
Research Article
Dimensional Learning Strategy-Based Grey Wolf Optimizer for
Solving the Global Optimization Problem

Xinyang Liu , Yifan Wang , and Miaolei Zhou

Department of Control Science and Engineering, Jilin University, Changchun 130022, China

Correspondence should be addressed to Miaolei Zhou; zml@jlu.edu.cn

Received 12 August 2021; Revised 6 December 2021; Accepted 28 December 2021; Published 30 January 2022

Academic Editor: Ciro Castiello

Copyright © 2022 Xinyang Liu et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grey wolf optimizer (GWO) is an up-to-date nature-inspired optimization algorithmwhich has been used for solving many of the
real-world applications since it was proposed. In the standard GWO, individuals are guided by the three dominant wolves alpha,
beta, and delta in the leading hierarchy of the swarm.)ese three wolves provide their information about the potential locations of
the global optimum in the search space. )is learning mechanism is easy to implement. However, when the three wolves are in
conflicting directions, an individual may not obtain better knowledge to update its position. To improve the utilization of the
population knowledge, in this paper, we proposed a grey wolf optimizer based on the dimensional learning strategy (DLGWO). In
the DLGWO, the three dominant wolves construct an exemplar wolf through the dimensional learning strategy (DLS) to guide the
grey wolves in the swarm. )ereafter, to reinforce the exploration ability of the algorithm, the Levy flight is also utilized in the
proposed method. 23 classic benchmark functions and engineering problems are used to test the effectiveness of the proposed
method against the standard GWO, variants of the GWO, and other metaheuristic algorithms.)e experimental results show that
the proposed DLGWO has good performance in solving the global optimization problems.

1. Introduction

tIn the real world, there are many optimization problems to
be solved, and thus, the development of optimization
techniques is of great importance. Most of these techniques
rely on the derivatives of the functions involved in the
problem, but for some reasons, derivatives of the functions
are sometimes hard to obtain. As an important part of
derivative-free methods, nature-inspired algorithms are
attracting more and more attention for their robust
searching performance. Generally, nature-inspired algo-
rithms can be classified into three categories: evolutionary
algorithms (EAs), swarm intelligence (SI), and physics-based
(PB) algorithms [1–5].

SI-based algorithms, as one category of nature-inspired
algorithms, are becoming increasingly popular due to their
various characteristics such as strong searching ability,
simple implementation, few parameters, and the ability to
avoid getting trapped at local optima [6]. In these algo-
rithms, the search agents cooperate and exchange

information with each other, which guarantees that the
information about the search space is efficiently utilized.
)is helps the whole swarm to move towards more
promising area in the search space. With the progress of the
algorithm, there are roughly two patterns of behavior for the
swarm to perform: the exploration and the exploitation. )e
exploration is the process of discovering new regions of the
search space. )e exploitation is the process of excavating
the promising area in the search space for potentially better
solutions. )ese two patterns are conflicting [7], and
maintaining an appropriate balance between them is a great
challenge for any SI-based algorithm. In the past few de-
cades, numerous SI-based algorithms have been proposed in
the literature and applied to real-life problems. Some of these
algorithms are very representative such as particle swarm
optimization (PSO) [8], ant colony optimization (ACO) [9],
artificial bee colony (ABC) algorithm [10–14], cuckoo search
(CS) [15, 16], and bat algorithm (BA) [17, 18]. Some of the
recent SI are teaching-learning-based optimization (TLBO)
[19], salp swarm algorithm (SSA) [20], sine cosine algorithm
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(SCA) [21], whale optimization algorithm (WOA) [22],
butterfly optimization algorithm (BOA) [23], and Harris
hawks optimization (HHO) [24]. )e grey wolf optimizer
(GWO) was proposed by Mirjalili et al. [25] in 2014. )e
search mechanism of the GWO is established by mimicking
the rigorous leadership hierarchy of a grey wolf pack and
their group behavior when hunting. )is mechanism
guarantees a reliable exploration ability in the algorithm.
Owing to its various advantages such as easy implementa-
tion, low computational complexity, and high search effi-
ciency, the GWO has become quite notable and has been
successfully applied to many fields in the past seven years
[26, 27]. Despite the fact that the applications of the GWO
technique in many fields have proved to be successful,
previous works have shown that the GWO has some defects
such as premature convergence and underutilization of
population information and is prone to getting trapped at
local optima, which are also common to some other SI-based
algorithms [28, 29]. Many studies on the GWOmethod have
been presented to address these shortcomings, which can be
roughly categorized into four classes:

(1) Modification of the algorithm parameters: in [30], a
dynamically varying parameter A was adopted to
maintain the proportion of wolves staying in the
feasible area. In [31], Taguchi method was utilized to
tune the parameters of the GWO. Rodŕıguez et al.
[32] adopted the fuzzy inference system to dynam-
ically adapt parameters A and C. In [33], a chaotic
map was incorporated into the standard GWO to
control parameters in the algorithm. Moreover,
Kumar [34] provided an enhanced variant where
parameter C was dynamically updating with the
number of iterations. )ese modifications can im-
prove the performance of the GWO on some
problems, but the global exploration ability and local
exploitation ability of the standard GWO are directly
determined and balanced by the parameters A and C;
thus, the modification of these parameters can break
the balance between exploration and exploitation.

(2) Employ novel search strategies: in [35], an enhanced
GWO variant was designed based on a new wolf
position update mechanism. )is significantly im-
proved the local exploitation ability of the GWO,
though it might suffer from premature stagnation
when dealing with multimodal problems. Cai et al.
[36] introduced the random local search strategy into
the standard GWO to reinforce exploration. Yang
et al. [37] employed the backward learning strategy
to heighten the exploration in the GWO. Despite the
contributions of this work, the proposed algorithm
had difficulty in solving problems with more than
three objectives, and its computational consumption
was higher than the standard GWO. In [38],
crossover and mutation operators were incorporated
into the standard GWO to improve the diversity of
the population, but these operators can prevent the
proposed method from converging fast. Gupta and
Deep [39] modified the original GWO algorithm

based on random walk. Although the proposed
method cannot exhibit outstanding ability in local
exploitation, the global exploration ability of the
leader wolves was enhanced. In [40], the authors
employed different selection methods and investi-
gated the effects of them on the GWO. Liu et al. [41]
proposed amodified GWO variant based onmultiple
search strategies such as the adaptive chaotic mu-
tation strategy, boundary mutation strategy, and
elitism strategy. )e modified method can enhance
the performance of the GWO for solving many-
objective optimization problems, but it was only
equipped with one type of constraint-handling
technique, which might be a limitation in dealing
with other practical engineering problems. In [42],
the enhanced global-best lead strategy, the adaptable
cooperative strategy, and the disperse foraging
strategy were embedded into the GWO. Dhargupta
et al. [43] combined opposition-based learning with
the GWO to guarantee its exploration performance
and convergence rate. Although the improvement of
population diversity in the proposed algorithm is
significant, it is challenging for the initial population
to converge fast at the beginning of the iterations.

(3) Combine with other metaheuristics: Wen et al. [44]
hybridized the GWO with cuckoo search algorithm.
Although there was extra computational consump-
tion, the hybrid algorithm obtained solutions with
higher quality. In [45], the GWOwas combined with
min-conflict algorithm. )e hybrid method shows a
good search performance, which can be further
improved by adjusting the selection method of min-
conflict algorithm. Qu et al. [46] simplified the GWO
and combined it with symbiotic organisms’ search.
)e combination of these two approaches
accelerated the convergence speed of the algorithm,
but individuals in the proposed method updated
their positions only according to alpha, instead of the
best three wolves. )is put the population under the
risk of trapping in the local optimum.

(4) Adjustment of the hierarchy or population structure:
in [47], two additional leader wolves were introduced
to the leadership hierarchy to heighten the explo-
ration ability of the standard GWO. Miao et al. [48]
proposed a GWO variant based on an enhanced
leading hierarchy. Yang et al. [49] divided the wolf
pack into two independent groups. Fehmi Burcin
Ozsoydan [50] investigated the effects of dominant
wolves and made modifications to the GWO based
on the variations of dominant wolves. Wang et al.
[51] provided a GWO variant based on chaotic
initialization. Despite the effectiveness of these ad-
justments, the changes in the hierarchy structure or
population structure can affect the information flow
mechanism of the GWO. For instance, a new
leadership hierarchy might change the update pro-
cess of the population, and the utilization of the
multipopulation strategy might limit the utilization

2 Computational Intelligence and Neuroscience



and exchange of information within the
subpopulations.

tAccording to various works mentioned above, the main
common purpose of these studies is to boost the convergence
speed and accuracy of the GWO while maintaining pop-
ulation diversity to keep an appropriate balance between
exploration and exploitation. However, the population di-
versity is strongly affected by the information flow mecha-
nism of the algorithm. In the standard GWO, the search
process is guided by the three dominant wolves.)is leads the
population to converge towards these wolves. )erefore, the
information of these wolves is essential for the population,
and it would reduce the search efficiency of the algorithm
when the information of these wolves is conflicting.

To improve the information utilization of the pop-
ulation in GWO algorithm, in this paper, the dimensional
learning strategy (DLS) is implemented in the standard
GWO. DLS was proposed by Xu et al. [52] to protect the
potential useful information of the population best solution
in PSO. In the DLS, a learning exemplar is constructed for
each particle. During the constructing process, each di-
mension of a particle’s personal best solution learns from
the corresponding dimension of the population best so-
lution. )erefore, the learning exemplar achieves the
combination between the excellent information of the
personal best experience and of the population best ex-
perience. Inspired by the DLS in PSO, we introduce the
DLS into the leading hierarchy of GWO algorithm. )ere
are some similarities and differences between our work and
the DLS for PSO. )e main purpose of employing the DLS
in GWO is to efficiently protect the potential useful
knowledge of the three dominant wolves, which is similar
to the protection of the population best solution in PSO.
)e implementation of the DLS in GWO is by constructing
an exemplar wolf within the three dominant wolves, which
is similar to the construction of a learning exemplar be-
tween a particle’s personal best solution and the population
best solution in PSO. However, DLS in PSO constructs a
learning exemplar for each particle based on its personal
best solution and the population best solution in the
current iteration. To reduce computational cost, we only
construct one exemplar wolf at each iteration to guide the
whole population. On each dimension, the delta wolf learns
from the corresponding dimensions of both alpha and beta
wolves to determine the corresponding dimension of the
exemplar wolf. By employing the DLS, the potential useful
knowledge of the three dominant wolves is well protected,
and the situation that their information on some dimen-
sions is conflicting is effectively avoided, which allows the
GWO to utilize the knowledge of the three dominant
wolves comprehensively and efficiently. In addition, to
maintain an appropriate balance between exploration and
exploitation, the Levy flight [15] is also employed in the
algorithm. Levy flights generate steps that are drawn from
the Levy distribution. Levy distribution has a good chance
to randomly generate long-distance movement, which can
introduce random figures to the population and improve
the diversity of the population. Based on the above

modifications, an enhanced grey wolf optimizer based on
the dimensional learning strategy, namely, DLGWO, is
proposed.

)e reminder of this paper is organized as follows: the
related work is introduced in Section 2. In Section 3, the
proposed method is presented and illustrated in detail.
Several groups of experiments to test the proposed DLGWO
are conducted and reported in Section 4. In Section 5, the
applications of the DLGWO to address real-world optimi-
zation problems are given. Finally, we provide the conclu-
sion of this study in Section 6.

