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Winter wheat is one of the most important food products. Increasing food demand and limited land resources have forced the
development of agricultural production to be more re�ned and e�cient. �e most important part of agricultural production is
sowing. With the promotion of precision agriculture, precision seeding has become the main component of modern agricultural
seeding technology system, and the adoption of precision seeding technology is an important means of large-scale production and
cost saving and e�ciency enhancement. However, the current sowing technology and sowing equipment cannot meet the
requirements of wheat sowing accuracy. In this context, a di�erential perturbation particle swarm optimization (DPPSO) al-
gorithm is proposed by embedding di�erential perturbation into particle swarm optimization, which shows fast convergence
speed and good global performance. After that the DPPSO is used to optimize the convolutional neural network (CNN) to build
an optimized CNN (DPPSO-CNN)model and applied to the �eld of crops �ne sowing. Finally, the experimental results show that
the proposed method not only has a faster convergence rate but also achieves better wheat seeding performance. �e research of
this paper an e�ectively improves the accuracy and uniformity of wheat seeding and lay a foundation for improving wheat yield
per unit area and promotes the intelligent development of agriculture in the future.

1. Introduction

Food security is an important strategic issue concerning
China’s economic development and social stability. As a
country with a large population in the world, China
should attach great importance to food security at all
times [1, 2]. Since the beginning of the new century, the
central government has successively issued no. 1 docu-
ments, which have made great achievements in agricul-
ture and rural areas. In 2020, China's grain and other
agricultural products will have a bumper harvest, and the
total grain output will reach 1,339 billion Jin. At the same
time, it is very di�cult for farmers to feed their families
only by growing grain without relying on sideline work or
migrant work, and a large number of agricultural labor
force has �ooded into the cities, and China’s food security
depends on the left-behind people who struggle to make a
living by growing grain, and it is increasingly unsus-
tainable [3, 4].

China is a big agricultural country, and wheat is one of
the most important grain crops in China. �e population
whose staple food is wheat accounts for about 1/3 of the
world’s total population.�erefore, ensuring high and stable
wheat yield is of great signi�cance to food security. Agri-
cultural production is a necessary condition for the survival
and development of human society, closely related to social
stability and economic development, and is the most im-
portant social production activities of human beings [5].�e
development of wheat industry is directly related to food
safety and social stability in China. �e annual consumption
of wheat products accounts for about 20% of the total food
consumption in China [6].

As the key link of wheat production, sowing a�ects the
growth and development of wheat, and ultimately a�ects the
yield of wheat [7]. In the process of wheat production, there
are mechanical drill sowing, broadcast sowing, and set
sowing, etc. In the actual production, due to the contra-
diction between rice–wheat rotation system and wheat
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seeding in South China, the production is mainly based on
artificial broadcast sowing and extensive management,
which increases the yield of wheat. Strengthening the re-
search on new variety breeding and cultivation technology
has a significant impact on the development of wheat
productivity. )e first is the success of wheat breeding, and
the corresponding wheat breeding agronomy needs corre-
sponding farming tools. Second, uniform plant distribution
will increase the yield, which indicates the direction for the
study of precision seeding in a plot. Precision sowing needs
to be applied to the original seed quantity, quality, and other
indicators to control, so as to complete the control of seeding
quantity and quality to achieve the purpose of precision
sowing [8]. Precision seeding device can complete the
precise seeding process, but precision seeding is a complex
organic combination, including the precise control of
seeding depth and seeding position. Although the consis-
tency of seeding depth can be achieved by seeding machine,
the cost is too high. To sum up, precision sowing is the result
of multiple factors, and a single analysis of seed metering
device is not comprehensive. )erefore, it is necessary to
combine machine-learning methods to increase the de-
scription of iodine excess in the sowing process, which is of
great significance to promote precision sowing.

Compared with western developed countries, China’s
wheat production mode is relatively backward, mainly in the
traditional way of planting, sowing, and fertilization
according to artificial experience [9]. Planting closely can
lead to crowding of crop seedlings and insufficient light, thus
increasing the labor density. . Too little sowing will lead to
inadequate land use and affect crop yield. )erefore, the
realization of precision sowing and application of crops and
the promotion of precision agriculture are not only of great
significance to improve crop yield and reduce production
costs, but also imperative. Precision agriculture is a modern
agricultural production system based on modern informa-
tion and space technology, which is based on remote sensing
technology, geographic information system, and global
positioning system to achieve precise agricultural operations
[10, 11]. According to the specific conditions of each unit
inside the farmland area, the soil nutrition information and
the spatial status of productivity, the rational use of crop
input determine the production target.

