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To enhance the visualization e�ect of substation high-voltage electrical equipment vulnerability, this study proposes an ISSA-
LSTM coupled video overlay algorithm-based substation high-voltage electrical equipment vulnerability visualization and
monitoring model. Using the improved α blending algorithm combined with the inverse sampling of video background color,
overlaying visible video as well as infrared video, using the improved adaptive weighted two-dimensional principal component
analysis (W2DPCA) to fuse the base layer, selecting the detail layer as the �nal detail layer, obtaining the �nal fusion frame, and
realizing the visualization and monitoring of substation high-voltage electrical equipment vulnerability, and introducing the
improved sparrow search algorithm (ISSA) to establish long and short-term memory network prediction model to reduce the
prediction error and improve themonitoring accuracy rate.�e experimental results show that themonitoring frames obtained by
this method can re�ect rich details of substation high-voltage electrical equipment, and the texture color and equipment edge
contrast are enhanced to facilitate accurate determination of substation high-voltage electrical equipment vulnerability, and the
prediction accuracy of ISSA-LSTM model is as high as 99.85%.

1. Introduction

Substation contains many high-voltage electrical equipment
such as transformers, circuit breakers, and voltage trans-
formers, which are important components of power system
supply and distribution [1]. When a substation encounters a
severe vibration situation such as an earthquake, damage to
high-voltage electrical equipment will cause the grid to lose
its power supply and distribution functions, and power
outage conditions enhance the di�culty of resettling victims
after a disaster [2, 3]. Substation high-voltage electrical
equipment susceptibility can be applied to equipment
earthquake risk assessment, and the equipment status de-
termines the operation of substation transmission and
distribution systems [4, 5]. Applying visual monitoring
technology to the study of substation high-voltage electrical
equipment susceptibility can e�ectively enhance the overall
monitoring needs of electrical systems.

�e research methods of seismic capacity and vulnera-
bility of high-voltage electrical equipment in substations
mainly include theoretical analysis and simulation calculation
methods, shaking table test methods, and statistical analysis of
earthquake damage, etc. From the 1980s to the present, many
scholars at home and abroad have conducted a lot of research
on the seismic performance of high-voltage electrical
equipment through the �rst two methods [6]. �eoretical
calculations and numerical simulations, shaking table ex-
periments and other methods focus more on the analysis of
seismic response of electrical equipment, simulation of
equipment damage process, and damage state, which are
powerful methods andmeans to analyze and study the seismic
capacity of equipment, damage mechanism, and develop
equipment seismic isolation technology [7, 8]. In the 1980s,
the Paci�c Earthquake Engineering Center (PEER) and Pa-
ci�c Gas and Electric jointly established the California Sub-
station Equipment Earthquake Damage Performance
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Database, which recorded the damage data of electrical
equipment in 60 230 kV to 550 kV substations during 12
earthquakes in California, and thus mapped the vulnerability
curves of electrical equipment, and was widely used in the
postdisaster assessment of power systems. 'e American
Applied Technology Council (ATC) gave earthquake vul-
nerability curves for various types of lifeline equipment and
facilities based on expert experience [9] for use on the US
earthquake emergency (FEMA) seismic risk analysis system
HAZAS [10]. Previously, more research has been conducted
for substation visualization and monitoring, and some re-
searchers have studied the design of remote video monitoring
system for substations based on self-assembling networks
[11]. Designing remote video monitoring system for self-
assembled substations, which can remotely monitor the
operation status of the equipment in the substation; some
researchers proposed to study the one-touch programmed
control technology based on video integration and intelligent
analysis [12], where video integration technology and intel-
ligent analysis technology are applied to programmed control
power systems to improve the control performance of many
devices in power systems. Some scholars study intelligent
analysis of substation video based on image processing [13]
and apply image processing technology to intelligent analysis
of substation video to improve the performance of substation
equipment status analysis, and all the above studies apply
visualization technology to substation equipment monitoring,
and all achieve certain results [14, 15]. It can be seen that
image fusion techniques are mostly used in relevant visual-
ization and monitoring studies, and the existing image fusion
techniques include multisensor information fusion tech-
niques, multiple gray-level image fusion techniques, wavelet
transform-based image fusion techniques, etc., but jagged and
dark-edge situations occur when the abovementioned image
fusion techniques are applied to monitoring the vulnerability
of high-voltage electrical equipment in substations [16]. In
addition, researchers have also found that visual monitoring
alone has some uncertainty and false positives, and there is a
strong need for an algorithmic optimization approach to
exploit the temporal correlation and reduce feature redun-
dancy of visual monitoring data [17].

