series A, and YB is
the value of the inundation depth series B.

3.3. Model Validation

3.3.1. Model Setup. (e model is set up based on the
drainage network. (e study area is generalized into 999
pipes, 1011 manholes, and 12 outlets. (e parameters for the
model include the section size of the drainage network, the
two-dimensional (2D) grid elevation, the subcatchment
slope, and the 2D grid pervious surface ratio. (e section
parameters of the drainage network are obtained from the
actual survey data. (e 2D grid elevation and the sub-
catchment slope are determined based on the DEM data.(e
2D grid pervious surface ratio is extracted from the remote
sensing images over the study area. (e empirical param-
eters of the model include the impervious area Manning’s
roughness, the depression storage for the pervious area, and
the infiltration related parameters. (e empirical parameters
are calibrated according to the SWMM user manual and the
hydrogeological characteristics of the study area, as shown in
Table 1. (e rainwater in the study area flows through the
pipeline by gravity and is finally discharged into the Dongyin
Canal. According to historical data, the water level of the
Dongying Canal is low and does not affect the outflow of the
pipeline. (erefore, the model boundary outflow condition
is set to free outflow. (e modeling time step is set to 20 s,
and the total simulation time is 24 h. (e setting can ensure
that the pipeline network system has no inflow. (e accu-
mulated water in the pipeline has been emptied when the
simulation ends under each input rainfall condition.

3.3.2. Model Validation. In this section, we validate the
IFMS Urban model by using the rain and flood event on
August 30, 2018, as an example. (e rainfall poured heavily
in the study area from 11:00 to 16:00, within which rainfall
amount accounted for over 80% of the total in the day. (us,
a 5 h storm event spanning from 11:00 to 16:00 was used as
model rainfall data.

A summary of the simulations performed is given in
Figure 2 and Table 2. (e model can well predict the flood
occurring and receding at the typical waterlogging points of
Yonghuating, DongchengWest Road, and Dongzong Road.
(ese results confirm that the simulation of flood processes
is reasonably well, with NSE for all waterlogging points
exceeding 0.75. (e REP and AET ranged approximately
from 11.11% to 17.50% and from 5min to 12min, re-
spectively. All of them are within the allowable error range
required by the Standard for Hydrological Information and
Hydrological Forecasting of China. Furthermore, the re-
sults of Dongcheng West Road are better than other
waterlogging points, with NSE, REP and AET being 0.86,
11.11%, and 5min, respectively. In conclusion, the above
results show that the parameters of the model are set
reasonably, and the model has good applicability in the
study area. (e model is reliable and is suitable for the
subsequent analysis.

4. Results and Discussion

4.1. Effect of Rainfall Temporal Resolution. Table 3 and
Figure 3 show the maximum inundation water depth and
REP at five typical waterlogging points under five temporal
resolutions. With the increase of rainfall temporal resolu-
tion, the maximum inundation water depth gradually de-
creases and REP increases. However, the effect of the rainfall
temporal resolution on the maximum inundation water
depth is small on the whole. Increasing the time step of
rainfall input from 5min to 30min, the variation range of
the maximum inundation water depth at the five water-
logging points is within 5 cm, while the variation range of
REP is less than 8%. REP at waterlogging points based on the
1 h temporal resolution is larger than the other four tem-
poral resolutions, with that in Dongcheng West Road being
the largest (13.73%). (e errors of the maximum inundation

Table 1: Values of empirical parameters.

Number Parameter Value
1 Manning’s roughness for impervious area 0.013
2 Manning’s roughness for pervious area 0.230
3 Depression storage on impervious area (mm) 2.500
4 Depression storage on pervious area (mm) 5.000
5 Roughness of pipe 0.014
6 Maximum infiltration rate (mm·h−1) 104.000
7 Minimum infiltration rate (mm·h−1) 12.000
8 Attenuation coefficient 8.500
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Figure 2: Simulation results of flood processes at typical water-
logging points.

Table 2: Simulation error statistics.

Dongcheng west road Yonghuating Dongzong road
NSE 0.86 0.78 0.80
REP 11.11% 17.64% 17.50%
AET/min 5 8 12
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water depth at the waterlogging points increase with the
temporal interval of rainfall input, but the overall increase is
not large.