At present, the acquisition of crop growth information
technology with high accuracy, high speed, high density, and
low cost is still the biggest obstacle to the implementation of
precision agriculture [12]. )e traditional method of field
sampling is to understand wheat-sowing situation, but due
to the large manpower and material resources consumption
of sampling and experiment, the amount of information
collection and sampling cost is contradictory. Traditional
precision agriculture variable implementation to obtain
target data time-consuming, high cost, and time lag, cannot
reflect the real-time sowing of wheat. Deep learning tech-
nology can provide timely information for agricultural
production decision-making and management and provide
new approaches and methods for crop growth, quality, and
yield monitoring and regional management. Deep learning
technology is an important means to collect physical and

chemical data of ground objects and their spatio-temporal
change information [13, 14]. It has been widely used, es-
pecially with the development of hyperspectral remote
sensing technology. Because it can measure the main in-
formation needed for wheat seeding and fully display its
growth characteristics, it can obtain more abundant infor-
mation than the conventional method, so as to realize the
fine monitoring of wheat seeding. To sum up, wheat fine
sowing benefits the country and the people, and the de-
velopment of deep learning brings convenience to the
evaluation and analysis of seeding effect. On this basis, it is of
great significance to analyze wheat growth and spatial
variation [15].

2. Related Work

)e water consumption of wheat from sowing to over-
wintering was mainly distributed in the shallow soil layer of
60 cm. )e water-consuming layer moved from shallow
layer to deep layer as the temperature increased from rising
stage to mature stage. )e water use efficiency decreased
with the increase of planting density. If the sowing rate is too
high or too low, the soil water storage in the early stage will
be overused and the water consumption of winter wheat will
be reduced throughout the growth period [16, 17]. If the
amount of sowing, the number of basic seedlings in the early
stage, and the total tiller number and leaf area index were
large too large, then all these factors lead to the decrease of
leaf area in the middle and late stage than that in the low
sowing. When the amount is small, the population per unit
area is insufficient, resulting in low dry matter quality. )e
tillering capacity and material production capacity of wheat
decreased when the amount of sowing was large, and finally
the grain quality decreased [18].

With the increase of sowing amount, the number of
grains per spike and 1000-grain weight of wheat decreased
gradually over the small sowing amount, while the number
of ears increased gradually with the sowing amount, and the
number of ears was the highest under the large sowing
amount. Under the condition of high sowing amount, the
yield did not increase but decreased slightly with increasing
sowing amount. )e main effect of sowing rate on yield was
panicle number, followed by grain number per panicle and
1000-grain weight. Increasing sowing amount could effec-
tively increase panicle number, but grain number per panicle
weight decreased, and the positive effect of increasing
panicle number was greater than the negative effect of de-
creasing grain number per panicle weight. Nitrogen ab-
sorption efficiency and nitrogen production efficiency
increased with the increase of sowing amount. With the
increase of planting density, the assimilate transport de-
creased before anthesis, but the accumulation of assimilate
and its contribution rate to grain increased after anthesis due
to the influence of soil moisture and sunlight, and finally
increased protein content. Medium and low sowing rate can
not only increase the yield but also significantly increase the
content of starch and protein in grain, so that the grain yield
and quality can be improved synchronously. Suitable me-
dium sowing amount could increase protein content at
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maturity stage, and before the suitable sowing amount,
protein content gradually increased with the increase of
sowing amount and decreased when the suitable sowing
amount exceeded [19, 20].

)e appearance characteristics of granular fertilizer and
wheat seed are similar, so the existing control system of
granular fertilizer application amount has important ref-
erence significance to the research and development of
wheat seeding amount control system. It can be seen from
the current situation of foreign research that some seeding
quantity control systems are still controlled by open-loop
system, and even closed-loop system is controlled by indirect
seeding quantity. In actual sowing operations, there is no
breakthrough in the technology of accurate monitoring of
large flow sowing quantity of wheat [21]. )erefore, in the
process of literature research, there is no sowing quantity
control system that can feedback the actual sowing quantity.
)rough the literature review, it can be seen that the do-
mestic seeding quantity control system is mainly an open-
loop system. If the friction between the seeding shaft and the
machine and tools is large or there is an installation error,
there is an error between the rotation speed of the seeding
shaft and its theoretical value, and the rotation speed of the
seeding shaft is not uniform within one week which will
seriously affect the accuracy of seeding uniformity and
seeding amount [22].