2. Related Work

2.1. GWO. GWO is a metaheuristic optimization algorithm
which is inspired from social hierarchy and hunting be-
havior of grey wolves. Figure 1 shows the hierarchical
structure in a grey wolf pack and the hunting behavior of the
grey wolves in the 2D search space.

To mathematically present the social hierarchy of a wolf
pack, the fittest three solutions of the population are con-
sidered as alpha (α), beta (β), and delta (δ), respectively.
Other solutions in the population are considered as omega
(ω).

)e encircling behavior is mathematically modelled
using the following equations:

X(t + 1) � Xprey(t) − A · B, (1)

B � C · Xprey(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (2)

A � 2a · r1 − a, (3)

C � 2 · r2, (4)

a � 2 − 2 ·
t

T
􏼒 􏼓, (5)

where X and Xprey are the position vectors of the wolf and
the prey, respectively. A and C are coefficient vectors, and r1
and r2 are random vectors in [0, 1]. t and T are the current
iteration and the max iteration, respectively.)e value of a is
linearly decreasing from 2 to 0.

Assume that alpha, beta, and delta have better knowledge
about the prey’s position, and the other wolves update their
positions according to the positions of alpha, beta, and delta.
To mathematically express the hunting behavior, the
equations are as follows:

X1 � Xα − A1 · Bα
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, X2 � Xβ − A2 · Bβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X3 � Xδ − A3 · Bδ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(6)

X(t + 1) �
X1 + X2 + X3

3
, (7)

where Xα, Xβ, and Xδ are the best three solutions. A1, A2,
and A3 are determined by equation (3). Bα, Bβ, and Bδ are
calculated using the following equations:
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Bα � C1 · Xα − X
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, Bβ � C2 · Xβ − X
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Bδ � C3 · Xδ − X
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(8)

where C1, C2, and C3 are random vectors. In the GWO, the
search behavior of the grey wolves is determined by pa-
rameter A. Notice that A is generated randomly in the
interval [− a, a]. |A|> 1 leads the search agents to expand
their searching areas, and |A|< 1 leads the search agents to
converge to the areas that have already been explored. )e
pseudo-code of the standard GWO is presented in
Algorithm 1.

2.2. PSO. PSO [8] mimics the swarm behavior, and the
particles in the swarm represent search agents in the search
space. Each particle updates its velocity and position by
learning from its personal best position and the population
best position in the search space, and the update equations
are as follows:

vi,j � wvi,j + c1r1,j x
pbest
i,j − xi,j􏼐 􏼑 + c2r2,j x

gbest
j − xi,j􏼐 􏼑,

xi,j � xi,j + vi,j,
(9)

where vi,j and xi,j are the velocity and position of the jth
dimension of particle i, respectively. x

pbest
i is the historical

best position of particle i, and xgbest is the population his-
torical best position. c1 and c2 are the acceleration coeffi-
cients, and r1,j and r2,j are two uniformly distributed
random numbers independently generated in [0, 1] for the
jth dimension. )e inertial weight w is used to control the
velocity, which decreases linearly from 0.9 to 0.4 over
iterations.

2.3. DLS for PSO. Xu et al. [52] proposed the dimensional
learning strategy (DLS) to protect the potential helpful in-
formation of the particles in PSO. In the standard PSO, the
particles learn from their personal best experience and

population best experience.)is learning strategy can lead to
the phenomena of “oscillation.” [53] When the personal best
position x

pbest
i and the population best position xgbest locate

in two opposite directions of the current position xi, after
particle i moves towards xgbest, it will move closer to x

pbest
i at

the next iteration since the difference x
pbest
i − xi is larger

than the difference xgbest − xi. A particle will constantly
wander between the personal best position and the pop-
ulation best position, which can cause “oscillation” and limit
the search efficiency of PSO. DLS is different from the
learning strategy of the standard PSO. In the DLS, the
personal best position x

pbest
i learns from the population best

position xgbest dimension by dimension to construct a
learning exemplar xdl

i which allows the excellent informa-
tion of xgbest to be inherited by the exemplar xdl

i , improving
the information utilization of xgbest. By replacing x

pbest
i by

xdl
i in equation (9) of the standard PSO, the improved ve-

locity update equation is as follows:

vi,j � wvi,j + c1r1,j x
dl
i,j − xi,j􏼐 􏼑 + c2r2,j x

gbest
j − xi,j􏼐 􏼑. (10)

)e process of constructing an exemplar xdl
i is shown in

Algorithm 2.

3. The Proposed Method

3.1. Motivation of the Work. In the standard GWO, other
wolves update their positions according to the three dom-
inant wolves in the leading hierarchy. )ese three wolves
provide their information about the potential location of the
prey, and their positions are closer to the global optimum or
local optimum in the search space. However, when alpha,
beta, and delta are located in conflicting directions, an in-
dividual may not obtain better knowledge about the
promising area, as demonstrated in Figure 2. )us, it is of
great importance to protect the potential helpful knowledge
of the leading hierarchy and improve the information uti-
lization of the population.

α

β

δ

ω

(a)

Bα Bβ

Bδ

α

β

δ

ω or any other wolves

Estimated position
of the prey

Move

(b)

Figure 1: Hunting behavior of grey wolves.
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4. DLS for the GWO

Inspired by the DLS in PSO [52], in this paper, DLS is
employed in the leading hierarchy of the GWO to protect the
potential helpful knowledge about the prey’s location and guide

the individuals with more efficiency. In the DLS, delta learns
from both alpha and beta dimension by dimension to construct
an exemplar wolf; in this way, the excellent information of the
three wolves can be passed to the exemplar wolf and other
wolves in the pack. Figure 3 illustrates the process of the DLS;
suppose that 4D sphere function f(x) � x2

1 + x2
2 + x2

3 + x2
4 is

the objective function of the minimum problem, which has the
global minimum point (0, 0, 0, 0)T. Xα � (1, 2, 2, 2)T,
Xβ � (2, 4, 1, 3)T, and Xδ � (3, 0, 3, 4)T are the positions of
alpha, beta, and delta, respectively. )e numbers filled in red,
blue, green, and yellow are the values of the three dominant
wolves and the exemplar wolf at the first, second, third, and
forth dimension, respectively. Initially, let the position vector of
the exemplar wolfXL � Xδ � (3, 0, 3, 4)T; it is easy to calculate
thatf(XL) � f(Xδ) � 34; then, two temporary vectorsXtemp1

and Xtemp2 are set for XL at each dimension during the process
of the DLS which can be expressed as follows:

(1) For dimension 1: let X
temp1
1 � Xα,1 � 1,

X
temp2
1 � Xβ,1 � 2, Xtemp1 � (1, 0, 3, 4)T, and

Xtemp2 � (2, 0, 3, 4)T.

(1) Initialize the positions of the population Xi(i � 1, 2, . . . , n) and the parameters of the GWO (max iteration Maxiter, population
size N, A, and C)

(2) Calculate the fitness of each wolf and record the best three wolves
(3) Xα � position of the best wolf
(4) Xβ � position of the second best wolf
(5) Xδ � position of the third best wolf
(6) while t〈Maxiter do
(7) for each wolf do
(8) Update the position of the current wolf using equations (6)–(8)
(9) end for
(10) Update parameters A and C

(11) Check the boundaries and revise those wolves beyond the boundaries
(12) Calculate the fitness of all wolves
(13) Update Xα, Xβ, and Xδ
(14) t � t + 1
(15) end while
(16) Return Xα

ALGORITHM 1:)e pseudo-code of the standard GWO.

(1) xdl
i � x

pbest
i

(2) for each dimension j do
(3) temp � xdl

i

(4) if temp(j) �� xgest(j) then
(5) Continue
(6) end if
(7) temp(j) � xgest(j)

(8) if f(temp)<xgest(j) then
(9) xdl

i (j) � xgest(j)

(10) end if
(11) end for

ALGORITHM 2: Constructing the exemplar xdl
i .
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Figure 2: Conflicting guidance of the three dominant wolves.
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f(Xtemp1) � 26〈f(Xtemp2) � 29〈f(XL) � 34; thus,
XL,1 � X

temp1
1 � 1, XL � (1,0,3,4)T, and f(XL) � 26.

(2) For dimension 2: let X
temp1
2 � Xα,2 � 2, X

temp2
2 �

Xβ,2 � 4, Xtemp1 � (1,2,3,4)T, and Xtemp2 �

(1,4,3,4)T.
f(XL) � 26〈f(Xtemp1) � 30〈f(Xtemp2) � 42; thus,
XL,2 remains unchanged, XL � (1,0,3,4)T, and
f(XL) � 26.

(3) For dimension 3: let X
temp1
3 � Xα,3 � 2, X

temp2
3 �

Xβ,3 � 1, Xtemp1 � (1, 0, 2, 4)T, and Xtemp2 �

(1, 0, 1, 4)T.
f(Xtemp2) � 18〈f(Xtemp1) � 21〈f(XL) � 26; thus,
XL,3 � X

temp2
3 � 1, XL � (1,0,1,4)T, and f(XL) � 18.

(4) For dimension 4: let X
temp1
4 � Xα,4 � 2, X

temp2
4 �

Xβ,4 � 3, Xtemp1 � (1,0,1,2)T, and Xtemp2 �

(1,0,1,3)T.
f(Xtemp1) � 6〈f(Xtemp2) � 11〈f(XL) � 18; thus,
XL,4 � X

temp1
4 � 2, XL � (1,0,1,2)T, and f(XL) � 6.

After theDLS,XL � (1, 0, 1, 2)T, and it learns from alpha at
the first and the forth dimensions, beta at the third dimension,
and delta at the second dimension. Hence, the final XL is
constructed by combining Xδ with the dimensions learned
from Xα and Xβ, which indicates that the exemplar wolf is not
worse than the three dominant wolves. To implement the DLS
in the GWO, we substitute the best three wolves in the standard
GWO with the exemplar wolf to update the positions of other
wolves. )e improved equation is given by

X(t + 1) � XL − AL · BL, BL � CL · XL − X
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (11)

where X is the position vector of a wolf. XL is the position
vector of the exemplar wolf. BL is an intermediate variable.

AL and CL can be obtained by equations (3) and (4), re-
spectively. As illustrated by Figure 3, before the value of the
exemplar wolf at the current dimension is updated, XL is
compared with the two temporary vectorsXtemp1 andXtemp2.
Xtemp1 and Xtemp2 are set by substituting the value of XL with
the value of Xα and Xβ at the current dimension, respec-
tively. If Xtemp1 or Xtemp2 is better than the exemplar wolf,
the value of the exemplar wolf at the current dimension is
updated. Otherwise, the exemplar wolf remains unchanged
and continues the process of DLS at the next dimension.
)erefore, the exemplar wolf learns only from the dimen-
sions of the three dominant wolves that can help improve its
fitness value, which guarantees that the exemplar wolf will
not be degraded when alpha, beta, and delta are located in
conflicting directions and hence improves the utilization of
the population knowledge. )e flowchart of the DLS is il-
lustrated in Figure 4.

