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For the past two years, the entire world has been fighting against the COVID-19 pandemic.+e rapid increase in COVID-19 cases
can be attributed to several factors. Recent studies have revealed that changes in environmental temperature are associated with
the growth of cases. In this study, we modeled the monthly growth rate of COVID-19 cases per million infected in 126 countries
using various growth curves under structural equation modeling. Moreover, the environmental temperature has been introduced
as a time-varying covariate to enhance the performance of the models. +e parameters of growth curve models have been
estimated, and accordingly, the results are discussed for the affected countries from August 2020 to July 2021.

1. Introduction

+e coronavirus disease (COVID-19) was first reported in
Wuhan city, China. Several individuals in Wuhan’s seafood
market were identified with unknown viral pneumonia
[1–3]. In the next few months, the virus, severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2), spread to
other cities of China and then worldwide. On 30 January
2020, the Director-General of the World Health Organi-
zation (WHO) declared the outbreak of COVID-19 to be a
public health emergency of international concern. In March
2020, more than one hundred countries were facing chal-
lenges due to this virus, and the infection cases from
COVID-19 were identified almost all over the world. Since
March 2020, there are now specific vaccines available against
SARS-CoV-2. In the absence of specific therapeutic drugs or
vaccines, controlling the spread of SARS-CoV-2 was nearly
impossible, as the health management system of any country
was not sufficient enough to deal with this pandemic [4–7].

According to the WHO reports [8], more than 214
million cases had been reported globally by the end of

August 2021, out of which around 4.47 million deaths
occurred. Here, it was noticed that the growth rate of
infected cases and deaths experienced in different regions
were dissimilar. A number of causes can affect the growth
rate of cases in a region or country, such as the health
management system, government policy, and environ-
mental factors. At the initial phase, partial or complete
lockdown and quarantine played an important role in
controlling the spread of the virus. +e work by Bacchetti
et al., in [9], showed that lockdown was highly effective in
reducing mortality in more polluted areas at the early
stage of the pandemic. Moreover, Marquez et al. [10]
concluded that air pollution results in a higher incidence
and mortality from COVID-19. Azuma et al. studied the
role of various environmental factors in the transmission
of SARS-CoV-2 in indoor spaces [11].

In the first quarter of 2020, in a study of COVID-19 cases
and the related meteorological factors in 122 cities of China,
no evidence was found that the case counts of COVID-19
will decline when the weather becomes warmer [12]. On the
contrary, an earlier study in the laboratory by Casanova et al.
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[13] has verified that SARS-CoV can be inactivated rapidly as
temperature increases from 4°C to 40°C. Even though the
data were quite limited for the second quarter of 2020,
Mandal and Panwar [14] and Shao et al. [15] have suspected
that the spread of SARS-CoV-2 may also be affected by the
change in temperature. +ereafter, many researchers have
established the association between the temperature and
COVID-19 cases [16–18]. For specific geographical regions,
the relationship among both in the presence of some other
factors was investigated [19–22].

Modeling of respiratory diseases is always of high pri-
ority for researchers. Moreover, the outbreak of COVID-19
presented a new challenge for everyone to deal with this
situation. In the last few months, various approaches have
been utilized to fit the growth of COVID-19 cases over time.
Balli, in [23], has proposed a time-series prediction model to
obtain the disease curve and predict the pandemic trend
using machine learning methods. For this purpose, linear
regression, multilayer perception, random forest, and sup-
port vector machine learning methods are utilized. Fur-
thermore, the susceptible-infected-recovered (SIR) model is
a well-known and widely used method for respiratory dis-
eases. +e classic SIR model was updated by incorporating
four new factors that are crucial in fitting the data of
COVID-19 cases [24]. Several works have modified the SIR
model in the same manner [25–27].

Using the generalized logistic and generalized Richards
model, Wu et al. [28] have presented the fitting for COVID-
19 cases in China; then, a similar exercise was performed for
the 33 other countries, which were at a less advanced stage at
that time. Moreover, several fractional-order dynamical
models for the analysis of the virus spread were proposed
[29–33]. Few researchers have attempted the model fitting of
the dynamics of COVID-19 cases in the presence of envi-
ronmental temperature. Shi et al. [34] have used the
modified susceptible-exposed-infectious-recovered (M-
SEIR) model by incorporating the temperature factor to
simulate the COVID-19 outbreak dynamics in Wuhan. In
other studies, they examined the associations between ep-
idemiological parameters of the dynamics of new cases and
temperature using an autoregressive integrated moving
average (ARIMA) model [35]. Moreover, Shah et al. [36]
have proposed a compartmental mathematical model for the
transmission dynamics of the COVID-19 under the Caputo
fractional-order derivative. +e Hilbert-type inequalities
play a major role in mathematics for pattern complex
analysis, numerical analysis, and qualitative theory of dif-
ferential equations and their implementation [37–39].