According to domestic and foreign practical experience,
the advanced agricultural technology depends on the
progress of agricultural production machinery. )e current
pattern of wheat precision sowing in China is also the most
recognized by farmers [23, 24]. After that, the speed of seed
wheel is controlled by the intelligent speed regulation sys-
tem, so as to achieve uniform sowing of wheat seed. In this
process, it is often necessary to have a fixed power source to
provide power for the seed feeder, and the common power
source is the ground wheel. However, due to the special
properties of ground wheel drive, it has certain requirements
on the size of seed besides the loss of seed and ridging, and
only the wheat seeds that meet the requirements can be
precisely sown. In particular, the poor stability of the power
source has always limited the accuracy of seeding, so it is
easy to form the instability of plant spacing, and serious
shortcomings will also appear in ridging and lumps of
seedlings. In the actual production process, due to the
consideration of cost, the intelligent precision control sys-
tem of this type of seeder is often missing, resulting in the
adjustment of seeding quantity that is not accurate and
cannot meet the most basic precision seeding requirements.
At present, air-suction seeder is mainly oriented to large
seeds, such as beans, cotton, which is generally economic
crops and mainly applied to corn in the field of food crops
[25, 26]. However, because wheat belongs to small seeds, air-
suction seeder is not suitable for large seeds, and the existing
small-seed seeder is mainly used for rapeseed, pepper, and
other cash crops, so the type and number of air-suction
seeder suitable for wheat are not very common.

)e research on precision sowing in agricultural de-
veloped countries abroad is earlier, which can be traced back
to the middle of the last century. Precision sowing can not

only save seeds but also improve the quality of sowing, thus
playing an important role in improving crop yield. )ere-
fore, precision sowing has become the development trend of
the sowing industry once it came into being. )e same type
of precision planter is divided into different series to meet
the requirements of different rows, spacing, and traction
power. For example, the NCmodel of MONOSEM precision
planter in the United States can realize 4–12 rows of si-
multaneous seeding. )e spacing between rows is 35–80 cm
and can realize the simultaneous sowing of 6–24 rows. )e
line spacing is 45–50 cm, and different types of fine seeding
machine can meet the requirements of different ground
conditions, soil conditions, and crops by replacing different
structures or specifications of the working parts. Precision
seeding is divided into mechanical type and pneumatic type.
Compared with mechanical type, pneumatic type seed
metering device pushes the seeds forward by the force of
airflow [27, 28]. It has the advantages of fast seed dividing
speed and noninjury and can realize the sowing of different
seeds through the replacement of the seed metering plate,
with high versatility. In the 1980s, the agricultural developed
countries represented by the United States focused their
attention on the research of pneumatic precision seeder, and
it has been widely used. With the development of research,
many modern technologies have been applied to precision
seeding machines. In the 1990s, Japan developed a seeder
that could be controlled by solenoid valve and developed an
electronically controlled precision seeder. )e precision
seeder has high precision and can control the amount of
seeding in real time, which greatly improves the sowing
efficiency. )is study not only broadens the research idea for
the researchers of wheat fine seeding but also has great
significance for the development of wheat industry, since the
CNN model proposed in this paper is a typically deep
learning model, and it can effectively deal with big data
situations. )e main contributions of this paper are the
following:

(1) DPPSO-CNN is applied in the field of fine sowing of
crops for the first time in this paper.

(2) )e method in this paper not only has solid theo-
retical foundation but also has broad application
prospect.

3. Optimized CNN for Fine Sowing of Crops

3.1. Deep CNN Model Introduction. In recent years, CNN
model is often used to solve complex image recognition
problems [29, 30]. Based on the traditional full-connection
layer neural network, CNN adds convolution layer and
pooling layer to form the deep CNN model, which is shown
in Figure 1. As Figure 1 only shows the schematic diagram of
CNN algorithm in this paper, it is impossible to know how
many convolutional layers and pooling layers there are. In
the algorithm of this paper, we set two layers of pooling layer
and two layers of convolution layer, respectively.

)e function of the convolution layer lies in the ex-
traction of image features. )e essence of the convolution
kernel is a filter matrix, which can produce many different
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effects on the original image. )e calculation process of
convolution is as shown in equation (1):

CONV(ij) � 􏽘
m−1

i

􏽘

n−1

j

uij × w + b

(i � 1, 2, . . . , m − 1; j � 1, 2, . . . , n − 1),

(1)

where, uij is the input image, m and n are the sizes of the
input image, w is the size of the convolution kernel, and b is
the bias constant of the convolution kernel. CONV(ij) is the
characteristic graph output after convolution operation.