(e occurrence time of the maximum inundation water
depth (referred to as the peak time of inundation water
depth) at waterlogging points has a high correlation with the
temporal resolution of rainfall input. As shown in Table 4,
with the increase of the temporal resolution of rainfall input,
the time between the peak time of inundation water depth at
waterlogging points and the rainfall peak time (referred to as
the lag time) also increases. (e lag time of the 10min and
15min rainfall input intervals at the five waterlogging points
is short (only 0–3min). (e lag time of the 30min and 1 h
rainfall input intervals changes a lot. Compared with the
5min time interval, the lag time is, respectively, extended by
7–13min and 23–36min.

With the increase of rainfall input interval, the corre-
lation between the submerged water depth and the rainfall at
waterlogging points decreases. (e deformation degree of
the submerged water depth hydrograph at waterlogging
points becomes larger. Taking the waterlogging point,
Yonghuating, as an example (as shown in Figure 4), the
rainfall peaks twice at about 1 h and 2 h. Correspondingly,
there are two obvious waterlogging processes in 1-2 h and

3-4 h under the 5min, 10min, 15min, and 30min rainfall
temporal resolutions at Yonghuating, and the results have a
good correlation with the rainfall observation. (e sub-
merged water depth hydrograph under the 1 h rainfall
temporal resolution has only one obvious waterlogging
process. Compared with the waterlogging processes under
other temporal resolutions, the maximum inundation depth
is lower and the corresponding occurrence time is later.
Using the coefficient of determination (R2), this study
further analyzes how well the shape of submerged water
depth hydrographs under 10min, 15min, 30min, and 1 h
rainfall input resolutions at five typical waterlogging points
match that of the hydrograph under the 5min resolution
(Figure 5). With the increase of temporal interval, the co-
efficient of determination decreases, and the difference
between submerged water depth hydrographs increases. (e

Table 3: Maximum inundation water depth at five typical waterlogging points under five temporal resolutions.

Waterlogging points
Maximum inundation water depth (cm)

Observation 5 min 10min 15min 30min 1 h
Dongcheng west road 60 58.81 58.17 57.97 56.75 53.19
Dongzong road 25 23.65 23.61 23.34 23.21 22.19
Yonghuating 30 28.20 28.19 28.15 28.05 25.88
People’s park 17 16.69 16.62 16.51 16.21 15.36
Yinshan street 22 21.17 21.11 20.90 20.84 20.12
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Figure 3: Relative errors of maximum inundation water depth
(REP) at five typical waterlogging points under five rainfall tem-
poral resolutions.

Table 4: Lag time of maximum inundation depth to rainfall peak
under five temporal resolutions.

Waterlogging points
Lag time (min)

5 min 10min 15min 30min 1 h
Dongcheng west road 63 63 66 76 90
Dongzong road 80 83 83 93 116
Yonghuating 30 33 36 43 63
People’s park 60 63 63 70 83
Yinshan street 63 63 66 70 86
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Figure 4: (e hydrographs of inundation under five rainfall
temporal resolutions at Yonghuating.

6 Computational Intelligence and Neuroscience



shape for the 10min and 15min resolutions is in good
agreement with the submerged water depth process under
5min resolution, and R2 are all higher than or equal to 0.97.
However, there are certain differences of hydrographs be-
tween 1 h and 5min resolutions, and the R2 is only
0.69–0.81.

4.2. Effect of the 2D Spatial Resolution of Model Grids.
(e study area is used as the meshing area to generate four
kinds of mixed 2D meshes of triangles and quadrilaterals
with spatial scales of 50m× 50m, 100m× 100m,
150m× 150m and 200m× 200m. According to the remote
sensing images, we analyze the land use type of the un-
derlying surface and set the impervious area and roughness
of the simulations under four spatial resolutions. (e grid
elevations for the four spatial resolutions are all obtained by
inverse distance weighted interpolation based on a DEM
with a resolution of 5m.

As shown in Table 5 and Figure 6, the effect of grid spatial
resolution on the model simulation is nonlinear. It means
that the smaller spatial resolution does not correspond to the
higher accuracy of model outputs. With the increase of grid
spatial interval, the maximum inundation depth decreases
and the absolute error (AE) of the maximum inundation
depth increases on the whole. When the grid spatial reso-
lution is increased from 50m to 150m, the maximum in-
undation depth decreases, and its variation range is small.
All AE is within 4 cm and REP is less than or equal to 6%,
while those of the 200m grid are larger than the other
resolution simulations. (e maximum inundation depths
with a spatial resolution of 50m at the five typical water-
logging points are all overestimated. Except for Yinshan
Street, REP of the 50m grid is higher than that of the 100m
grid at other four waterlogging points.