Generally, a time-series, cross-sectional, or longitudinal
data-based approach is utilized when a response variable is
observed with respect to time. +ese methods have suit-
ability concerns and accordingly advantages and disad-
vantages. In this study, we use structural equation modeling
(SEM) with longitudinal data. +ese models are generally
known as latent curve or growth curve models (GCMs). +e
rest of the article is organized as follows. In Section 2, various
facts have been explored using appropriate plots for cases
per million (CPM) and temperature over the months. +en,
in Section 3, we build various GCMs for all country data and

select the most suitable one for further analysis. In Section 4,
the temperature has been added as a time-varying covariate
in the modeling to enhance the performance of the con-
sidered GCM. In Section 5, all results are discussed with their
interpretation. Furthermore, the complete article has been
summarized and concluded in Section 6.

2. Exploratory Data Analysis

In this study, the data for global COVID-19 cases have been
obtained from https://ourworldindata.org. A total of 126
countries have been considered for cases recorded from
August 2020 to July 2021. +e CPM given in a month
represents the number of cases recorded on the fifteenth day
of that month. Accordingly, the monthly temperature is
collected for the capitals of all considered countries from
https://www.weather-atlas.com. +e value representing
temperature in a month is the average temperature in that
month.

Before starting the analysis, let us explore and discuss
some hidden facts about the data. A simple monthly tra-
jectory plot from August 2020 to July 2021 for all countries is
given in Figure 1. In this duration, it is quite easy to observe
that the growth of CPM in all countries is high in the first
month and then stabilizes in most countries in the next few
months. Nevertheless, many countries have experienced
sudden rapid growth in CPM in the last few months of the
year.

Figure 2(a) shows a set of box plots to understand the
nature of the data over the months. +e box plots in this
figure show the CPM distribution over the months. It can be
seen that the median and mean of CPM increase over the
months and the mean is significantly larger than the median
in all months. +us, the distribution is positively skewed in
all months. Moreover, the median and dispersion increase at
a large scale over the months. In a few countries, CPM is very
high, so these countries act as outliers in the first few
months; however, in the last months, almost all match with
the nature of the sample. A correlation matrix plot of CPM
over the months is also shown in Figure 2(b). Except for the
first three months, the correlation is high for months close
together in time, but the correlation tends to decrease with
increase in the time separation between the measurement
months. On the contrary, in the first few months, the
correlation decreased for the upcoming months but again
started to increase. +is is weak evidence; however, it is the
very first indication that seasons may correlate with the
growth of CPM. Moreover, a few basic statistics to under-
stand the characteristics of the observed data are given in
Table 1.

+e distribution of global temperature over the months
is given in Figure 3. It can be seen from Figure 3(a) that the
global temperature distribution shifts upwards in the first
half of the year and then in the second half it goes down-
wards. However, it does not mean that all the countries
follow the same pattern. +is can be observed from
Figure 3(b) in which, for each month, a density plot has been
sketched. +e density plots are multimodal because over the
months each country contributes to temperature
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distribution according to its position on the global map. In
general, as latitude increases the temperature decreases. +is
latitude-wise varying pattern of temperature may have a
significant impact on the growth of CPM for respective
countries.

3. Model Building and Elicitation

+e traditional methods for studying the changes in the
linear and nonlinear framework are regression and analysis
of variance (ANOVA). +ese approaches basically deal with
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Figure 1: Trajectory plot for CPM over the months from August 2020 to July 2021.
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Figure 2: A set of box plot and correlation matrix plots of CPM from August 2020 to July 2021 for all countries. (a) Box plots for CPM over
the months, (b) Correlation matrix plot for CPM over the months.
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the mean level differences, and among individuals, changes
are observed from residuals. To utilize the information from
residuals several methods such as random effect ANOVA,
multilevel modeling and hierarchical linear modeling have
been proposed. +ese models explore the differences among
individuals with the help of random coefficients. However,
the limitation of such models is that they are based on a
single response variable. A single response variable is not
able to capture all the complexities of a growth model (see
[40]).