CNN adds an activation function layer to the network and
analyzes the model better by adopting the feature mapping
method of nonlinear function. )en, the mathematical ex-
pression of common activation function is introduced one by
one. )e mathematical expression of sigmoid function is

f(x) �
1

1 + e
− x. (2)

Since formula (1) is an almost function, the value range
of its independent variables is the whole real number, and
the range of its dependent variables is [−1,1]. )e mathe-
matical expression of tanh function is

f(x) �
e

x
− e

− x

e
x

+ e
−x . (3)

)e mathematical expression of ReLu function is

f(x) � max(0, x). (4)

)e full name of ReLU function is rectified linear unit.
)e function is one of the commonly used activation
functions, which are characterized by low-computational
complexity and no exponential operation. However, it is
worth explaining that ReLU function has certain defects in
the calculation process. When the data passes through the
negative range of ReLU function, the output value is equal to
0. )e Leaky–ReLu function can solve the above problem.

f(x) �
x, x≥ 0,

αx, x< 0.
􏼨 (5)

)erefore, the efficiency of the entire network operation
can be improved to a certain extent. )e corresponding
equations of Sig and Tanh are as follows:

sig(x) �
1

1 + exp(−x)
,

tanh(x) �
exp(x) − exp(−x)

exp(x) + exp(−x)
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)
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.

(7)

)e output layer adopts softmax function to normalize,
and the probability value in the corresponding category is
shown in equation (7). In the classification tasks, i is the
cross entropy (CE) loss function that is often used to
evaluate the gap between predicted value and true value.
)e CE formula is as follows:

loss � −
1
m

􏽘

m

j�1
􏽘

n

i�1
yjilog 􏽢yji􏼐 􏼑, (8)

where 􏽢yji is the predicted value and yji is the real value.
)e error calculated from the CE function needs to be
calculated by back propagation, so as to realize the newer
back propagation of model parameters. )e original
form of the gradient descent method is shown in
equation (9):

θ ≔ � θ − α
z

zθ
J(θ). (9)

In the experiments in the following sections, this paper
also verifies that the use of Adam has faster convergence
than SGD.)emathematical expression of a commonAdam
optimizer is given as follows:

Input and Convolution Pooling Pooling Fully
connectedConvolution

Figure 1: )e typical schematic diagram of CNN.
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mt � β1mt−1 + 1 − β1( 􏼁gt,

vt � β2vt−1 + 1 − β2( 􏼁g
2
t .

(10)

)erefore, the updating rule of gradient descent is as
follows:

θt+1 � θt −
α

�����
vt + ϵ√ mt. (11)

3.2. Optimized CNN Model. It is worth noting that differ-
ential perturbation is used in this paper to optimize the CNN
model, but other optimization algorithms are feasible in this
theory, but they are not optimal choices. Particle swarm
optimization (PSO) is simple and easy to solve, but it is
prone to local extreme points, low accuracy, slow conver-
gence, and stagnation. In this section, the differential per-
turbation is introduced into the PSO to form the differential
perturbation particle swarm optimization (DPPSO) algo-
rithm, which makes use of the advantages of fast conver-
gence speed and good global performance of difference,
overcomes the shortcomings of low precision and local
optimal caused by PSO, and builds an optimized CNN
model. )e multiobjective optimization model is

minf1 x1, x2( 􏼁,

maxf2 x1, x2( 􏼁.
(12)

s.t.

p1 <g1 x1, x2( 􏼁< q1,

p2 <g2 x1, x2( 􏼁< q2,

p3 <g3 x1, x2( 􏼁< q3,

p4 <g4 x1, x2( 􏼁< q4.

(13)

and

120< x1 < 180,

120< x2 < 180,
(14)

where f1 represents energy consumption target, f2 repre-
sents the output target g_ 1{ }, g_ 2{ }, g_ 3{ }, g_ 4{ }g1(x1, x2),
g2(x1, x2), g3(x1, x2), g4(x1, x2) represent the packaging
quality of four indicators: crushing strength, wear strength,
drop strength, compressive strength, respectively. It is worth
noting that the DPPSO algorithm used in this paper optimizes
network parameters to obtain better model performance.

Based on the above discussions, the optimized deep
neural network and its application in fine sowing of crops is
shown in Figure 2. It mainly includes data preprocessing,
CNN model training, and parameter optimization based on
DPPSO model, and finally obtains the optimal model
performance.