(ere are significant correlations between the slope and
the grid spatial resolution of the catchments of waterlogging
points and the hydrological characteristics. As the spatial
resolution becomes larger, the calculation accuracy of the
waterlogging point with large slope of catchment area de-
creases obviously. (e DEM and flow direction of main
roads in the study area and around each waterlogging point
are shown in Figure 7. On one hand, the three areas of
Yinshan Street, Dongzong Road, and People’s Park are lo-
cated in the low-lying central of the study area, where the
rain and floods in the eastern, northern, and southern parts
of the study area are concentrated. But due to the flat terrain
from the Yinshan Street to the People’s Park, the converged
rain and floodwater cannot be discharged in time, resulting
in waterlogging in the three areas. When the grid resolution
is increased from 50m to 200m, the simulation results at
Yinshan Street, Dongzong Road, and People’s Park are less
affected by the grid size. All AE is less than 3 cm and REP is
less than 13%. On the other hand, small-scale rain and floods
are gathering in the mountainous southeast of the study
area, mainly located in Yonghuating and Dongcheng West
Road. (e slope in the catchment areas is larger than that in
other waterlogging areas. When the grid resolution is in-
creased from 50m to 150m, AE and REP in Yonghuating
and Dongcheng West Road have a small variation range,
while AE and REP at the 200m grid have increased obvi-
ously, reaching 7.07–27.26 cm and 23.6–45.43%, respec-
tively. In the urban flood model, the spatial grid is the basic
unit of the runoff calculation of the model. (e slope and
other properties of the underlying surface have a direct
impact on the runoff calculation. In this study, most of the
study area is continuous urban hard ground or green space.
With the increase of the spatial grid interval, the general-
ization of the terrain and underlying surface information is
greater, and variation details of the urban terrain and

Yonghuating

Dongcheng
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Figure 5: (e coefficients of determination of inundation hydrograph between four rainfall temporal resolutions and the 5min resolution.
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underlying surface are covered up. (erefore, the simula-
tions at Yonghuating and Dongcheng West Road where
there is larger slope are more affected by the spatial
resolution.

4.3.5eCompoundEffect of Rainfall Temporal Resolution and
Grid Spatial Resolution. In this study, four rainfall temporal
resolutions of 5min, 10min, 15min, and 30min are selected
to be matched with three grid spatial resolutions of
50m× 50m, 100m× 100m and 150m× 150m. (us, 12
experiments with different spatial and temporal resolutions
are conducted. (e IFMS Urban model is used to simulate
the 12 experiments, and the compound effects of spatio-
temporal resolutions on flood simulations have been
compared and analyzed.

As shown in Figure 8, the effect of spatial resolution at
typical waterlogging points is greater than that of rainfall
temporal resolution. For the grids with different resolutions,
with the increase of rainfall temporal resolution from 5min
to 30min, the maximum inundation depth at typical
waterlogging points has a small variation range, and REP is
less than 3%. (e effects of the 5min, 10min, and 15min

temporal resolutions are very close. For different rainfall
temporal resolutions, with the increase of grid spatial in-
terval, REP at typical waterlogging points greatly changes
with nonlinear characteristics. For the waterlogging points
of Dongcheng West Road and Yonghuating with a large
slope, large grids have a larger influence on the simulation
results, while for the flat Dongzong Road and People’s Park,
small grids have a larger influence on the simulation results.

In urban flood simulation, the finer spatiotemporal
resolution does not mean more accurate simulation results.
For the 50m grids, the maximum inundation depth is
overestimated under different rainfall temporal resolutions.
(e finer the temporal resolution is, the greater the over-
estimation is. At the five typical waterlogging points, REP

with the spatiotemporal resolutions of 5min and 50m is
relatively large, ranging from 1.8% to 10%. In contrast, the
water depth range that decreases with the increase of rainfall
temporal resolution is small. It is not enough to compensate
for the overestimated water depth range under the high-
precision grid and REP is still larger than that of the 100m
grid. For the grid of 100m, the overall simulations are better
than those of 50m and 150m. (e 5min× 100m,
10min× 100m, and 15min× 100m resolutions can achieve

Table 5: Maximum inundation depth and AE (cm) at typical waterlogging points under four spatial resolutions.