In response to the above problems, this study proposes a
model based on dimension fusion optimization and long
short-term memory (LSTM) [18]. In view of the defect that
the input layer weights and hidden layer biases of the
network model need manual experience tuning, an im-
proved sparrow is introduced. 'e search algorithm (SSA)
optimizes the detectionmodel [19] and visually monitors the
vulnerability of high-voltage electrical equipment in sub-
stations through a coupled video overlay algorithm [20].
'erefore, the visual monitoring of the vulnerability of high-
voltage electrical equipment in substations based on the
ISSA-LSTM deep learning model coupled with the video
overlay algorithm can realize the visual monitoring of high-
voltage electrical equipment in substations, improve the
texture color, edge contrast and richness of details of
electrical equipment, and realize high-voltage electrical
equipment in substations. Real-time detection of the vul-
nerability of electrical equipment.

2. Construction of Predictive Models

2.1. LSTM Network. 'e LSTM network is a classical
network structure in deep learning. 'e LSTM contributes
to model learning at subsequent moments by passing the
weight matrix of the implicit layer at different time steps
backward in a coefficient-weighted manner through
weight parameter conduction [21]. 'e accumulation of
important information and the abandonment of redun-
dant information are achieved through the collaborative
work of input, forgetting and output gates with the help of
memory units accumulating the weight states of the
implicit layer. Long-term memory is achieved by con-
trolling the gradient transformation range through the
synergistic work of the memory unit and the gating
structure to effectively avoid the problem of gradients
disappearing too quickly [22].

2.2. SSA and Its Improvements. SSA is a class of heuristic
optimization algorithms that simulates the behavior of
sparrows foraging and avoiding predators. In SSA, the
population is divided into discoverers and followers, and the
discoverers are responsible for searching for food in the
population space, while the followers follow the discoverers
to search the let-go space [23].

SSA is prone to fall into local optimum during iter-
ation and to solve this problem, an improved sparrow
search algorithm (ISSA) is proposed in this paper, and the
main improvement parts of ISSA are as follows [24]:

(1) 'e logistic chaos algorithm is borrowed to op-
timize the population initialization, and the
characteristics of chaotic pseudorandomness and
ergodicity are used to achieve a better initial global
search. In this paper, the pseudorandom sequence
is generated with the help of logistic mapping, and
the strategy is mathematically formulated as
follows:

Z: an+1 � uan 1 − an( , (1)

where Z is a chaotic variable, and u a is a control
parameter. When an initial value a0 is assigned to the
chaotic variable, a set of chaotic initial variables can
be obtained by iterating through the logic equation
with the help of linear mapping, and the linear
mapping scheme is as follows:

Z⟶ X: X � a +(b − a)Z. (2)

(2) In order to better achieve global optimization at the
beginning of the iteration and local convergence at
the end, this paper proposes an adaptive alert value
strategy, which is described as follows:

w � wmin + wmax − wmin(  × tan
k

M
  ×

π
4

. (3)
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When the current number k of iterations is small, w

is close to wmin to ensure the global let-down ca-
pability of the intelligent algorithm, and as the
number of iterations increases, w increases in a
nonlinear manner to ensure better local let-down
convergence in the later iterations, thus allowing the
algorithm to flexibly adjust the global let-down and
local search capability, that is, M is the total number
of iterations.