4.1. Trial Solutions Based on Levy Flight. For a SI-based al-
gorithm, exploration and exploitation are performed si-
multaneously. Exploration is to discover more promising
areas in the search space, and exploitation is to focus on the
current optimal areas. Hence, it is important to keep an
appropriate balance between exploration and exploitation.
In the DLS, each grey wolf learns from the exemplar wolf;
this leads the population to converge to the exemplar wolf
which strengthens the exploitation ability of the algorithm
and potentially causes premature convergence as well. To
improve the exploration performance of the algorithm, the
method proposed by Mantegna [54] to generate the Levy
flight is utilized in the algorithm. In comparison to the
Gaussian distribution which always generates small steps,
the Levy distribution can occasionally generate long steps
which is helpful for the exploration. )e 2D and 3D
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Figure 3: Process of the DLS.
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trajectories drawn from the Levy distribution are illustrated
in Figure 5.

After a wolf updates its position according to the ex-
emplar wolf by equation (12), a trial solution is obtained by
Levy flight using the following formula:

Xtrial(t + 1) � X(t + 1) + G × Levy(D), (12)

where D is the dimension size, G is a randomly generated
vector with the size of 1 × D, and Levy is the Levy flight
function, which is given by

Y

Y Y

Y

N

N

N

N

Start

XL = Xδ

n=1

Xtemp1=Xtemp2=XL

Xtemp1 = Xα,nn

XL,n = Xα,n XL,n = Xβ,n

Xtemp2 = Xβ,nn

f (Xtemp1) < f (Xtemp2)

f (XL) < f (Xtemp1) f (XL) < f (Xtemp2)

n<N

End

n=n+1

Figure 4: DLS flowchart.
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Figure 5: 2D and 3D trajectories drawn from the Levy distribution.
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Levy � 0.01 ×
u × ϕ
|v|

1/z , (13)

where u and v are random values in the interval [0,1] and z is
a constant set to 1.5. ϕ can be expressed as

ϕ �
Γ(1 + z) × sin(πz/2)

Γ((1 + z)/2) × z × 2(z− 1)/2􏼨 􏼩

1/z

. (14)

)en, the objective function value of the trial position
f(Xtrial(t + 1)) is compared with that of the updated po-
sition f(X(t + 1)), and the position with the smaller value is
preserved, which can be expressed by

X(t + 1) �
X(t + 1) if f(X(t + 1))≤f Xtrial(t + 1)( 􏼁,

Xtrial(t + 1) if f(X(t + 1))>f Xtrial(t + 1)( 􏼁.
􏼨

(15)

4.2.3eProposedDLGWOAlgorithm. By employing the DLS
and Levy flight, we proposed an enhanced variant of the GWO,
named as dimension learning grey wolf optimizer (DLGWO).
)e framework of the proposed DLGWO is illustrated in
Figure 6. Firstly, DLS is utilized to protect the potential useful
knowledge of the three dominant wolves; this enhances search
efficiency and reinforces the exploitation ability simulta-
neously. Secondly, Levy flight is embedded into the algorithm
as an effective measure to guarantee population diversity and
strengthen the exploration ability. )e process of constructing
the exemplar wolf is shown in Algorithm 3.

4.3. Analysis of Computational Complexity. )e computa-
tional costs of the standard GWO include initialization
O(n D), evaluation at each iteration O(n), selecting the
dominant wolves O(n), and position updating O(n D); n

and D are the population and dimension size, respectively.
For the DLGWO, the additional costs occur when the di-
mensional learning process is utilized in which the position
vector of the exemplar wolf is constructed by comparing
f(XL) with the smaller value of f(Xtemp1) and f(Xtemp2),
and since the position vector of the exemplar wolf has been
updated and recorded during the process, the employing of
the DLS requires additional computation of 2 D fitness
evaluations O(2 D) in each iteration. From the above
analysis, the computational complexity for the standard
GWO and DLGWO is at the same level.

5. Experimental Verification and Analysis

In this section, 4 experiments are carried out and presented.
First, the efficacy of the DLS and Levy flight in the proposed
algorithm is verified.)en, we perform experiments to verify
the capacity of the DLGWO on functions of different di-
mensions. After that, the proposed DLGWO is compared
with the GWO and its 6 promising variants. Finally,
DLGWO is examined with other well-established meta-
heuristics. A widely utilized set of benchmark functions is
employed [28, 30, 40, 48, 55], and the detailed information
about the benchmark functions can be found in Table 1. As

presented in Table 1, the test set includes 7 unimodal
functions (f1–f7), 6 multimodal functions (f8–f13), and
10 fixed-dimension multimodal functions (f14–f23). )ere
is only one global optimal solution in unimodal functions;
thus, these functions are suitable for evaluating the local
exploitation capability of an algorithm. With respect to the
multimodal functions, they have several local optimal solutions
besides the global optimal solution and thus are utilized to
challenge the global exploration ability and the capacity of
avoiding the local optimum. )e fixed-dimension multimodal
functions are composed of global optimum, local optimum,
and many different characteristics such as rotation and shift
and are used to examine the ability of an algorithm when
disposing of complicated cases. Figure 7 demonstrates the
landscapes of three benchmark functions. )e indexes for
comparing include the mean values (Mean), the standard
deviations (SD), and rank (Rank) of the average best result for
each method. Besides, to check if the improvements of the
DLGWO over the other algorithms are significant, the Wil-
coxon rank-sum tests at a 0.05 significance level are also uti-
lized. )e Wilcoxon rank-sum test is a paired test that checks
for significant differences between two algorithms, where
“+/ ≈ /− ” means that the proposed algorithm is significantly
better, similar to, or significantly worse than the comparison
algorithm. In addition, all the experiments are implemented
using MATLAB R2016a and are run on a CPU Core i5-4210U,
4GB RAM, with Windows 10 operating system.

5.1. Effect of Different Strategies. Before comprehensive
evaluations, it is essential to investigate the effect of each
strategy on the performance of the proposed algorithm. As
mentioned above, the DLGWO algorithm consists of two
main improvement strategies: DLS and Levy flight. In this
part, the effectiveness of these two strategies is validated. For
this purpose, a comparison between the DLGWO and its
variants is conducted. Herein, its variants are denoted as the
DLSGWO and LFGWO, respectively. )e algorithm
adopting the DLS while the Levy flight is ignored is denoted
as DLSGWO.)e algorithm employing the Levy flight while
the DLS is not utilized is denoted as LFGWO.

To more intuitively measure the exploration and ex-
ploitation abilities of the DLGWO and its variants, we
compare the search history, trajectories of the first search
agent at the first dimension, and population diversity of the
DLGWO, DLSGWO, LFGWO, and the standard GWO.)e
population diversity is calculated using the following
equations:

diversity �
1
N

􏽘

N

i�1

���

􏽐
D

j�1

􏽳

xi,j − xj􏼐 􏼑
2

, xj �
􏽐

N
i�1 xi,j

N
, (16)

where N is the population size, D is the dimension of the
search space, xi,j denotes the jth dimension of the ith
particle, and xj denotes the jth dimension of the center
position of the population.

)e obtained results are exhibited in Figure 8. )ese
results record the search history, trajectories of the first
search agent at its first dimension, and diversity of solutions
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based on 20 search agents with the maximum number of
function evaluations of 30000 in dealing with two unimodal
functions (f1 and f2) and two multimodal functions (f10
and f11) from Table 1. )e search history and trajectories
are displayed in two dimensions, more clearly. )ese plots
are recorded in the same way demonstrated in the original
work of the GWO.

From the search history and trajectory plots in Figure 8,
it can be seen that the DLGWO and LFGWO exhibit a better
distributed scatter plot in the initial stage of iteration
compared with the DLSGWO. )ese two methods have
more extensive coverage on those unexplored areas in the

search space that has not been covered efficiently by the
DLSGWO. )ose blue and yellow points away from the
center of the search space are generated mostly based on
Levy flight. )en, after initial iterations, search agents are
guided towards areas with more high-quality solutions (in
these four functions, the global optimum is at the center of
the search space). In this process, the exemplar wolf con-
structed in the DLSGWO carries the information about
potential areas with excellent solutions and leads the pop-
ulation to the center and its surrounding areas. )erefore,
more search agents in the population are guided by the
DLSGWO than other methods towards the vicinity of the

Y

Y

Y

N

N

N

Start

End

Initialize positions of the population
and the parameters A and C

Calculate the fitness value of each wolf
and record the first three wolves

Construct the exemplar wolf
through DLS

n=1

n=n+1

Update its position
according to Eq.(10)

Stopping criterion met

Update the parameters A
and C

n<N

Perform Levy flight to
obtain a trial position

X (t+1) = Xtrial (t+1)

f (X (t+1)) < f (Xtrial(t+1))

Figure 6: DLGWO method.

(1) XL � Xδ
(2) for each dimension j do
(3) X

temp1
j � Xα,j

(4) X
temp2
j � Xβ,j

(5) Calculate min f(Xtemp1), f(Xtemp2), f(XL)􏼈 􏼉 and record the corresponding vector
(6) Replace XL,j with the corresponding vector, and if f(XL) � min f(Xtemp1), f(Xtemp2), f(XL)􏼈 􏼉, then XL,j remains unchanged
(7) end for

ALGORITHM 3: Constructing the exemplar wolf according to the three dominant wolves.
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center. )is verifies the exploitation ability of the
DLSGWO. By contrast, LFGWO cannot guarantee strong
exploitation in further iterations; it shows a lower con-
centration of solutions around the optimum due to the
randomness from Levy flight. Furthermore, DLGWO is
able to obtain a fine balance: it exhibits a strong exploration
capacity in the initial iterations and a good exploitation
capacity in further iterations. )is is because of the in-
corporation of the two strategies. As for the diversity curves
in Figure 8, LFGWO obtains the highest diversity, and
DLGWO is ranked second. From the results of diversity, it
can be observed that the DLSGWO maintains the smallest
diversity and, consequently, has high convergence speed.
As expected, the LFGWO maintains the highest diversity
during the initial stage, and then Levy flight can signifi-
cantly improve the exploration of the search space which
provides a wide range of variety in solutions. Finally, the
diversity of the DLGWO is lower than that of the LFGWO,
but higher than that of the standard GWO and DLSGWO.
)is is because of the appropriate balance between ex-
ploitation and exploration provided by the interaction and
cooperation of the DLS and Levy flight. )erefore, the
diversity comparison results also verify our expectation
that the DLS is mainly responsible for local exploitation
while Levy flight for global exploration. According to the
results and analysis above, the incorporation of the DLS
and Levy flight can effectively improve the balance between
the exploratory and exploitative performance of the
DLGWO, while the DLSGWO and LFGWO with only one

of those strategies cannot obtain a better balance,
individually.