Waterlogging
points

Observed value
of maximum
inundation

depth

50m× 50m 100m× 100m 150m× 150m 200m× 200m
Maximum
inundation

depth
AE

Maximum
inundation

depth
AE

Maximum
inundation

depth
AE

Maximum
inundation

depth
AE

Dongcheng west
road 60 61.39 −1.39 60.98 −0.98 58.81 1.19 34.13 27.26

Dongzong road 30 30.55 −0.55 29.55 0.45 28.20 2.35 23.48 7.07
Yonghuating 25 27.25 −2.50 24.00 1.00 23.65 1.35 22.82 2.18
People’s park 22 22.45 −0.45 21.39 0.61 21.16 0.84 19.15 2.85
Yinshan street 17 18.20 −1.20 17.50 −0.50 16.69 0.31 15.25 1.75
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Figure 6: Variations of REP at typical waterlogging points under four grid spatial resolutions.
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Figure 8: Continued.

Computational Intelligence and Neuroscience 9



the best simulations at different typical waterlogging points,
and their REP ranges from 0.3% to 6.1%. For the grid of
150m, the maximum inundation depth of typical water-
logging points is underestimated. With the increase of
rainfall temporal resolution, the maximum inundation
depth decreases and the REP increases. By judging the
compound effect of rainfall temporal resolution and grid
spatial resolution on the simulations, we find the simulation
results are better with the 5min, 10min, or 15min rainfall
temporal resolution and the 100m grid spatial resolution.

5. Conclusions

(is study utilized the IFMS Urban model that couples
SWMM and 2D hydrodynamic model to analyze the

response of the flood process of urban to different spatio-
temporal resolutions. (e typical waterlogged area, Guan-
cheng District of Dongguan City, China, was selected as the
study area. (e variation characteristics of maximum in-
undation water depth and inundation process were inves-
tigated based on five rainfall temporal resolutions and four
grid spatial resolutions. (e main conclusions are as follows:

With the increase of rainfall temporal resolution, the
accuracy of the simulated maximum inundation depth
decreases, the time interval between the occurrence of the
maximum inundation depth and the peak time of rainfall is
prolonged, and the shape of the submerged water depth
hydrograph changes greatly, which means the inundation
process correlation with the rainfall process is decreased.
Compared with the temporal resolution of 5min, 10min,
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Figure 8: Bubble charts of the relative error of maximum inundation depth (REP) for 12 experiments with different rainfall temporal
resolutions and grid spatial resolutions. (e size of the bubble represents the range of REP. (e yellow and blue colors represent that the
simulated maximum inundation depth is higher and lower than the observation, respectively.
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15min, or 30min, the 1 h temporal resolution has a greater
influence on urban flood simulation.

For the effect of grid spatial resolution, the effect of grid
resolution on urban flood simulation is nonlinear. With the
increase of grid interval, the maximum inundation depth
decreases and REP presents an overall increasing trend. For
the fine 2D grids, the maximum inundation depth is
overestimated, and the simulations at the waterlogging
points with larger slopes are more affected by the spatial
resolution.

In this study, the grid spatial resolution has a greater
effect on the simulations at typical waterlogging points than
the rainfall temporal resolution. It is not the case that the
finer spatial and temporal resolutions are, the higher the
accuracy of the simulation will be. (e simulations perform
better with the 5min, 10min, or 15min rainfall temporal
resolution and 100m grid spatial resolution. For the area
with the large slope in the catchment areas, using a 2D grid
with a smaller grid spatial interval can obviously improve the
computational accuracy of the model.

In this study, we have not considered the influence of
terrain slope and vertical structure on the urban flood
model. In the future, we will focus on the mechanisms of the
compound effect of the spatiotemporal resolutions, and on
how the model accuracy is affected by the type and slope of
underlying surface.
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mote-sensing image and a digital elevation model.(e sewer
network data was provided by the Urban Planning Bureau of
Dongguan City.

Conflicts of Interest

(e authors declare that they have no conflicts of interest to
report regarding the present study.