As the objective of this study is to observe the
intraindividual changes and interindividual differences
for all countries over the considered time period, so, to
possess such characteristics, a structural equation mod-
eling for longitudinal data has been proposed. GCMs,
which are generally applied for modeling in social and
behavioral sciences, are used for studying such changes.
For GCM, response variables are observed over the or-
dered time periods whereas some time-invariant or time-
variant covariates may also be present. +e basics of GCM
and hypothesis testing for individual change and inter-
individual differences are discussed and derived in [41]. In
[42], authors have discussed GCM for different models
and analyzed the cortisol production data. For more
details about longitudinal studies using growth curve
models, one may refer to [43–46]. For understanding the
models based on latent variables with respective R code,
one may follow [47].

As the primary objective of this study is to find a better
model for CPM trajectory, as shown in Figure 1, so, in this
section, some possible GCMs such as linear, exponential,
latent, and multiphase have been introduced which could
provide a better substitute for CPM fitting. +e general
structure of the GCM can be given as

C[t]n � Λ0[t].T0n + Λk[t].Tkn + ε[t]n, (1)

where [t]n is a multioccasion vector which represents the
observed value of CPM for nth country for tth month. +e
set of vectors Λ0, Λ1, , Λk is collectively responsible for the
intraindividual change, i.e., each of these captures the
growth of CPM in a country over the months. +is vector
defines the shape of the interindividual change such as
linear and exponential for a country. +e latent or unob-
served variables which are denoted by τ0, τ1, , τk define
interindividual differences in intraindividual change
among countries. In the defined model by (1), each in-
terindividual difference variable τ0, τ1,. . ., τk is associated
with the corresponding intraindividual change variable Λ0,
Λ1, . . ., Λk.

Generally, the set of latent variables τ0, τ1,. . ., τk has a
multivariate normal distribution with mean vectors (µ0, µ1,
. . ., µk) and random variances and covariances σij; i, j� 1, 2,
. . . , k. +e mean vector captures the pattern of intra-
individual change and variances, and covariances represent
the extent to which countries differ within and between. +e
time-dependent residual variable, ε[t]n, is assumed to have a

Table 1: Basic statistical measures for CPM over the months.

Aug
2020 Sep 2020 Oct

2020
Nov
2020

Dec
2020 Jan 2021 Feb 2021 Mar

2021
Apr
2021

May
2021

June
2021

July
2021

Mean 3461.19 4601.82 6300.93 10244.54 14673.75 18986.02 22494.01 25658.11 30217.82 34152.76 37279.40 39993.10
Median 1336.83 2137.14 3972.78 6961.24 9917.47 12441.64 13814.11 15031.02 16929.84 19220.02 24037.40 27130.06
Standard
deviation
(S.D.).

4761.05 6104.34 7820.51 11311.03 15723.94 20345.31 23985.04 26961.99 31248.33 34687.31 37657.38 39044.99

Range 27279.48 36215.94 45213.40 49765.78 67480.17 77670.9 86453.79 96455.48 110589.5 119737.5 152931.6 157212.4
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Figure 3: A set of box plots and density plots of temperature fromAugust 2020 to July 2021 for all countries. (a)Box plot for temperature. (b)
Density plot for temperature.
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mean 0 and the same variance, σ2, at each occasion; also, it is
assumed to be uncorrelated with other variables.

Let us first describe and derive some GCMs using (1) and
then choose the best-fitted model for CPM among them.
Few appropriate GCMs which are considered for trajectory
fitting are linear, exponential, latent, and multiphase.

3.1. Linear Growth Curve Model. In a linear GCM, the
growth of the outcome variable is in the form of a straight
line which may be in a positive, negative, or constant di-
rection over the time periods. A linear GCM can be de-
scribed by two vectors, Λ0 and Λ1, for different countries
over the months from model in (1). As the model is applied
from August 2020 to July 2021, hence, we have

Λ0[t] � [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

Λ1[t] � [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1],
(2)

where Λ0 is used to describe the initial level of measurement
of the outcome variable when the other effects are 0, whereas
Λ1 is responsible for the growth or decline in Cn. +is means
that the countries can differ from each other in two ways
such as their latent intercept (τ0) and latent slope (τ1). All
entries for Λ0 are fixed to 1, this means that intercept affects
all measures with equal scores across months.