To further investigate the utility and efficacy of the DLS
and Levy flight, we compare the optimization results on f1 −

f13 of the DLGWO with both DLS and Levy flight,
DLSGWOwith the DLS alone, and LFGWOwith Levy flight
alone. )e maximum number of fitness evaluations is set to
300000. Table 2 presents the statistical results of unimodal
functions (f1 − f7) and multimodal functions (f8 − f13),
respectively. From the numerical results shown in Table 2,
DLSGWO ranks first, followed by DLGWO and LFGWO,
for unimodal functions; LFGWO ranks first, followed by
DLGWO and DLSGWO, for multimodal functions. It can be
drawn from the experimental results that DLS guarantees, in
each generation, the outstanding information of the three
dominant wolves to be inherited by each wolf in the swarm
through the exemplar wolf, which strongly enhances the
convergence performance. However, the diversity of the
DLSGWO is relatively low and is easily trapped in the local
optimum; thus, it is challenging for the DLS to deal with
multimodal functions. Levy flight improves the diversity of
the population and exhibits better performance for solving
multimodal functions with many local optima. Our design
expectation is verified by the experimental results that the
DLS concentrates on local exploitation, while Levy flight
focuses on global exploration. It is the interaction and co-
operation of DLS and Levy flight that enables the com-
petitive performance of the DLGWO for both unimodal and
multimodal functions.
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Figure 7: Demonstration of benchmark functions.
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Figure 8: Comparison of search history, trajectories, and diversity between solutions of the DLGWO, DLSGWO, and LFGWO.
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5.2. 3e Impact of Problem Dimension. Any efficient opti-
mizer should be able to make a fine tradeoff between mini-
mizing cost and maximizing accuracy. From the analysis of
computational complexity, the computational cost of utilizing
DLS increases as the dimension of the problem increases. To
better evaluate the impact of dimension on the performance of
the proposed method, DLGWO and the standard GWO are
implemented on f1 − f13 from Table 1 with dimensions of 10,
30, 100, and 200. All conditions are the same, and the max-
imum number of fitness evaluations is 300000. By increasing
the dimension, the statistical results are recorded and shown in
Table 3.)e boldface in Table 3 indicates the best experimental
results. It can be seen from Table 3 that DLGWO outperforms
the standard GWO in all dimensions with a promising and

stable performance. When dimension increases, the exemplar
wolf has a more comprehensive knowledge of population
information at different dimensions; thus, the exemplar wolf
can guide the swarmwith more efficiency. However, it can also
be observed that, compared with the proposed method, the
standard GWO can obtain optimization results with higher
accuracy on f3, f5, and f13 when the dimension increases to
200. )e reason is that the extra fitness evaluations for
DLGWO algorithm will also increase as the dimension rises,
which can limit the performance of the DLGWO.)erefore, it
is still an interesting and challenging future work to decrease
the extra cost of constructing the exemplar wolf and obtain a
better tradeoff between algorithm performance and compu-
tational cost.

Table 2: Comparison results for the DLGWO, LFGWO, and DLSGWO.

Metrics DLSGWO LFGWO DLGWO

f1

Mean 0.00E+ 00 9.25E − 273 0.00E+ 00
SD 0.00E+ 00 1.51E − 272 0.00E+ 00
Rank 1 3 1

f2

Mean 0.00E+ 00 1.13E − 282 0.00E+ 00
SD 0.00E+ 00 8.46E − 282 0.00E+ 00
Rank 1 3 1

f3

Mean 6.03E − 192 8.19E − 28 6.27E − 182
SD 7.68E − 191 1.60E − 27 1.01E − 182
Rank 1 3 2

f4

Mean 7.11E − 188 1.33E − 115 9.07E − 150
SD 1.58E − 189 1.06E − 116 1.26E − 151
Rank 1 3 2

f5

Mean 2.47E+ 01 2.71E+ 01 2.35E+ 01
SD 1.23E+ 00 1.04E+ 00 3.08E − 01
Rank 2 3 1

f6

Mean 1.24E − 06 1.86E − 01 1.08E − 06
SD 3.61E − 07 1.06E − 01 3.93E − 07
Rank 2 3 1

f7

Mean 1.01E − 05 6.12E − 04 1.44E − 05
SD 8.51E − 06 2.73E − 04 5.18E − 05
Rank 1 3 2

Average rank for f1–f7 1.28 3.00 1.42

f8

Mean − 7.21E+ 03 − 7.92E+ 03 − 8.33E+ 03
SD 1.07E+ 03 5.46E+ 02 2.25E+ 02
Rank 3 2 1

f9

Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1

f10

Mean 8.97E − 15 4.44E − 15 4.95E − 15
SD 8.89E − 15 1.58E − 15 3.17E − 15
Rank 3 1 2

f11

Mean 1.25E − 03 0.00E+ 00 0.00E+ 00
SD 2.81E − 03 0.00E+ 00 0.00E+ 00
Rank 3 1 1

f12

Mean 6.54E − 03 1.74E − 08 1.68E − 08
SD 4.62E − 03 5.73E − 09 9.08E − 09
Rank 3 2 1

f13

Mean 3.09E − 05 9.63E − 06 2.88E − 07
SD 1.31E − 06 7.04E − 07 1.82E − 07
Rank 3 2 1

Average rank for f8–f13 2.66 1.50 1.16
Average rank for f1–f13 1.92 2.30 1.31
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5.3. Comparison of the DLGWO with the GWO and Its
Variants. In this section, the proposed DLGWO is com-
pared with the GWO and its several promising variants. )e
explanations and parameter settings for these GWO variants
are given in Table 4. )e test functions utilized in this part
are all classical benchmark problems from Table 1. Each
problem is independently executed 30 times, where the
number of search agents and the maximum number of
fitness evaluations are 40 and 300000, respectively. )e
statistical results are provided in Tables 5–9.

5.4. Algorithm Accuracy Analysis. )e numerical results on
unimodal functions (f1–f7) are presented in Table 5. As for
unimodal functions f1–f7, these problems are suitable for
testing the exploitation ability of algorithms. From the obtained
results, DLGWO achieves the best rank for f1, f2, f5, and f7.
Onf3, IGWO is the best optimizer with a competitive accuracy
of 8.42E − 192, whereas DLGWO takes the second place with
an accuracy of 6.53E − 182. On f4, DLGWO is not as com-
petitive as GWOCS, MGWO, and IGWO and comes in the
fourth place. )e global optimum of f5 is in a narrow area,
which is quite challenging to obtain for most optimizers; thus,
the results of the DLGWO and the other algorithms for f5 are
satisfactory. On f6, RWGWO exhibits slightly higher search
accuracy compared with the DLGWO, but DLGWO also
provides an outstanding accuracy of 4.28E − 07. In the final

average rank, DLGWO is the best optimizer with the best
exploitation ability, followed by IGWO, GWOCS, MGWO,
learnGWO, SOGWO, RWGWO, and GWO.

)e numerical results on multimodal functions (f8–f13)
are presented in Table 6. Contrast to unimodal functions,
multimodal functions are suitable for examining the ex-
ploration ability since most of them contain numerous local
optima, which may lead to premature convergence of op-
timizers. On f8, it is difficult for the standard GWO to locate
the global optimum. )e reason is that this problem has
many deep local optima far away from the global optima;
once alpha, beta, and delta in the standard GWO are all
trapped into a deep local optimum, they can hardly escape
and may lead more search agents into the local optimum.
From Table 6, DLGWO exhibits better ability of avoiding the
local optimum and hence obtains a higher search accuracy of
− 8.35E+ 03. )is can be ascribed to the Levy flight strategy
in the DLGWO which improves the population diversity of
the algorithm. All the methods can locate the global opti-
mum for f9 and f11. On f10, IGWO obtains the highest
accuracy of 4.44E − 15, followed by DLGWO with an ac-
curacy of 4.94E − 15. On f11, DLGWO has an apparent
advantage compared with the other GWO variants, with an
excellent accuracy of 1.75E − 08. On f13, DLGWO takes the
first place, and RWGWOalso obtains a competitive accuracy
of 3.57E − 07. On multimodal problems, DLGWO also ex-
hibits the best performance, and RWGWO is the second

Table 3: Comparison results on benchmark functions with different dimensions.

Dim 10 30 100 200
Metrics GWO DLGWO GWO DLGWO GWO DLGWO GWO DLGWO

f1
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 3.92E − 262 2.48E− 286 2.95E − 129 1.67E− 162
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 5.88E − 263 0.00E+ 00 6.44E − 128 9.88E − 163

f2
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 2.23E − 218 8.43E− 237
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 7.05E − 217 5.75E − 237

f3
Mean 5.69E − 188 3.86E− 230 1.05E − 156 6.10E− 184 5.61E − 105 1.52E− 110 1.94E+ 00 3.16E+ 00
SD 2.76E − 187 8.22E − 231 9.01E − 157 5.41E − 184 9.65E − 105 7.52E − 111 8.08E − 01 1.22E+E+ 00

f4
Mean 1.09E − 293 1.33E− 322 5.45E − 121 9.36E− 150 3.16E − 26 2.79E− 38 3.91E − 01 1.99E− 03
SD 2.24E − 294 3.69E − 323 6.56E − 121 2.51E − 151 2.35E − 26 6.75E − 38 1.52E − 01 1.47E − 03

f5
Mean 6.22E+ 00 2.76E+ 00 2.77E+ 01 2.36E+ 01 9.61E+ 01 9.41E+ 01 1.92E+ 02 1.98E+ 02
SD 2.62E − 01 7.84E − 01 9.34E − 01 4.22E − 01 3.16E − 01 5.02E − 01 2.38E − 01 1.09E − 01

f6
Mean 7.06E − 01 2.53E− 08 5.96E − 01 4.55E− 07 1.49E+ 00 2.50E− 03 2.74E+ 00 7.29E− 01
SD 5.26E − 02 3.12E − 08 3.45E − 01 2.46E − 07 7.94E − 01 2.41E − 04 1.74E+ 00 2.24E − 01

f7
Mean 9.55E − 05 2.27E− 05 4.28E − 05 1.09E− 05 8.26E − 03 6.04E− 04 1.44E − 02 2.56E− 04
SD 5.79E − 04 1.37E − 05 3.07E − 05 8.99E − 06 3.22E − 04 9.90E − 05 8.88E − 03 2.11E − 04

f8
Mean − 3.40E+ 03 −4.35E+ 03 − 6.57E+ 03 −8.29E+ 03 − 1.61E+ 04 −2.02E+ 04 − 2.85E+ 04 −3.48E+ 04
SD 2.34E+ 02 5.75E+ 01 5.25E+ 02 8.77E+ 02 4.31E+ 02 1.74E+ 02 5.54E+ 04 6.39E+ 02

f9
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 1.14E − 13 0.00E+ 00
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 8.84E − 14 0.00E+ 00

f10
Mean 7.99E − 15 4.44E− 15 9.02E − 15 4.84E− 15 2.22E − 14 1.51E− 14 2.93E − 14 2.22E− 14
SD 2.15E − 15 1.17E − 15 1.73E − 15 1.34E − 15 5.31E − 15 3.33E − 15 7.63E − 14 4.75E − 15

f11
Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00

f12
Mean 1.01E − 01 5.48E− 08 2.74E − 02 1.72E− 08 2.18E − 01 8.26E− 04 4.12E − 01 3.92E− 03
SD 1.82E − 02 1.04E − 09 8.62E − 03 4.69E − 09 3.44E − 01 1.36E − 03 4.17E − 01 8.10E − 02

f13
Mean 9.67E − 01 4.96E− 08 7.02E − 01 2.38E− 07 4.72E+ 00 4.34E− 01 1.51E+ 01 2.06E+ 01
SD 2.01E − 01 5.90E − 08 2.18E − 01 5.91E − 08 2.16E+ 01 9.59E − 01 8.10E+ 00 6.55E+ 00
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competitive method, followed by IGWO, learnGWO,
SOGWO, GWOCS, MGWO, and GWO. As observed in the
results of unimodal and multimodal functions, DLGWO
obtains the best rank for 9 out of 13 problems and can
achieve the global optima for 4 problems, i.e., f1, f2, f9, and
f11. It ranks first statistically among all the algorithms on
both unimodal and multimodal functions, which demon-
strates the efficiency of the DLS and Levy flight and the
strength of their interaction and cooperation.