Acknowledgments

(is study was funded by the National Key R&D Program of
China (2021YFC3000101-02), the National Natural Science
Foundation of China (52109028), the Natural Science
Foundation of Guangdong Province (2020A1515010914),
and the Science and Technology Program of Guangzhou
(202002030187).

References

[1] Z. Zheng, J. Gao, Z. Ma et al., “Urban flooding in China: main
causes and policy recommendations,” Hydrological Processes,
vol. 30, no. 7, pp. 1149–1152, 2016.

[2] X. Wu, Z. Wang, S. Guo, W. Liao, Z. Zeng, and X. Chen,
“Scenario-based projections of future urban inundation

within a coupled hydrodynamic model framework: a case
study in Dongguan city, China,” Journal of Hydrology,
vol. 547, pp. 428–442, 2017.

[3] X. Li and Y. Wang, “Construction of urban flood disaster
emergency management system using scenario construction
technology,” Computational Intelligence and Neuroscience,
vol. 2022, Article ID 8048327, 10 pages, 2022.

[4] Z. Li, Y. He, X. Lu, H. Zhao, Z. Zhou, and Y. Cao, “Con-
struction of smart city Street landscape big data-driven in-
telligent system based on Industry 4.0,” Computational
Intelligence and Neuroscience, vol. 2021, Article ID 1716396,
11 pages, 2021.

[5] I. Emmanuel, H. Andrieu, E. Leblois, and B. Flahaut,
“Temporal and spatial variability of rainfall at the urban
hydrological scale,” Journal of Hydrology, vol. 430-431,
pp. 162–172, 2012.

[6] A. Gires, I. Tchiguirinskaia, D. Schertzer, A. Schellart,
A. Berne, and S. Lovejoy, “Influence of small scale rainfall
variability on standard comparison tools between radar and
rain gauge data,” Atmospheric Research, vol. 138, pp. 125–138,
2014.

[7] J. Cantone and A. Schmidt, “Improved understanding and
prediction of the hydrologic response of highly urbanized
catchments through development of the Illinois urban hy-
drologic model,” Water Resources Research, vol. 47, no. 8,
p. 8538, 2011.

[8] Z. Zhou, J. A. Smith, L. Yang et al., “(e complexities of urban
flood response: flood frequency analyses for the Charlotte
metropolitan region,”Water Resources Research, vol. 53, no. 8,
pp. 7401–7425, 2017.

[9] X. Cao, H. Lyu, G. Ni, F. Tian, Y. Ma, and C. S. B. Grimmond,
“Spatial scale effect of surface routing and its parameter
upscaling for urban flood simulation using a grid-based
model,” Water Resources Research, vol. 56, no. 2, 2020.

[10] M. C. Ten Veldhuis, Z. Zhou, L. Yang, S. Liu, and J. Smith,
“(e role of storm scale, position and movement in con-
trolling urban flood response,” Hydrology and Earth System
Sciences, vol. 22, no. 1, pp. 417–436, 2018.

[11] W. Schilling, “Rainfall data for urban hydrology: what do we
need?” Atmospheric Research, vol. 27, no. 1–3, pp. 5–21, 1991.

[12] F. Fabry, A. Bellon, M. R. Duncan, and G. L. Austin, “High
resolution rainfall measurements by radar for very small
basins: the sampling problem re-examined,” Journal of Hy-
drology, vol. 161, no. 1–4, pp. 415–428, 1994.

[13] H. Lyu, G. Ni, X. Cao, Y. Ma, and F. Tian, “Effect of temporal
resolution of rainfall on simulation of urban flood processes,”
Water, vol. 10, no. 7, p. 880, 2018.

[14] G. Bruni, R. Reinoso, N. C. Van de Giesen,
F. H. L. R. Clemens, and J. A. E. Ten Veldhuis, “On the
sensitivity of urban hydrodynamic modelling to rainfall
spatial and temporal resolution,” Hydrology and Earth System
Sciences, vol. 19, no. 2, pp. 691–709, 2015.

[15] V. P. Singh, “Effect of spatial and temporal variability in
rainfall and watershed characteristics on stream flow
hydrograph,” Hydrological Processes, vol. 11, no. 12,
pp. 1649–1669, 1997.

[16] R. Berndtsson and J. Niemczynowicz, “Spatial and temporal
scales in rainfall analysis — some aspects and future per-
spectives,” Journal of Hydrology, vol. 100, no. 1–3,
pp. 293–313, 1988.
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