3.2. Quadratic Growth CurveModel. In general, the changes
over time in measurement variable are nonlinear. So, we
want to introduce more complexity in the model to capture
this nonlinearity. For this purpose, we are introducing
another vector Λ2, which is responsible for quadratic change
in the intraindividual change and interindividual differ-
ences. Here, another two vectors Λ0 and Λ1 are responsible
for the intercept and linear change in trajectory. We define
three vectors as Λ0[t]� [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], Λ1[t]�

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1], and Λ2[t]� (Λ1[t])2 � [0, 1, 4,
9, 16, 25, 36, 49, 64, 81, 100, 1].

+e initial level amount of outcome variable is depicted
by τ0, and after then, at each successive time periods, the
linear and quadratic changes are governed by vectors τ1 and
τ2.

3.3. Exponential Growth CurveModel. In exponential GCM,
the two vectors, Λ0 and Λ1, are responsible for the expo-
nential intraindividual change, and these can be defined such
as

Λ0[t] � [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], (3)

where λ can be estimated from the observations. +e in-
terindividual change among the countries is depicted by two
latent random variables τ0 and τ1. Here, the random variable
τ0n can be interpreted as the maximum level of Cn. +e sum
of latent slope score and latent asymptotic score (τ0n+ τ1n)
represents the value of Cn[0]. +e random variable τ1n
represents a country’s potential for change in n[t] from initial
level to upcoming months. +e parameter λ indicates the
rate at which the level of Cn[t] changed to the asymptotic

level and here is modeled as being identical for all countries,
meaning that the rate at which any individual’s n[t] level
changes is unidirectional (either continuously increasing or
decreasing toward his or her asymptotic capacity, τ0n) and
constant (exponentially) across the entire observation period
from August 2020 to July 2021. +is assumption can be
relaxed in further studies.

3.4. Latent Growth Curve Model. +e basis coefficients for a
latent GCM are estimated freely so that the optimal change
in trajectory can be achieved as per the nature of data,
whereas, in earlier discussed models, the basis coefficients
have been fixed in advance. Here, the basis coefficients are
defined such as

Λ0[t] � [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

Λ1[t] � 0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, 1 .
(4)

We fixed the first and last basis coefficients as 0 and 1, as
it is necessary for the model identification. In the case of
latent GCM, the nonlinear pattern of intraindividual change
is captured by vector Λ1[t] and a single interindividual
difference variable τ1.

3.5. Multiphase Growth CurveModel. A multiphase GCM is
based on different spline regression models that are con-
nected for different time slots. As it is observed that various
countries are facing a number of COVID-19 waves, so a
multiphase model may be a good choice for CPMmodeling.
Figure 1 shows such pattern where the rate of change of
COVID-19 cases is not uniform over considered months.
From many possible multiphase GCMs, particularly,
MP[3,4,5], has been taken for modeling. +e suffix vector
specifies the length of phases considered in the model. As the
data are taken from August 2020 to July 2021, hence, the
vector [7, 25, 37] denotes three phases are taken as Phase I
(August 2020, September 2020, and October 2020), Phase II
(November 2020, December 2020, January 2021, and Feb-
ruary 2021), and Phase III (March 2021, April 2021, May
2021, June 2021, and July 2021). In theMP[3,4,5] model, Phase
I is known as baseline phase and modeled via Λ0, whereas
Phase II and Phase III are modeled via Λ1 and Λ2, re-
spectively. Accordingly, the three intraindividual change
vectors become

Λ0[t] � [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

Λ1[t] � 0, 0, 0, λ3, λ4, λ5, 1, 1, 1, 1, 1, 1, 1 ,

Λ2[t] � 0, 0, 0, 0, 0, 0, 0, λ7, λ8, λ9, λ10, 1 ,

(5)

where the values of λjs can be estimated from the data.
+e interindividual difference is governed by the latent

random variables τ0, τ1, and τ2. +e means of the latent
variables τ0, τ1, and τ2 represent the average baseline C[t]n
level, amount of [t]n change in second phase, and amount by
which [t]n gains in the last phase, respectively. Simulta-
neously, the variances of the latent variables represent the
extent to which countries differ in these aspects of intra-
individual change and how interindividual differences in
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one aspect are related to interindividual differences in the
other aspects which can be defined by their covariances.