Table 7 presents the numerical results on the fixed-di-
mension multimodal functions (f14–f23). )ese functions
can evaluate the efficiency of the algorithms when dealing
with functions with different characteristics such as rotation
and shift. From the results provided in Table 7, DLGWO
performs best on 4 out of 10 functions, i.e., f15, f16, f18, and
f23. On f14, f17, f19, f21, and f22, DLGWO has the same
search accuracy compared with the algorithms ranking first
(RWGWO for f14, f17, and f21, SOGWO for f19, and
MGWO for f22), but DLGWO is not as robust as these
algorithms and has a higher standard deviation. On f20,

SOGWO obtains the global optimum, followed by DLGWO
with a search accuracy of − 3.28E+ 00. On f23, DLGWO has
the most robust performance with the smallest standard
deviation of 5.04E − 07. In general, DLGWO shows com-
petitive and robust performance on the fixed-dimensional
functions, which proves that the two strategies implemented
in the DLGWO show different effectiveness when dealing
with functions with different features.

Tables 8 and 9 give the overall Wilcoxon rank-sum test
results of the DLGWO and each algorithm. From Table 9,
DLGWO outperforms the other comparative methods in
different problems and obtains results of 20/3/0 vs. GWO, 14/
6/3 vs. RWGWO, 19/4/0 vs. learnGWO, 18/4/1 vs. GWOCS,
14/6/3 vs. IGWO, 18/4/1 vs. SOGWO, and 16/5/2 vs. MGWO.

5.5. Convergence Behavior Analysis. To compare the con-
vergence behavior, Figures 9 and 10 present the convergence
curves of the DLGWO and other algorithms on f1–f13. It can
be detected that the DLGWO has the fastest convergence speed
on f1 andf2, and it obtains the global optimumwithin 100000

Table 4: Parameter settings and explanations for all versions of the GWO.

Name Explanation Parameters
GWO a � [2,0]
RWGWO [39] GWO with random walk a � [2,0]
learnGWO [50] GWO with improved hierarchy a � [2,0], θα � 0.004715, θβ � θδ � 0.00647
GWOCS [44] GWO hybridized with cuckoo search a � [2,0]
IGWO [56] GWO with individual memory a � [2,0], b1 � 0.6, b2 � 0.4, p � 0.5
SOGWO [43] GWO with opposition-based learning a � [2,0]
MGWO [34] GWO with modified parameter C a � [2,0]

Table 5: Results on benchmark functions f1–f7.

Metrics GWO RWGWO learnGWO GWOCS IGWO SOGWO MGWO DLGWO

f1

Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1 1

f2

Mean 1.80E − 284 5.40E − 223 4.98E − 291 0.00E+ 00 0.00E+ 00 1.33E − 287 0.00E+ 00 0.00E+ 00
SD 1.07E − 284 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 4.90E − 290 0.00E+ 00 0.00E+ 00
Rank 7 8 5 1 1 6 1 1

f3

Mean 6.82E − 151 1.30E − 153 1.80E − 162 4.98E − 180 8.42E − 192 5.40E − 153 2.10E − 176 6.53E − 182
SD 2.32E − 152 1.66E − 153 6.06E − 161 2.49E − 180 7.62E − 191 2.67E − 153 5.27E − 175 3.34E − 182
Rank 8 7 5 3 1 6 4 2

f4

Mean 5.45E − 121 7.53E − 116 6.72E − 126 7.23E − 213 7.54E − 155 1.83E − 122 5.38E − 190 9.36E − 150
SD 6.56E − 121 2.86E − 117 1.78E − 127 0.00E+ 00 4.83E − 155 8.25E − 123 3.85E − 191 2.51E − 151
Rank 7 8 5 1 3 6 2 4

f5

Mean 2.73E+ 01 2.66E+ 01 2.63E+ 01 2.64E+ 01 2.61E+ 01 2.49E+ 01 2.77E+ 01 2.33E+ 01
SD 9.47E − 01 4.96E − 01 3.61E − 01 8.39E − 01 7.79E − 01 7.26E − 02 7.53E − 01 4.19E − 01
Rank 7 6 4 5 3 2 8 1

f6

Mean 6.06E − 01 1.88E − 07 6.01E − 01 1.21E+ 00 9.59E − 02 9.98E − 01 1.60E+ 00 4.28E − 07
SD 3.78E − 01 3.88E − 08 2.43E − 01 3.63E − 01 2.18E − 02 9.64E − 02 4.31E − 02 1.06E − 07
Rank 5 1 4 7 3 6 8 2

f7

Mean 5.18E − 05 3.76E − 04 5.16E − 04 6.97E − 05 1.93E − 05 7.73E − 05 4.22E − 05 1.21E − 05
SD 2.68E − 05 4.27E − 05 1.39E − 05 3.31E − 05 9.21E − 04 2.93E − 05 2.05E − 05 8.99E − 05
Rank 4 7 8 5 2 6 3 1

Average rank
for f1 − f7

5.57 5.42 4.57 3.28 2.00 4.71 3.85 1.71

Final rank for
f1 − f7

8 7 5 3 2 6 4 1
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Table 6: Results on benchmark functions f8–f13.

Metrics GWO RWGWO learnGWO GWOCS IGWO SOGWO MGWO DLGWO

f8

Mean − 5.99E+ 03 − 7.53E+ 03 − 5.27E+ 03 − 4.81E+ 03 − 7.29E+ 03 − 4.94E+ 03 − 6.51E+ 03 − 8.35E+ 03
SD 1.16E+ 02 4.83E+ 02 1.25E+ 03 1.54E+ 03 4.27E+ 02 1.12E+ 03 5.33E+ 02 8.65E+ 02
Rank 5 2 6 8 3 7 4 1

f9

Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1 1

f10

Mean 8.97E − 15 7.99E − 15 7.99E − 15 7.99E − 15 4.44E − 15 8.22E − 15 8.05E − 15 4.94E − 15
SD 1.73E − 15 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 1.34E − 15 4.42E − 16 1.34E − 15
Rank 8 3 3 3 1 7 6 2

f11

Mean 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 1 1 1 1 1 1 1

f12

Mean 2.76E − 02 4.70E − 05 4.57E − 02 6.67E − 02 3.46E − 02 2.07E − 02 1.12E − 01 1.75E − 08
SD 8.68E − 03 1.13E − 04 2.35E − 02 2.27E − 02 1.29E − 02 6.17E − 09 5.33E − 02 4.70E − 09
Rank 5 2 3 6 8 4 7 1

f13

Mean 7.48E − 01 3.57E − 07 5.27E − 01 6.66E − 01 5.76E − 01 3.08E − 07 7.21E − 01 2.42E − 07
SD 2.38E − 01 5.29E − 08 2.67E − 01 1.99E − 01 2.06E − 01 6.80E − 08 2.68E − 01 6.31E − 08
Rank 8 2 5 6 4 3 7 1

Average rank
for f8 − f13

4.67 1.83 3.17 4.17 3.00 3.83 4.33 1.17

Final rank for
f8 − f13

8 2 4 6 3 5 7 1

Table 7: Results on benchmark functions f14–f23.

Metrics GWO RWGWO learnGWO GWOCS IGWO SOGWO MGWO DLGWO

f14

Mean 4.92E+ 00 9.98E − 01 7.41E+ 00 4.35E+ 00 6.29E+ 00 9.98E − 01 8.81E+ 00 9.98E − 01
SD 4.05E+ 00 8.27E − 14 4.86E+ 00 4.46E+ 00 5.46E+ 00 3.83E − 13 4.04E+ 00 3.83E − 13
Rank 5 1 7 4 6 2 8 2

f15

Mean 6.03E − 03 6.69E − 04 3.17E − 03 3.08E − 04 3.43E − 03 3.10E − 04 4.38E − 04 3.07E − 04
SD 9.78E − 03 4.57E − 04 7.58E − 03 4.86E − 07 7.47E − 03 1.73E − 08 3.46E − 04 3.33E − 10
Rank 8 5 6 2 7 3 4 1

f16

Mean − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00
SD 7.66E − 11 4.59E − 11 5.77E − 11 1.79E − 07 6.64E − 10 7.49E − 11 6.30E − 11 1.03E − 11
Rank 6 2 3 8 7 5 4 1

f17

Mean 3.97E − 01 3.97E − 01 3.97E − 01 3.97E − 01 3.97E − 01 3.97E − 01 3.97E − 01 3.97E − 01
SD 2.24E − 09 2.62E − 10 7.88E − 10 9.84E − 06 3.77E − 08 2.05E − 09 4.86E − 10 8.44E − 10
Rank 6 1 3 8 7 5 2 4

f18

Mean 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00
SD 7.73E − 07 9.59E − 08 5.36E − 08 1.74E − 07 7.55E − 08 2.09E − 09 4.91E − 08 5.68E − 10
Rank 8 6 4 7 5 2 3 1

f19

Mean − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00
SD 2.49E − 07 7.67E − 05 1.94E − 07 3.18E − 07 3.04E+ 07 1.31E − 08 1.32E − 07 9.86E − 08
Rank 5 8 4 7 6 1 3 2

f20

Mean − 3.24E+ 00 − 3.27E+ 00 − 3.24E+ 00 − 3.27E+ 00 − 3.26E+ 00 − 3.32E+ 00 − 3.18E+ 00 − 3.28E+ 00
SD 9.84E − 02 6.46E − 02 8.99E − 02 5.81E − 02 7.91E − 02 2.41E − 08 1.73E − 01 5.80E − 02
Rank 7 4 6 3 5 1 8 2

f21

Mean − 8.72E+ 00 − 1.01E+ 01 − 8.69E+ 00 − 6.91E+ 00 − 9.42E+ 00 − 1.01E+ 01 − 9.42E+ 00 − 1.01E+ 01
SD 2.43E − 02 3.81E − 07 2.48E+ 00 2.34E+ 00 1.92E+ 00 2.39E − 06 1.92E+ 00 6.35E − 07
Rank 6 1 7 8 4 3 4 2

f22

Mean − 9.89E+ 00 − 1.04E+ 01 − 9.87E+ 00 − 9.91E+ 00 − 9.92E+ 01 − 1.04E+ 01 − 1.04E+ 01 − 1.04E+ 01
SD 1.94E+ 00 6.43E − 07 1.61E+ 00 2.20E+ 00 1.58E+ 00 2.51E − 06 5.14E − 07 1.59E − 06
Rank 7 2 8 6 5 4 1 3

f23

Mean − 9.95E+ 00 − 1.01E+ 01 − 9.40E+ 00 − 8.45E+ 00 − 1.01E+ 01 − 1.05E+ 01 − 9.76E+ 00 − 1.05E+ 01
SD 8.75E − 07 4.69E − 06 1.33E − 06 2.29E+ 00 2.45E − 05 2.28E − 06 2.04E+ 00 5.04E − 07
Rank 5 3 7 8 4 2 6 1

Average rank
for f14 − f23

6.30 3.30 5.50 6.10 5.60 2.80 4.30 1.90

Final rank for
f14 − f23

8 3 5 7 6 2 4 1
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function evaluations. On f3, all the methods have similar
convergence trends, but IGWOhas the highest search accuracy,
followed by DLGWO. On f4, GWOCS, MGWO, and IGWO
can exploit the search space more successfully than the
DLGWO, whereas the DLGWO takes the fourth place. )e
convergence rate forf5 is similar for all the algorithms, and they
converge fast during a few iterations, but then reveal stagnation
behaviors. On f6 and f7, DLGWO exhibits the fastest con-
vergence speed and the highest convergence accuracy.)e same
trend can be observed on f8. On f9 and f11, DLGWO and
other GWO variants can all locate the global optimum. On f10,
DLGWO exhibits slightly higher convergence rate compared
with other optimizers. On f12 and f13, DLGWO and
RWGWO are top 2 optimizers, and they can explore the search
space with more efficiency when other methods reach stag-
nation prematurely. According to these results, the utilized DLS
and Levy flight in the proposed DLGWO algorithm can gen-
erally improve its convergence performance.