4. Experimental Results and Analysis

4.1. Experimental Data Introduction. )is area belonged to
semiarid and semihumid winter wheat growing. )e ex-
perimental site was a hilly dry land with an average annual

rainfall of about 450mm. )e test field was flat and has one
cropping system in a year, and the soil was medium alkaline
clay loam. )e water storage in the test area was mainly
natural precipitation, which was concentrated in October
and November of 2019.)e experimental variety Linfeng no.
3 was provided by the County Agricultural Committee. )e
experiment used a two-factor experimental design. Furrow
sowing (FS) was the main sowing area, and furrow sowing
(FS), wide drilling sowing (WDS), and conventional drilling
sowing (CDS) were the main sowing methods.

In addition, this study referred to the following data
sources: China Rural Statistical Yearbook (1998–2019),
China Statistical Yearbook (19982020), and National Agri-
cultural Product Cost–Benefit Data Collection (1998–2020).
Excel 2019 software and DPS7.05 software were used for
statistical collation of data, Excel 2019 software was used for
plotting, and least significant difference (LSD) method was
used for significance test of difference, reaching significance
level a� 0.05.

4.2. Experimental Results Analysis. In order to demonstrate
the universality of the proposed method, change curves of
different activation functions of CNN model are presented
in Figure 3. )ey all have the following common charac-
teristics: (1) differentiability: this property is a prerequisite
when using gradient-based optimization algorithms to op-
timize models. (2) Monotonicity: when the activation
function meets the monotonicity, the single-layer network is
guaranteed to be convex so that the subsequent convex
optimization operations can be carried out. But in this case,

Multi-source seeding
data

Data
normalization

Outlier
elimination

Max-Min method Dixon criterion

Initial position
Differential
evolution
strategy

Parameter optimization
by DPPSO

Output:
seeding

performance

CNN training

Input layer Hideen layer
Differential
evolution
strategy

Optimize model performance and
seeding results

Reaches the maximum number of iterations

Yes

No

Figure 2: )e framework of the proposed method in this paper.
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the learning rate usually needs to be set to a small value,
which inevitably increases the training time.

In order to verify the training performance of the
model, different parameter updating methods are pre-
sented, as shown in Figure 4. )e left is the batch gradient
descent (BGD) algorithm, which refers to the calculation
error every time, the gradient is obtained by the same
batch as a whole, and the parameters are constantly
updated until the error is zero or within the allowed range.
)e right is the stochastic gradient descent (SGD) algo-
rithm, which means that the training of each sample is
updated once, and the data order needs to be shuffled
before each cycle. From Figure 4, we know that a big
problem of BGD is that the whole data set needs to be
scanned in each iteration of gradient calculation. )ere-
fore, when the data volume is large, it inevitably leads to a
large amount of calculation and low efficiency, while SGD
only needs to take one sample point in each iteration of
gradient calculation, so it has computational advantages.
Second, since the gradient calculated by SGD is very
different from the real negative gradient, it is not very
stable, which also explains one of the advantages of SGD,
which can jump out of the local optimal solution, so as to
find the real global optimal solution. )is is especially
important in deep learning, where objective functions
tend to be nonconvex. In conclusion, SGD model not only
runs faster than BGD model in training time. In addition,
SGD model solves the problem that BGD model can easily
fall into local optimum. Hence, the SGD is used to update
the model parameters in this paper.

In order to verify the effective control of the proposed
method on wheat sowing range and sowing quantity,
according to the determination method of seeding uni-
formity recorded in national standard GB/T 9478–2005,
after the seeding operation is completed, a total of 30
sections of 10 cm were taken, and the number of seed
particles in each section was counted, as shown in Fig-
ure 5. Sowing uniformity was calculated for each level of
combination seeding operation. It can be seen from the

figure that the relative frequency distribution of wheat
grain number in each subsection presents positive dis-
tribution. )e experimental results were analyzed uni-
formly under the same theoretical sowing rate per hectare.
Specifically, when the number of seeds is 50–60, both the
sowing range and the sowing rate are the highest, so the
result can be considered as the optimal sowing amount per
unit area.

Figure 6 shows the computational efficiency and actual
complexity of the proposed method. As can be seen from the
figure, the computational complexity and efficiency of the
proposed method increase first and then decrease with the
increase of iterations. In other words, the computational
efficiency of the method in this paper reaches the maximum
after iteration at 1000 hours. )erefore, the proposed
method has a large model fault tolerance rate, which can
ensure good model performance within 1000 iterations. It
also indirectly shows that the method proposed in this paper
has good generalization and extensibility.