(3) 'e adaptive mutation factor is introduced by
borrowing the idea of mutation from genetic algo-
rithm. After each iteration is completed, the pop-
ulation has a certain chance to mutate, and the
mathematical formulation of the strategy is as
follows:

p � 0.5 −
k

2M
, (4)

where p is the variation factor, and the probability of
population variation decreases as the number of
iterative generations increases.

(4) 'e original movement method is the main reason
for standard SSA to fall into local optimum when
alerting occurs during reconnaissance. In this paper,
we choose a new sparrow change method with the
following mathematical formulation:

x
t+1
i,d �

x
t
i,d + β · x

t
i,d − xb

t
i,d , fi ≠fg,

x
t
i,d + β · xw

t
i,d − xb

t
i,d , fi � fg.

⎧⎪⎨

⎪⎩
(5)

β is the correlation coefficient, and fi and fg are the
parameter values of different forms. When the population
produces warning behavior, the optimal sparrow will flee to
a random position between the optimal and worst positions,
and the remaining sparrows will flee to a random position
between themselves and the worst position.

2.3. Video Overlay Algorithm Design. 'e captured visible
substation video as well as the infrared substation video are
superimposed using an improved α-blending algorithm
combined with background color inverse walk [25]. 'e so-
called “α-blending” algorithm is used to blend the source
and target pixels using α-blending vector values to create a
sense of transparency in 3D objects. 'e α-blending algo-
rithm is introduced in this study to give a three-dimensional
sense of high-voltage electrical equipment [26]. 'e
α-blending algorithm weighted summation of video near
and far views based on a fixed ratio is given by the following
equation:

Ia � αIl +(1 − α)Ir. (6)

In (6), α and (1− α) denote the near-field weights and the
corresponding far-field weights in the video, respectively; Il

and Ir denote the near-field pixel points and the corre-
sponding far-field pixel colors, respectively, Ia denotes the

output value after superimposing the video using the α
mixing algorithm.

Based on the grayscale, coordinates and color of the pixel
points obtained by the pixel desampling algorithm, the
desampling equation is implemented for the corresponding
locations in the video far field as follows:

Ib � Ir + Ie − Ir( Jg. (7)

Equation (7), Ib that the body of the video screen and the
distant field on the antisample pixel color; Ie and Jg that the
distant field pixels are located in the same position in the
near field corresponding pixel color and based on the
corresponding antisample to obtain the near field pixel gray
level.

'e new near-field screen is obtained through (7), and
the new screen is based on the far-field basis to implement
antisampling to avoid black edges and jagged boundaries
between the far-field and near-field. 'e acquired near-field
and far-field can be well integrated, but the background
color in the original screen and the far-field fusion leads to
the alpha channel cannot be mixed using the background
color detection, the transformation formula (7) is as follows:

Ib �
Il, Il � Ik,

Ir + Ie − Ir( Jg, Il ≠ Ik.

⎧⎨

⎩ (8)

Formula (8), Ik is the original video screen background
color.

Using the above process to obtain a mix of channel α, the
inverse walk-through on the local video screen of the tel-
epresence to achieve the mix formula is as follows:

Iout �
Ir, Ib � Ik,

αIb +(1 − α)Ir, Ib ≠ Ik.
 (9)

In (9), indicates the final video overlay output value.
Based on the background color to determine the channel

mix within the channel, the implementation of inverse
sampling of the distant screen contains the original back-
ground color and the new pixel points, the new background
color is also presented in the video screen.

'e new background color within the channel dis-
criminant may not be discriminated to be located within the
image element, which can be transformed into (9) as follows:

Iout �
Ir, Il � Ik,

αIl + 1 − αJg Ir, Il ≠ Ik.

⎧⎨

⎩ (10)

In (10), Iout indicates the final video overlay result of the
channel mix.