5.6. Comparison of the DLGWO with Other Metaheuristics.
In this section, the performance of the DLGWO is examined
with other well-established metaheuristics which can be

generally divided into two categories: (1) recently developed
algorithms, including TLBO [19], SSA [20], SCA [21], WOA
[22], and BOA [23]; (2) high-performance algorithms, in-
cluding LSHADE [57] (champion optimizer in the CEC 2014
test) and LSHADE-cnEpSin [58] (champion optimizer in the
CEC 2017 test). )e parameter settings for these algorithms
are given in Table 10. )e experimental conditions are the
same as in the previous section: all algorithms are imple-
mented over 30 independent runs with 40 search agents and
the maximum number of function evaluations of 300000.

5.7. Algorithm Accuracy Analysis. Table 11 provides the
comparison results on unimodal functions. For the uni-
modal functions (f1–f7), DLGWO attains the best rank for
4 functions, i.e., f1, f2, f4, and f7, and obtains the global
optimum for f1 and f2. LSHADE achieves the best rank for
5 functions, one more than the DLGWO, and finds the
global optimum for f1, f2, f3, and f6, two more than the
DLGWO. LSHADE-cnEpSin achieves the best rank for 4
functions, the same as the DLGWO, but also achieves the
global optimum for f1, f2, f3, and f6, two more than the
DLGWO. On f4, DLGWO obtains the highest accuracy of

Table 8: Wilcoxon rank-sum test on benchmark functions.

DLGWO vs. GWO RWGWO learnGWO GWOCS IGWO SOGWO MGWO
p p p p p p p

f1 NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈
f2 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + NaN ≈ NaN ≈ 1.21E − 12 + NaN ≈
f3 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 7.77E − 09 + 2.22E − 08 − 3.02E − 11 + 7.77E − 09 +

f4 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 − 3.20E − 10 − 1.21E − 12 + 3.02E − 11 −

f5 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 +

f6 3.02E − 11 + 5.09E − 06 − 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 +

f7 2.95E − 06 + 3.02E − 11 + 3.02E − 11 + 7.04E − 07 + 2.91E − 01 ≈ 5.12E − 10 + 2.78E − 03 +

f8 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 +

f9 NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈
f10 4.50E − 11 + 3.24E − 07 + 3.24E − 07 + 3.24E − 07 + 4.72E − 08 − 4.12E − 06 + 5.27E − 06 +

f11 NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈
f12 1.21E − 12 + 1.09E − 10 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 +

f13 1.21E − 12 + 6.54E − 09 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + 2.12E − 09 + 1.21E − 12 +

f14 2.09E − 09 + 2.82E − 06 − 1.99E − 11 + 5.12E − 09 + 1.99E − 11 + NaN ≈ 1.99E − 11 +

f15 4.05E − 09 + 8.31E − 08 + 4.82E − 08 + 5.24E − 06 + 3.14E − 09 + 1.66E − 06 + 2.83E − 07 +

f16 3.22E − 06 + 1.92E − 04 + 1.49E − 05 + 1.05E − 08 + 2.31E − 08 + 6.91E − 06 + 8.05E − 06 +

f17 2.11E − 04 + 5.06E − 06 − 4.32E − 01 ≈ 4.05E − 11 + 6.43E − 09 + 2.84E − 04 + 4.22E − 04 −

f18 3.31E − 09 + 2.02E − 06 + 8.52E − 05 + 1.41E − 09 + 5.73E − 05 + 3.88E − 03 + 1.46E − 05 +

f19 4.33E − 05 + 2.39E − 11 + 7.15E − 05 + 9.18E − 10 + 2.00E − 05 + 1.10E − 05 − 8.62E − 05 +

f20 2.17E − 04 + 4.11E − 03 + 5.51E − 04 + 5.82E − 03 + 7.03E − 04 + 6.43E − 11 − 2.03E − 04 +

f21 6.55E − 05 + 1.89E − 02 ≈ 4.37E − 05 + 1.22E − 05 + 6.40E − 04 + 4.40E − 02 ≈ 8.17E − 04 +

f22 6.44E − 12 + 8.74E − 01 ≈ 6.44E − 12 + 6.44E − 12 + 6.44E − 12 + 8.99E − 01 ≈ 3.04E − 02 ≈
f23 8.24E − 06 + 4.52E − 01 ≈ 1.52E − 06 + 2.33E − 08 + 2.31E − 01 ≈ 7.09E − 01 6.03E − 06 +

Table 9: Statistical results of the Wilcoxon rank-sum test.

DLGWO vs. f1–f7 f8–f13 f14–f23 Sum

Wilcoxon’s rank-sum test (+/ ≈ /− )

GWO 6/1/0 4/2/0 10/0/0 20/3/0
RWGWO 5/1/1 4/2/0 5/3/2 14/6/3
learnGWO 6/1/0 4/2/0 9/1/0 19/4/0
GWOCS 4/2/1 4/2/0 10/0/0 18/4/1
IGWO 2/3/2 3/2/1 9/1/0 14/6/3
SOGWO 6/1/0 4/2/0 8/1/1 18/4/1
MGWO 4/2/1 4/2/0 8/1/1 16/5/2
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9.57E − 148, which is a great superiority to LSHADE and
LSHADE-cnEpSin. LSHADE and LSHADE-cnEpSin over-
take the other methods on f5 with apparently higher search
accuracy, and DLGWO comes in the third place. Compared
with the rest metaheuristics, i.e., TLBO, SSA, SCA, WOA,
and BOA, DLGWO exhibits distinguished performance
since its average rank is smaller than these algorithms. To
sum up, the proposed DLGWO shows strong performance
on unimodal functions, but its exploitation ability is worse
than CEC 2014 champion algorithm LSHADE and CEC
2017 champion algorithm LSHADE-cnEpSin. In the final
rank, LSHADE-cnEpSin and LSHADE are the top 2 opti-
mizers, with DLGWO ranking third, followed by TLBO,

WOA, BOA and SSA (tied for the sixth place), and SCA.
With respect to the multimodal functions (f8–f13) shown in
Table 12, WOA outperforms the other methods on f8 with
the highest accuracy of − 1.23E+ 04, followed by the pro-
posed DLGWO with an accuracy of − 8.29E+ 03. Among 8
algorithms, 5 algorithms can achieve the global optimum on
f9, i.e., SCA, WOA, LSHADE, LSHADE-cnEpSin, and
DLGWO. On f10, LSHADE-cnEpSin has the best result, but
DLGWO also obtains competitive result with an accuracy of
4.64E − 15. )e global optimum of f11 can be achieved by 6
methods, i.e., TLBO, SCA, WOA, LSHADE, LSHADE-
cnEpSin, and DLGWO. TLBO takes the first place on f12
with the highest search precision of 2.45E − 24, followed by
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Figure 9: Convergence behavior on test functions f1–f4.
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Figure 10: Continued.
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Figure 10: Continued.
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LSHADE-cnEpSin and DLGWO. On f13, SSA is the most
efficient optimizer. According to the average rank and final
rank of these algorithms on multimodal problems, DLGWO
is inferior to CEC 2017 champion algorithm LSHADE-
cnEpSin, but outperforms CEC 2014 champion algorithm
LSHADE with slight advantage, and is superior to the other
algorithms. Hence, the experimental results demonstrate the
exploration capacity of the proposed DLGWO.

Table 13 gives the statistical results on the fixed-di-
mension multimodal functions (f14–f23). According to the
obtained results in Table 13, SSA, SCA, LSHADE-cnEpSin,
and DLGWO obtain the highest accuracy on f14, but SSA
has the smallest standard deviation. On f15, LSHADE-
cnEpSin achieves the best result with the highest search
accuracy of 2.11E − 07, followed by LSHADE and BOA,
with DLGWO ranking fourth. On f16–f19, all algorithms
can obtain or locate close to the global optimum (− 1.0316
for f16, 0.398 for f17, 3.00 for f18, and − 3.86 for f19), but
they have different standard deviations, which indicate
different performance stability of algorithms. TLBO attains
the smallest standard deviations for f16, f17, and f19. On
f18, LSHADE and LSHADE-cnEpSin have the most robust
performance and achieve the smallest standard deviations.

LSHADE obtains the best result on f20, while DLGWO also
provides competitive result with an accuracy of
− 3.28E+ 00. On f21, WOA and DLGWO are the best
performed algorithms, both methods achieve the highest
search precision of − 1.01E + 01, but the standard deviation
of WOA is slightly smaller. On f22 and f23, DLGWO
exhibits a noticeable advantage in terms of search precision
and stability. From the average rank and final rank of these
methods, DLGWO is the best optimizer in solving the
fixed-dimension multimodal functions, with LSHADE-
cnEpSin and LSHADE ranking second and third, followed
by WOA and TLBO (tied for the fourth place), SSA, BOA,
and SCA. Moreover, from Table 13, it can also be observed
that DLGWO exhibits larger standard deviation on f16–f19
compared with several non-GWO competitors. )e un-
stable performance on these functions can be attributed to
the defect in the original GWO design that has a search
tendency towards the origin of the coordinate system.
When the global optimum of functions is shifted from the
origin, this defect can affect the GWO and its modified
variants [59].

Tables 14 and 15 provide the overall Wilcoxon rank-
sum test results between DLGWO and each metaheuristic.
From Table 14, DLGWO generally shows strong perfor-
mance in comparison with other non-GWOs. Even com-
pared with CEC 2017 champion algorithm LSHADE-
cnEpSin and CEC 2014 champion algorithm LSHADE,
DLGWO can obtain competitive results of 7/8/8 and 7/10/
6, respectively. With regard to the rest optimizers, it shows
superior performance and achieves results of 13/4/6 vs.
TLBO, 15/1/7 vs. SSA, 19/4/0 vs. SCA, 12/7/4 vs. WOA, and
18/4/1 vs. BOA.

5.8. Convergence Behavior Analysis. )e convergence curves
of the DLGWO and the other metaheuristics based on 4 test
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Figure 10: Convergence behavior on test functions f5–f13.

Table 10: Parameter settings of the tested algorithm.

Algorithms Parameters
TLBO [19] TF is randomly selected with 1 or 2
SSA [20] c1 � [2,0]
SCA [21] a� 2, r1� [a,0]
WOA [22] a1 � [2,0], a2 � [− 1, − 2]
BOA [23] p � 0.6, a � 0.1, c � 0.01
LSHADE [57] p � 0.11, rarc � 2.6, H� 6

LSHADE-cnEpSin [58] Pb � 0.4, Ps � 0.5, p � 0.11,
rarc � 1.4, freq-inti� 0.5, H� 5
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functions are presented in Figure 11. As shown in Figure 11,
DLGWO has the fastest convergence speed on f2, followed
by LSHADE-cnEpSin and LSHADE. WOA does not con-
verge fast in the initial stage of iterations, but it then ac-
celerates and converges fast in further iterations. As for the
other methods SSA, SCA, and BOA, they converge

prematurely and cannot find solutions with high accuracy.
On f3, LSHADE-cnEpSin and LSHADE have the highest
convergence accuracy, although they cannot converge fast in
the first half of iterations. DLGWO is inferior to these two
algorithms in terms of search accuracy, but it shows an
agreeable convergence behavior during the whole iterative

Table 11: Results on benchmark functions f1–f7.