To find the best among the considered models, a few
well-known model fitting criteria, such as Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion
(BIC), Tucker–Lewis Index (TLI), Root Mean Square Error
of Approximation (RMSEA), and χ2-statistic with degrees of
freedom (D.F.), have been taken. Lower values of AIC, BIC,
RMSEA, and χ2-statistic and higher values of TLI statistic
indicate the choice of a suitable model. Based on these
criteria, it can be seen from Table 2 that the multiphase
model, MP[3,4,5], is performing better than others. So, it can
be concluded that multiphase GCM is most appropriate
among the considered models. +e estimates of the coeffi-
cients for all considered GCMs are given in Table 3 and
discussed in Section 5. For the multiphase GCM, the
structure plot is given in Figure 4. In the structure plot, the
dotted lines show the fixed factor loading and the dark line
shows the estimated elements of factor loading. It is expected
that, with the addition of suitable covariates, the overall
performance of the multiphase GCM may also improve.

4. Modeling with Time-Varying Covariate

Many factors are influencing the growth of CPM, but the
environmental temperature has its own significant impact.
Earlier, in Section 2, it has been shown that there may be
some dependency between CPM and temperature. Also,
from Figures 2(a) and 3(a), it can be seen that the monthly
gain in CPM depends on the pattern of global temperature.
If the temperature is added as a covariate in all country data,
then the GCMs will perform robustly.

In general, two types of predictor variables are used in
longitudinal studies. +e covariate is constant over the
measurement time called time-invariant covariate (TIC) and
is varying over time periods called time-varying covariate
(TVC). Here, in this study, the temperature is a TVC over
the months, which have a direct impact on the CPM with
some coefficient, say, c[t]. Now, the model defined by (1) can
be redefined in the presence of TVC as follows:

C[t]n � Λ0[t].T0n + Λ1[t].T1n + · · · + Λk[t].Tkn + Y[t]T[t]n + ε[t]n, (6)

where T [t]n represents the temperature of nth country in the
tth month. All GCMs in presence of TVC are performing
better than the respective models introduced in the previous
section. Also, we tried different possible combinations of
phases to construct multiphase models with TVC. Among
the considered models, MPT

[3,4,5] is outperforming with AIC,
BIC, TLI, RMSEA, and χ2-statistic (d.f ) values 18722.02,
18843.50, 0.79, 0.07, and 361.44(194), respectively. In Ta-
ble 3, the estimate of coefficients for all considered GCMs
with TVC has been given. For themultiphase GCMMPT

[3,4,5],
the structure plot is given in Figure 5. In the structure plot,
the dotted lines show the fixed factor loadings and the dark
lines represent the estimated elements of factor loadings and
estimated coefficients for TVCs.

5. Results

In this section, we are discussing about the results from
Tables 3 and 4. In Table 3, the estimate of parameters of four
GCMs has been given. For linear GCM, the mean baseline
level of C[t]n is 77.1223 (τ0) and then growth is measured
with an increment of 0.0554 (τ1) over the months. In

quadratic GCM, the mean baseline level of the outcome
variable is 77.5197 and amount of suppressing and incre-
ment in linear and quadratic phases is 0.3052 and 0.0240
respectively. In exponential GCM, the baseline level is
76.9430 which is the sum of τ0 and τ1. After this, growth in
[t]n is observed with an exponential rate of 15.9286 to some
limit or capacity of a country. +e average baseline value
from latent GCM is 77.2063 and the average total amount of
growth is −0.2633.+e estimated value of C[t]n at anymonth
can be calculated by [77.2063 + (−0.2633)λt], e.g., in Oct
2020 the estimated value of C[t]n is 76.99637. For the
considered multiphase model,MP[3,4,5], the average baseline
value is 77.0714. +e average growth amount from No-
vember 2020 to February 2021 is −0.5005, and the additional
growth amount is 0.2096 from March 2021 to July 2021.

Similar to latent GCM, one can estimate C[t]n using the
estimates of respective coefficients for the multiphase model
also. +e covariances for τ0, τ1 and τ2 for all models are also
provided in the table. +e variance terms represent the
extent to which countries differ at the initial level in
intraindividual change and the covariances indicate inter-
individual differences.

Table 2: Different fitting criteria for various GCMs of all countries data from August 2020 to July 2021.

Model AIC BIC TLI RMSEA χ2-statistic (D.F.)
Linear 18993.40 19045.03 0.47 0.19 497.96 (73)
Quadratic 18790.03 18853.81 0.71 0.14 286.59 (69)
Exponential 19093.62 19148.29 0.34 0.22 596.19 (72)
Latent 18916.38 18998.37 0.51 0.19 400.94 (63)
Multiphase 18702.93 18787.96 0.82 0.11 185.49 (62)
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Table 3: Estimate of coefficients for various GCMs for all countries data from August 2020 to July 2021.