Analysis of the above process shows that when the al-
gorithm is used to superimpose the video, the blending
weights are transformed from fixed values to variable
blending parameters, and the corresponding far-field
weights of the variable blending parameters can be adjusted
according to the gray level of the near-field pixel points at
each position, and the far-field within the blending weights
are smaller when the near-field gray level is higher, and the
far-field within the blending weights are larger when the
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near-field gray level is lower, resulting in the following
formula:

Iout �
Ir, Il � Ik,

Ia + 1 + Jg αIr, Il ≠ Ik,

⎧⎨

⎩

η � 1 − Jg α,

Iout �
Ir, Il � Ik,

Ia + ηIr, Il ≠ Ik.


(11)

Equation (11) shows that the algorithm adds the cor-
rection function to the traditional n-blending algorithm and
sets the blending weights to compensate for the correction
value based on the near-field gray level so that the blended
video does not have jaggedness and dark edges after
superposition.

When the near-field blending weight is large and the
gray level of the pixel is fixed, and the gray level of the
blended pixels involved in the superposition is low, the far-
field of the superposition will be covered by the near-field,
and the larger the near-field blending weight is, the more
obvious the jaggedness and dark edges will be, so it is
necessary to increase the correction amount to compensate
for this. When the gray level of the pixel points in the near-
field superposition is too low and the blending weight is
fixed, the jaggedness and dark edges exist at the boundary of
the superposition element when the far-field blending
weight is not the maximum value, and the gray level of the
near-field pixel points is negatively correlated with the
correction amount.

'e video overlay algorithm is applied to the established
substation model. 'is is when the video realizes the visual
monitoring of the vulnerability of high-voltage electrical
equipment in the substation, and the pixel information of
the close-view screen existing in RGB space does not have
gray-level information. RGB space data are displayed using
YUV space gray-level information with the following con-
version formula:

Y � 0.299R + 0.587G + 0.114B, (12)

where R and B are both parameters of the equation.

2.4. FusionAlgorithmBased onBootstrap Filter andW2DPCA

2.4.1. Visual Surveillance Video Frame Decomposition with
Bootstrap Filters. 'e fusion of visible video and infrared
video after video overlay to obtain higher-quality visual
surveillance results so that the visual surveillance video is not
affected by the surrounding environment, the adaptive
weighted two-dimensional principal component analysis
(hereinafter referred to as adaptive W2DPCA algorithm) is
combined with the bootstrap filter to fuse visible video as
well as infrared video, and this fusion method has the ad-
vantage of low-computational complexity and is able to
obtain the visual surveillance results by the frame-by-frame
fusion. 'is fusion method has the advantage of low-
computational complexity and is able to obtain visual
surveillance results by fusing visible and infrared video on a

frame-by-frame basis [27]. 'e fusion method mainly
consists of dividing the visual monitoring layers by using the
guidance filter, obtaining the base and detail layers of the
visible and infrared frames monitoring results, selecting
different planning methods to fuse the base and detail layers
obtained by video layering, and finally combining the fused
base and detail layers to obtain the final substation high-
voltage electrical equipment vulnerability visual monitoring
results:

I
i
B � Gr,ξ I

i
, I

i
 ,

I
v
B � Gr,ξ I

v
, I

v
( .

(13)

In the above equations, G and r denote the bootstrap
filter function and the filter radius, respectively; Ii and Iv

denote the source infrared frame and the source visible
frame, respectively; ξ and Iv

B denote the regularization pa-
rameter and the visible frame base layer, respectively; Ii

B

denotes the infrared frame base layer.
'e visible frame and the infrared frame detail layer are

obtained using the difference between the visible base layer
and the infrared base layer obtained from the source visible
frame and the source infrared frame [14]. 'e obtained
infrared frames and visible detail layers are given by

I
i
D � I

i
− I

i
B,

I
v
D � I

v
− I

v
B.

(14)

'e base and the detail layers obtained by the above
process retain the large variance region and texture infor-
mation within the source video, respectively, and the target
within the infrared image exists within the video base layer.