Metrics TLBO SSA SCA WOA BOA LSHADE LSHADE-c DLGWO

f1

Mean 0.00E+ 00 4.66E − 09 3.46E − 43 0.00E+ 00 1.42E − 10 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 1.19E − 09 6.93E − 43 0.00E+ 00 5.65E − 12 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 6 5 1 7 1 1 1

f2

Mean 0.00E+ 00 3.81E − 03 4.93E − 46 0.00E+ 00 4.77E − 08 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 6.26E − 03 9.66E − 46 0.00E+ 00 3.81E − 09 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 7 6 1 8 1 1 1

f3

Mean 3.52E − 145 6.23E − 08 1.73E − 01 1.81E+ 00 1.15E − 10 0.00E+ 00 0.00E+ 00 6.22E − 181
SD 4.05E − 145 1.75E − 08 2.04E − 01 3.30E − 01 5.43E − 12 0.00E+ 00 0.00E+ 00 4.26E − 182
Rank 4 6 7 8 5 1 1 3

f4

Mean 4.19E − 122 1.92E − 02 2.07E − 04 1.94E − 02 6.43E − 08 2.39E − 55 2.46E − 72 9.57E − 148
SD 2.06E − 122 4.36E − 03 3.67E − 04 3.88E − 03 2.25E − 09 7.58E − 56 1.22E − 72 1.04E − 149
Rank 2 7 6 8 5 4 3 1

f5

Mean 2.39E+ 01 9.34E+ 01 2.75E+ 01 2.46E+ 01 2.38E+ 01 1.74E+ 00 5.52E+ 00 2.36E+ 01
SD 1.84E − 01 7.11E+ 01 7.45E − 01 3.79E − 01 1.57E+ 00 9.29E − 01 1.05E+ 00 3.88E − 01
Rank 5 8 7 6 4 1 2 3

f6

Mean 4.19E − 22 3.55E − 09 4.70E − 01 3.74E − 06 3.74E − 01 0.00E+ 00 0.00E+ 00 5.05E − 07
SD 5.65E − 22 1.02E − 09 2.62E − 02 1.67E − 06 2.82E − 01 0.00E+ 00 0.00E+ 00 2.36E − 07
Rank 3 4 8 6 7 1 1 5

f7

Mean 1.66E − 04 2.13E − 03 9.19E − 03 1.92E − 04 2.90E − 02 1.75E − 03 1.33E − 04 2.20E − 05
SD 3.71E − 05 1.23E − 04 3.52E − 03 2.92E − 04 2.13E − 03 8.52E − 04 2.21E − 04 7.65E − 05
Rank 3 6 7 5 8 4 2 1

Average rank
for f1 − f7

2.71 6.28 6.57 5.00 6.28 1.85 1.57 2.14

Final rank for
f1 − f7

4 6 8 5 6 2 1 3

Table 12: Results on benchmark functions f8–f13.

Metrics TLBO SSA SCA WOA BOA LSHADE LSHADE-c DLGWO

f8

Mean − 7.24E+ 03 − 7.80E+ 03 − 6.40E+ 03 − 1.23E+ 04 − 7.06E+ 03 − 7.95E+ 03 − 7.22E+ 03 − 8.29E+ 03
SD 6.11E+ 02 1.01E+ 03 1.74E+ 02 3.41E+ 02 3.29E+ 02 6.78E+ 02 5.22E+ 02 9.02E+ 02
Rank 5 4 8 1 7 3 6 2

f9

Mean 5.55E+ 00 5.17E+ 01 0.00E+ 00 0.00E+ 00 1.80E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 2.26E − 01 2.15E+ 01 0.00E+ 00 0.00E+ 00 1.09E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 6 7 1 1 8 1 1 1

f10

Mean 5.62E − 15 1.69E+ 00 7.99E − 15 2.66E − 15 1.96E+ 01 8.88E − 16 8.88E − 16 4.64E − 15
SD 2.05E − 15 7.71E − 01 7.20E − 15 2.05E − 15 6.23E − 01 3.49E − 16 2.02E − 16 1.58E − 15
Rank 5 7 6 3 8 2 1 4

f11

Mean 0.00E+ 00 1.14E − 02 0.00E+ 00 0.00E+ 00 8.57E − 11 0.00E+ 00 0.00E+ 00 0.00E+ 00
SD 0.00E+ 00 2.83E − 03 0.00E+ 00 0.00E+ 00 2.84E − 11 0.00E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 8 1 1 7 1 1 1

f12

Mean 2.45E − 24 1.73E − 01 3.24E − 01 1.12E − 06 1.10E − 01 2.21E − 08 9.26E − 09 1.79E − 08
SD 3.77E − 24 2.99E − 01 1.87E − 01 1.03E − 07 6.29E − 02 7.55E − 08 8.24E − 10 4.81E − 09
Rank 1 7 8 5 6 4 2 3

f13

Mean 8.37E − 02 1.09E − 10 2.06E+ 00 1.23E − 05 1.85E+ 00 8.89E − 07 1.62E − 10 2.40E − 07
SD 7.45E − 02 3.82E − 11 1.05E − 01 5.28E − 06 4.43E − 01 4.55E − 08 2.34E − 10 7.22E − 08
Rank 6 1 8 5 7 4 2 3

Average rank
for f8 − f13

4.00 5.67 5.33 2.66 7.17 2.50 2.17 2.33

Final rank for
f8 − f13

5 7 6 4 8 3 1 2
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Table 13: Results on benchmark functions f14–f23.

Metrics TLBO SSA SCA WOA BOA LSHADE LSHADE-c DLGWO

f14

Mean 1.02E+ 00 9.98E − 01 9.98E − 01 3.43E+ 00 1.24E+ 00 1.01E+ 00 9.98E − 01 9.98E − 01
SD 6.21E − 01 1.35E − 16 4.30E − 09 4.88E+ 00 4.97E − 01 4.12E − 01 2.24E − 15 3.78E − 13
Rank 6 1 4 8 7 5 2 3

f15

Mean 7.42E − 04 1.22E − 03 3.19E − 04 3.14E − 04 3.09E − 04 4.85E − 05 2.11E − 07 3.10E − 04
SD 3.81E − 04 2.64E − 16 9.75E − 06 1.08E − 05 1.30E − 06 2.21E − 05 6.44E − 07 3.41E − 10
Rank 7 8 6 5 3 2 1 4

f16

Mean − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00
SD 0.00E+ 00 2.71E − 16 1.09E − 06 2.87E − 15 3.32E − 15 2.11E − 09 9.84E − 10 1.03E − 11
Rank 1 2 8 3 4 7 6 5

f17

Mean 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01
SD 0.00E+ 00 0.00E+ 00 1.16E − 05 2.27E − 10 5.06E − 05 2.44E − 09 7.11E − 10 8.29E − 10
Rank 1 1 7 3 8 6 4 5

f18

Mean 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00
SD 1.33E − 15 7.14E − 15 2.62E − 07 4.09E − 09 2.67E − 05 0.00E+ 00 0.00E+ 00 5.72E − 10
Rank 3 4 7 6 8 1 1 5

f19

Mean − 3.86E+ 00 − 3.86E+ 00 − 3.85E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00
SD 0.00E+ 00 4.44E − 16 6.99E − 05 3.94E − 03 6.82E − 03 5.45E − 08 2.72E − 06 9.86E − 08
Rank 1 2 6 7 8 3 5 4

f20

Mean − 3.22E+ 00 − 3.20E+ 00 − 2.98E+ 00 − 3.29E+ 00 − 3.27E+ 00 − 3.30E+ 00 − 3.27E+ 00 − 3.28E+ 00
SD 1.55E − 02 3.87E − 12 3.97E − 01 5.98E − 02 1.55E − 10 1.04E − 10 2.55E − 08 5.81E − 02
Rank 6 7 8 2 4 1 5 3

f21

Mean − 9.35E+ 00 − 9.66E+ 00 − 8.92E+ 00 − 1.01E+ 01 − 7.49E+ 00 − 9.94E+ 00 − 1.01E+ 01 − 1.01E+ 01
SD 4.32E+ 00 4.06E+ 00 2.03E+ 00 4.55E − 07 1.26E+ 00 3.11E − 06 4.15E − 05 6.27E − 07
Rank 6 5 7 1 8 4 3 2

f22

Mean − 9.64E+ 00 − 9.53E+ 00 − 7.03E+ 00 − 1.02E+ 01 − 8.97E+ 00 − 1.02E+ 00 − 9.99E+ 00 − 1.04E+E+ 01
SD 1.77E+ 00 1.09E+ 00 1.71E+ 00 4.80E − 07 2.04E+ 00 2.85E − 07 5.62E − 05 7.71E − 07
Rank 5 6 8 3 7 2 4 1

f23

Mean − 1.02E+ 00 − 9.56E+ 00 − 9.98E+ 00 − 1.02E+ 01 − 7.28E+ 00 − 1.02E+ 00 − 1.02E+ 00 − 1.05E+ 01
SD 1.85E+ 00 2.62E+ 00 1.56E+ 00 6.45E − 07 1.43E+ 00 1.92E+ 00 1.15E+ 00 2.02E − 07
Rank 4 7 6 2 8 5 3 1

Average rank
for f14 − f23

4.00 4.30 6.70 4.00 6.50 3.60 3.40 3.30

Final rank for
f14 − f23

4 6 8 4 7 3 2 1

Table 14: Wilcoxon rank-sum test on benchmark functions.