Intercept and slope:
Linear Quadratic Exponential Latent Multiphase

τ0 77.1223∗ 77.5197∗ 77.5291∗ 77.2063∗ 77.0714∗
τ1 −0.0554 −0.3052 −0.0486 −0.2633 −0.5005∗
τ2 0.0240 0.2096∗
λ (rate) 15.9286∗
λ1 −0.1469
λ2 0.3803
λ3 0.7973∗ 0.2749∗
λ4 1.6157∗ 0.0705∗
λ5 2.1637∗ 0.8472∗
λ6 2.4558∗
λ7 2.4272∗ 0.2223∗
λ8 1.9969∗ 0.7587∗
λ9 1.5036∗ 1.2315∗
λ10 1.1624∗ 1.3624∗

Covariances:
τ0 ↔ τ0 231.1603∗ 634.8185∗ −7.1813 322.9.86∗ 354.4765∗
τ1 ↔ τ1 22.4033∗ 383.8042∗ 4.2484 402.1072 2508.8822∗
τ2 ↔τ2 1428.2694∗ 3.4922∗
τ0 ↔ τ1 −446.6204∗ −18.0949 −268.0263 −605.1945∗ −46.4837∗
τ0 ↔ τ2 39.8306∗ 35.6665∗
τ1 ↔ τ2 −35.5733∗ −1029.3199∗
∗ denote significant parameter at p< 0.05.
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Figure 4: Structure plot for MP[3,4,5].
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Table 4: Estimate of coefficients for various GCMs with TVC for all countries data from August 2020 to July 2021.

Linear Quadratic Exponential Latent Multiphase
Intercept and slope
τ0 75.7481∗ 86.0991∗ 88.0494∗ 82.0764∗ 79.8183∗
τ1 0.1262 −5.3411 −1.2446∗ −2.4983∗ −6.8267
τ2 0.5547∗ 7.8347
λ (rate) 9.8281
λ1 −0.1288
λ2 0.4034
λ3 0.8180∗ 0.2743∗
λ4 1.6236∗ 0.6174∗
λ5 2.1601∗ 0.0597∗
λ6 2.4385∗
λ7 2.4080∗ 0.2245∗
λ8 1.9792∗ 0.7487∗
λ9 1.4700∗ 1.2254∗
λ10 1.1387∗ 1.3616∗

Covariances
τ0 ↔ τ0 233.4468∗ 625.8157∗ −9.0008 313.6485∗ 348.3898∗
τ1↔ τ1 22.3028∗ 385.5562∗ 12.2186∗ 411.1636 2485.5481∗
τ2 ↔τ2 3.5006∗ 1414.3588∗
τ0↔ τ1 −46.4866∗ −445.1598∗ −34.4772 −272.0185 −596.6951∗
τ0↔ τ2 39.4834∗ 21.3108
τ1 ↔ τ2 −35.7064∗ −1014.6153∗

Regression (TVC)
c[1] 0.0018 −0.1782 −0.1836 −0.0994 −0.0605
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In Table 4, estimates of coefficients are observed for
various GCMs in presence of TVC, temperature. In this
table, all coefficients can be interpreted in a similar manner
as in Table 3, except regression coefficients due to covariate.
+e regression coefficients can be defined as one unit change
in temperature at time t which is associated with c[t] unit
change in [t]. Here, it is noticeable that, almost in all months,
temperature is negatively associated with the growth of
CPM.

6. Conclusion

In this study, growth in CPM due to COVID-19 is
considered a variable of interest. For different countries,
the trajectories of CPM are studied from August 2020 to
July 2021. +e intraindividual change and interindividual
differences were captured using linear, exponential, la-
tent, and multiphase GCMs. Based on certain criteria, the
multiphase GCM performs better than the other models.
+erefore, it can be preferred for analysis purposes. A
number of factors are responsible for the rapid growth of
CPM in a country. Moreover, these factors impact dif-
ferent countries with different weights. +us, in this
study, environmental temperature is considered a co-
variate that significantly impacts the growth of CPM.
Different GCMs were fitted to the data without and with a
covariate. Based on various fitting criteria, it is noticed
that GCMs improve when the temperature is introduced
as a covariate. So, we can say that temperature may be
one of the reasons responsible for the changes in CPM
over the months. Nevertheless, other possible factors
may have an important role in the growth of CPM and
can be included in the model for further study. +e
inclusion of other factors in models may improve results.
Furthermore, for the study of growth in CPM for a
particular region, there may be differences in the model-
based outcomes.
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