2.4.2. W2DPCA Fusion Base Layer. 'e quality of video
frames directly affects the final result of image fusion [28],
and only infrared thermal images need to be added to high-
quality visible frames to obtain the best fusion results. 'e
process of fusing visible frames with IR frames using the
adaptive W2DPCA algorithm is as follows:

'e W2DPCA algorithm is first implemented on the
infrared frame and visible frame base layer, and the set of
infrared frames and visible frames is represented by matrix
P. 'e matrix P covariance matrix G is obtained as follows:

G �
1
2



2

i�1
P

i
− μ 

T
P

i
− μ . (15)

In Equation (19), (P1) denotes the infrared frame, P2 and
u denote the visible frame as well as the average of visible and
infrared frames, respectively.

'e eigenvectors of the covariance matrixG are arranged
in descending order according to the size of the eigenvalue λ.
'e eigenvectors corresponding to the largest eigenvalue are
placed on the leftmost side of the matrix, using U to rep-
resent the extracted Eigenmatrix, and the Eigenmatrix of size
n× d is composed of the first d eigenvectors, and the matrix
expression is as follows:

U � U1, U2, . . . , Ud( . (16)
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'e equations for obtaining the feature image Qi
B and Qv

B

are as follows:

Q
i
B � I

i
B × U � Q

i
B1

, Q
i
B2

, . . . , Q
i
Bd

 ,

Q
v
B � I

v
B × U � Q

v
B1

, Q
v
B2

, . . . , Q
v
Bd

 .
(17)

'e feature image consists of the infrared frame and the
first d principal components of the photon frame. 'e
different frame weights change as the pixel size changes. 'e
visible light frame and infrared frame weights are calculated
by using the feature image with smaller size, which can
effectively reduce the calculation amount.

'e fusion process needs to detect whether there is a
difference in contrast between the edge regions of the visible
light frame and other regions [29].'e quality of visible light
is reduced in poor environments, but still contains useful
texture information. Fully considering the frame quality to
obtain adaptive visible light weights in the fusion process,
the visible light frame weight formula based on regional
variance is as follows:

W
v

� δ2 �
1

n × d


n

i�1

d

j�1
Q

v
B(i, j) − Qv

B( 
2
. (18)

In formula (18), δ represents the standard deviation of
the source image. Higher and lower pixel values in the
infrared frame indicate hotter and cooler regions, respec-
tively. 'e grayscale values of all pixels in the infrared frame
are significantly lower in the low-temperature case than in
the high-temperature case, and the grayscale values of hot
objects in the image are significantly higher than those of
other pixels. 'e fusion process should focus on the infrared
thermal objects, using the zero-mean operation to obtain the
infrared weights Wi equation as follows:

W
i

� δ2 �
1

n × d


n

i�1

d

j�1
Q

i
B(i, j) − Qi

B 
2
. (19)

It can be seen by (19) that the larger weights will be
assigned to the higher pixel fraction.

Using the weighted average method to obtain the fused
feature image QB of infrared frames as well as visible frames,
the fused feature map can retain all the detail information of
visible frames by this method, and the fused feature map
equation is as follows:

QB �
W

v
Q

v
B + W

i
Q

i
B + Q

v
B

W
v

+ W
i
+ 1

. (20)

'e following equation is used to approximate the re-
construction of the fusion base layer equation as follows:

IB � QB × U
T
. (21)

2.4.3. Detail Fusion Layer. 'e real texture information
within the image may destroy the large amount of useless
information contained in the IR frame detail layer, and the IR
frame image detail layer may be discarded during the fusion
process, and the detail layer fusion equation is as follows:

ID � I
v
D. (22)

2.4.4. Final Fused Video Frames. 'e final fusion formula
for the fused base layer and the fused detail layer is as
follows:

IF � IB + ID. (23)

'e final fusion frame obtained by (23) can effectively
represent the thermal target and texture information con-
tained in the infrared frame as well as the visible frame.

3. Modeling Method

3.1. Data Preprocessing. To prevent the loss of low order of
magnitude features, this paper uses a normalization strategy
to preprocess the original features, and the original set of
features is normalized to the data segment of [0, 1], and the
normalization mathematics is expressed as follows:

x �
x − xmin

xmax − xmin
, (24)

where xmax is the maximum value in the sample features and
xmin is the minimum difference in the sample features.