DLGWO vs. TLBO SSA SCA WOA BOA LSHADE LSHADE-c
p p p p p p p

f1 NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈ NaN ≈
f2 NaN ≈ 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + NaN ≈ NaN ≈ NaN ≈
f3 4.62E − 10 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + 1.21E − 12 + 2.24E − 11 − 2.24E − 11 −

f4 2.20E − 09 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 +

f5 1.05E − 04 + 3.02E − 11 + 4.01E − 09 + 7.44E − 09 + 2.52E − 03 + 3.02E − 11 − 3.02E − 11 −

7.39E − 09 − 5.44E − 07 − 3.02E − 11 + 1.89E − 03 + 3.02E − 11 + 3.02E − 11 − 3.02E − 11 −

f7 4.52E − 02 ≈ 3.02E − 11 + 3.02E − 11 + 1.09E − 03 + 3.02E − 11 + 1.43E − 03 + 7.01E − 02 ≈
f8 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 3.02E − 11 − 3.02E − 11 + 3.02E − 11 + 3.02E − 11 +

f9 1.21E − 12 + 1.21E − 12 + NaN ≈ NaN ≈ 1.21E − 12 + NaN ≈ NaN ≈
f10 3.02E − 11 + 3.02E − 11 + 3.02E − 11 + 8.22E − 07 − 3.02E − 11 + 9.22E − 09 − 9.22E − 09 −

f11 NaN ≈ 1.21E − 12 + NaN ≈ NaN ≈ 1.62E − 02 ≈ NaN ≈ NaN ≈
f12 3.02E − 11 − 3.02E − 11 + 3.02E − 11 + 2.26E − 04 + 3.02E − 11 + 4.89E − 02 ≈ 2.72E − 02 ≈
f13 5.79E − 06 + 8.56E − 04 − 2.42E − 09 + 3.48E − 04 + 3.57E − 09 + 1.37E − 01 ≈ 8.79E − 04 −

f14 2.05E − 07 + 6.55E − 06 − 4.72E − 04 + 4.64E − 09 + 1.35E − 08 + 3.18E − 07 + 2.14E − 04 −

f15 1.55E − 03 + 3.04E − 05 + 6.85E − 02 ≈ 5.36E − 02 ≈ 2.90E − 01 ≈ 2.83E − 02 ≈ 1.28E − 03 −

f16 3.02E − 11 − 6.55E − 10 − 3.75E − 07 + 7.20E − 10 − 8.11E − 10 − 2.61E − 04 + 1.22E − 03 +

f17 1.21E − 12 − 1.21E − 12 − 5.07E − 06 + 4.29E − 02 ≈ 4.10E − 06 + 1.22E − 02 ≈ 5.74E − 02 ≈
f18 4.24E − 07 − 2.27E − 06 − 7.02E − 04 + 1.74E − 02 ≈ 6.62E − 06 + 3.02E − 11 − 3.02E − 11 −

f19 3.02E − 11 − 4.40E − 08 − 6.76E − 05 + 1.11E − 06 + 6.87E − 07 + 4.50E − 01 ≈ 4.08E − 03 +

f20 1.49E − 04 + 5.84E − 05 + 4.05E − 05 + 2.87E − 04 − 4.63E − 03 + 1.32E − 06 − 1.12E − 03 +

f21 6.00E − 07 + 4.77E − 06 + 3.02E − 11 + 2.13E − 01 ≈ 3.02E − 11 + 5.91E − 03 + 5.24E − 01 ≈
f22 6.84E − 05 + 1.70E − 05 + 1.63E − 07 + 1.66E − 03 + 6.77E − 06 + 2.90E − 02 ≈ 7.40E − 04 +

f23 3.36E − 04 + 2.58E − 06 + 4.22E − 06 + 8.02E − 03 + 1.09E − 10 + 2.60E − 04 + 5.72E − 04 +
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course and has a strong ability to resist the trapping of local
optima. By contrast, WOA, SSA, SCA, and BOA suffer from
the immature stagnation. With regard to f9, DLGWO has the
fastest convergence speed and achieves the global optimum at a
very early stage of the iterations. On f10, the convergence

accuracy of the DLGWO is slightly lower than that of
LSHADE-cnEpSin and LSHADE, but DLGWOhas the second
fastest convergence rate, only inferior to TLBO. From the above
analysis, DLGWO is effective with regard to convergence
accuracy and speed compared with other metaheuristics.

Table 15: Statistical results of the Wilcoxon rank-sum test.

DLGWO vs. f1–f7 f8–f13 f14–f23 Sum

Wilcoxon’s rank-sum test (+/ ≈ /− )

TLBO 3/3/1 4/1/1 6/0/4 13/4/6
SSA 5/1/1 5/0/1 5/0/5 15/1/7
SCA 6/1/0 4/2/0 9/1/0 19/4/0
WOA 6/1/0 2/2/2 4/4/2 12/7/4
BOA 5/2/0 5/1/0 8/1/1 18/4/1

LSHADE 2/2/3 1/4/1 4/4/2 7/10/6
LSHADE-cnEpSin 1/3/3 1/3/2 5/2/3 7/8/8
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Figure 11: Convergence behavior on test functions.

Computational Intelligence and Neuroscience 25



6. DLGWO for Real-World
Optimization Problems

In this section, the proposed DLGWO is implemented on
three classical engineering optimization problems, tension/
compression spring design, welded beam design, and
pressure vessel design, to verify its performance in solving
real-world problems. )ese three problems are often
employed as classical constrained optimization problems
[60, 61]. For a fair comparison, the experiments on the
DLGWO and the other optimizers mentioned above are
conducted on the same platform based on 30 independent
executions with 40 search agents and 100000 function
evaluations.

6.1. Tension/Compression Spring Design. )is is a well-
known optimization problem. )e structure of a tension/
compression spring is shown in Figure 12.)e objective is to
find the minimum weight of a spring with constraints on

shear stress, surge frequency, and minimum deflection.
)ree decision variables are involved in the problem: wire
diameter (d), mean coil diameter (D), and active coil
number (N).

)e mathematical formulation of this problem is as
follows:

Consider x1, x2, x3􏼂 􏼃 � [d, D, N]

Minimize f(x) � x
2
1x2 x3 + 2( 􏼁

subject to g1(x) � 1 −
x
3
2x3

71785x
4
1
≤ 0

g2(x) �
1

5108x
2
1

+
4x

2
2 − x1x2

12566 x
3
1x2 − x

4
1􏼐 􏼑

− 1≤ 0

g3(x) � 1 −
140.45x1

x
2
2x3
≤ 0

g4(x) �
x1 + x2

1.5
− 1≤ 0

Range of variables : 0.05≤x1 ≤ 2

0.25≤ x2 ≤ 1.3

2≤ x3 ≤ 15

. (17)

)e numerical results obtained by the DLGWO are
compared with other optimization algorithms such as GWO,
learnGWO, GSA, SCA, MVO, HHO, and LSHADE, and the
comparison results are listed in Table 16. As shown in Ta-
ble 16, the minimum weight for the compression/tension
spring is achieved by LSHADE. Although the DLGWO is
inferior to LSHADE, it is the second best optimizer for the
compression/tension spring problem with a promising
optimization performance.

6.2. Welded Beam Design. )e goal of this problem is to
obtain the minimum cost of the welded beam subject to
constraints including bending stress (σ), shear stress (τ),
buckling load (Pc), beam deflection (δ), and other side
constraints. )e four design variables related to the
problem are weld thickness (h), length of the beam attached
to the weld (l), height of the beam (t), and thickness of the
beam (b). )e schematic of this problem is illustrated in
Figure 13.

d

D

Figure 12: Tension-compression spring.
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)is problem can be mathematically expressed as
follows:

Consider y1, y2, y3, y4􏼂 􏼃 � [h, l, t, b]

Minimize f(y) � 1.10471y
2
1y2 + 0.0481y3y4 14.0 + y2( 􏼁

subject to g1(y) � τ(y) − τmax ≤ 0

g2(y) � σ(y) − σmax ≤ 0

g3(y) � y1 − y4 ≤ 0

g4(y) � δ(y) − δmax ≤ 0

g5(y) � P − Pc(y)≤ 0

g6(y) � 0.125 − y1 ≤ 0

g7(y) � 1.10471y
2
1 + 0.04811y3y4 14.0 + y2( 􏼁 − 5.0≤ 0

Range of variables : 0.1≤y1 ≤ 2

0.1≤y2 ≤ 10

0.1≤y3 ≤ 10

0.1≤y4 ≤ 2

. (18)

Table 17 gives the numerical results obtained by the
DLGWO and the other methods such as GWO,
RWGWO, MFO, KH, BOA, SSA, MPA, and JADE. As

demonstrated by Table 17, the minimum weight for
the welded beam design problem is obtained by the
DLGWO.

Table 16: Comparison results on the spring design problem.

Algorithms x1 x2 x3 Optimal cost

DLGWO 0.051260 0.346480 11.916330 0.012670
GWO [25] 0.050149 0.320762 13.757132 0.012711
learnGWO [50] 0.050365 0.325661 13.376170 0.012702
GSA [62] 0.050005 0.317518 14.023225 0.012722
SCA [21] 0.055355 0.451498 7.323204 0.012898
MVO [63] 0.050001 0.317402 14.032308 0.012721
WOA [22] 0.054637 0.431879 7.941518 0.012817
HHO [24] 0.052201 0.369155 10.595956 0.012671
LSHADE [57] 0.051700 0.356979 11.274151 0.012667

l

h

t

b

Figure 13: Welded beam design.
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6.3. Pressure Vessel Design Problem. )e pressure vessel
design problem was proposed by Kannan and Kramer [68],
and the goal of this problem is to obtain the minimum cost
of a columnar vessel, which is shown in Figure 14.

)e design variables are the thickness of the ball (Th),
shell thickness (Ts), shell length (l), and inside radius (R).
)e mathematical model can be expressed as follows:

Consider z1, z2, z3, z4􏼂 􏼃 � Ts, Th, R, l􏼂 􏼃

Minimize f(z) � 0.6224z1z3z4 + 1.7881z2z
2
3 + 3.1661z

2
1z4 + 19.84z

2
1z3

subject to g1(z) � − z1 + 0.0193z3 ≤ 0

g2(z) � − z2 + 0.00954z3 ≤ 0

g3(z) � − πz
2
3z4 −

4
3
πz

3
3 + 1296000≤ 0

g4(z) � z4 − 240≤ 0

Range of variables : 0≤ z1 ≤ 100

0≤ z2 ≤ 100

10≤ z3 ≤ 200

10≤ z4 ≤ 200

. (19)

Table 17: Comparison results on the welded beam problem.

Algorithms y1 y2 y3 y4 Optimal cost

DLGWO 0.205729 3.470489 9.036624 0.205729 1.724853
GWO [25] 0.205709 3.469307 9.040968 0.205712 1.725276
RWGWO [39] 0.205519 3.475426 9.036760 0.205753 1.725179
MFO [64] 0.205727 3.470552 9.036614 0.205731 1.724861
KH [65] 0.203720 3.530723 9.036809 0.205838 1.730702
BOA [23] 0.205674 3.474845 9.036501 0.205744 1.725452
SSA [20] 0.204800 3.491382 9.039175 0.205724 1.726626
MPA [66] 0.205666 3.473276 9.041017 0.205726 1.725866
JADE [67] 0.205728 3.470518 9.036617 0.205730 1.724858

R

ThTs

L

Figure 14: Pressure vessel design problem.
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)e optimization results for the pressure vessel design
problem are listed in Table 18. )e compared algorithms are
GWO, EEGWO, CMA-ES, TSO, CSA, EO, TLBO, and DA.
From Table 18, DLGWO can provide an excellent parameter
design plan with lower cost compared to other algorithms.

7. Conclusion

)is paper introduces DLS into the leading hierarchy of the
GWO algorithm. During the process of the DLS, the delta
wolf learns from the corresponding dimensions of both
alpha and beta wolves to construct an exemplar wolf. Instead
of learning from the three dominant wolves in each iteration,
the search agents learn from the exemplar wolf which is
composed of the excellent information learned from the
three dominant wolves. )is improves the efficiency of
utilizing the population information of the GWO.Moreover,
the Levy flight is adopted to reinforce the global exploration
ability. Based on these two strategies, the DLGWO algorithm
is proposed. To verify the validity of the proposed method
for solving global optimization problems, DLGWO is
compared with some variants of the GWO and some other
metaheuristics based on 23 widely utilized benchmark
functions. )e experimental results of the benchmark
functions manifest that the DLGWO exhibits a promising
search performance and has a good balance between ex-
ploitation and exploration. Furthermore, DLGWO is
implemented into three engineering problems, and the
statistical results verify that the proposed DLGWO is an
efficient and stable optimization method.
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