Because BP neural network is a shallow model, RNN is
a classic deep learning model, and the method in this
paper is based on CNN model. Hence, they are selected as
the comparison algorithms and the simulation results are
presented in Figure 7. As can be seen from the figure, the
convergence rates of the four methods all were tended to
increase first with the increase of data volume, but with
the further increase of data volume, the convergence rate
of BP neural network showed a downward trend, indi-
cating that BP neural network is not suitable for pro-
cessing a large amount of wheat sowing data in this paper.
In contrast, the convergence rate of RNN and CNN
models generally keeps increasing with the increase of
data volume at any time. )e main reason is that both
methods are deep neural networks with the ability to
process big data. However, the convergence rate of these
two methods is still not as high as that of PSO-CNN in this
paper, which shows the effectiveness and practicability of
the method proposed in this paper.

Figure 8 shows the relationship between sowing accuracy
and iteration times of different methods. We can figure out
from the figure whether with the increase of iteration
number, the sowing accuracy of the three methods shows an
increasing trend. When the iteration number is 600, the
three models all reach the highest classification accuracy,
which is 81%, 87%, and 98%, respectively. )erefore, the
PSO-CNN model in this paper achieves the highest classi-
fication accuracy. In addition, even when the number of
iterations is small, the proposed method also has the best
model performance and achieves the highest classification
accuracy throughout the training process, which demon-
strates the effectiveness of the proposed method in wheat
seeding monitoring.

To better demonstrate the effectiveness of the proposed
method, the monitoring results of CNN and PSO-CNN are
shown in Figure 9. Specifically, it can be seen from
Figure 9(b) that PSO-CNN method not only achieved the
lowest omission ratio of 18.88% but also detected abnormal
sowing at the 163rd sampling point with a detection delay of
2, while the corresponding delay numbers of CNN method
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Figure 3: Different activation functions curves of CNN model.
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were 24, respectively. It shows that the method presented in
this paper can detect the sowing error quickly. In addition,
when the error is detected, the statistical curve corre-
sponding to the PSO-CNN model rarely falls below the

threshold line, while the statistical curve corresponding to
the CNN method always falls back to different degrees,
resulting in a high failure rate, which further demonstrates
the stability and persistence of the proposed method.

10

KNN 0.42

BP 0.45

PSO-CNN 0.53

50
0.49

0.52

0.6

100
0.55

0.57

0.62

150
0.6

0.65

0.65

200
0.62

0.66

0.68

250
0.65

0.6

0.76

300
0.68

0.74

0.75

350
0.71

0.74

0.79

400
0.73

0.8

0.83

450
0.7

0.8

0.85

500
0.72

0.83

0.88

550
0.79

0.88

0.93

600
0.81

0.87

0.98

0

0.2

0.4

0.6

0.8

1

1.2

Figure 8: Comparison of sowing accuracy of different methods.

Samples

Samples

100 200 300 400 500

10-2

600 700 800 900

10-2

100 200 300 400 500 600 700 800 900

(a)

Samples

Samples

100 200 300 400 500

10-2

10-4

600 700 800 900

10-2

10-4

100 200 300 400 500 600 700 800 900

(b)

Figure 9: Monitoring accuracy of wheat seeding by (a) CNN, (b) PSO-CNN.

PSO-CNN 

CNN

RNN

BP

Amount of data 
Co

nv
er

ge
nc

e r
at

e 

Figure 7: Comparison of convergence speed between different methods.

8 Computational Intelligence and Neuroscience



5. Conclusions

Sowing is a key link in wheat production. )e performance
of seeding machine directly affects the growth and yield of
crops. With the promotion of precision agriculture and the
development of precision seeding technology, precision
seeding has become the main component of modern agri-
cultural seeding technology system. Adopting precision
seeding technology is an important means of large-scale
production and realizing cost-saving and efficiency en-
hancement. )e online precision measurement of seeding
amount is the key to realize precision seeding and precise
control and also the basis of realizing precision seeding in
real sense.

In view of the shortcomings of the existing methods, this
paper proposed an optimized deep learning model PSO-
CNN, which not only achieved better model convergence
rate and model parameters but also effectively improved the
sowing accuracy and sowing range of wheat showing strong
theoretical value and application potential. )is work is
helpful to realize the fine sowing of wheat and improve the
level of agricultural automation. Although the method
proposed in this paper has achieved good results, the re-
search in this paper does not consider the effects of planting
weather and soil in the process of agricultural sowing. )is
will be the focus of future research.
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