3.2.Model Training. A total of 70% of the data were selected
as training model and 30% as validation model. PCA is used
to process the input data to achieve data dimension re-
duction, and the input format of data is processed by sliding
window to train the LSTM detection model.

3.3. Intelligent Algorithm Optimization and Its Improvement.
Compared with other swarm intelligence optimization al-
gorithms, SSA has high search accuracy, fast convergence,
good stability, and strong robustness. However, when SSA
search approaches global optimum, the population diversity
will decrease and fall into local optimum. In this paper, SSA
is improved and ISSA algorithm is proposed. According to
the fan data modeling requirements, the search dimension
was set as 3D, the population size was 20, and the number of
iterations was 1000. Different test functions were selected for
testing, and the results were shown in Table 1.

3.4. PredictionAccuracy. PrecisionRecall curve derived from
the evaluation of correlation in information retrieval was
used to reflect the accuracy of fault decision of icing model,
that is, recall rate and accuracy:

recall �
TP

TP + FN
,

precision �
TP

TP + FP
,

F1 � 2 ×
precision · recall
precision + recall

.

(25)
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In the formula, T/F represents whether the predicted
result is consistent with the actual situation: that is, if the real
situation is a positive sample (P) and the prediction is a
positive sample (P), it is T; if the real situation is a negative
sample (N), the prediction is Negative samples (N), it is T; if
the true case is P, the prediction is N, it is F; if the true case is
N, the prediction is P, it is F. 'at is, TP is a positive sample
that is actually a positive sample; FN is a negative sample that
is actually a positive sample; FP is a positive sample that is
actually a negative sample. Recall represents recall rate,
precision represents precision, and fraction represents
harmonic mean of precision rate and recall rate.

4. Results’ Analysis

4.1. Video Overlay AlgorithmAnalysis. In order to verify the
effectiveness of the visualization and monitoring of sub-
station high-voltage electrical equipment susceptibility
based on video overlay algorithm for the study of substation
high-voltage electrical equipment susceptibility, a power
system composed of a national grid is selected as an example
analysis object, which is characterized by a large amount of
industrial electricity consumption and high population
density. A total of 29 substations above 110 kV in the region
were selected as the sample for the statistical analysis of high-
voltage electrical equipment vulnerability study: 2 500 kV
substations, 8 220 kV substations, and 19110 kV substations.
Design a set of substation high-voltage electrical equipment
vulnerability visualization monitoring system, the system
uses infrared sensors and visible sensors of online moni-
toring devices to obtain substation high-voltage electrical
equipment image source, using the upper computer to run
the system using the method of this paper to process the
collected images, through the C language using VS compiler
platform programming this paper software, the system has
infrared image and visible image fusion, infrared and visible
imaging information complementary, substation high-
voltage electrical equipment vulnerability analysis, manual
operation, and other functions. 'is method uses the video
overlay method to superimpose the video so that the pre-
sented video has no jaggedness; the visual monitoring video
has the equipment perspective function, which can set the
transparency of each high-voltage electrical equipment in
the substation, so as to avoid the inability to accurately
analyze the vulnerability of the equipment due to some
equipment being obscured. A pair of infrared frames and
visible frames are selected from the video of high-voltage
electrical equipment in the source substation, and the ob-
jective indexes of the image quality before and after the
fusion process are shown in Table 1, using this method to
superimpose the above two original images.

'e index data in Table 2 show that this method can fuse
outdoor substation scenes well, and the fused images can
show the texture of high-voltage electrical equipment in the
visible video and the equipment information in the infrared
video well, and the edge performance is more natural, and
the visualization effect of the fused video is significantly
improved compared with that before the fusion, and the
shadow part of high-voltage electrical equipment is

enhanced, and the contrast is improved, and the details of
the equipment can be strengthened effectively in the fusion
result, and the color of the equipment texture and the
contrast of the equipment edge are enhanced, and the overall
details of the high-voltage electrical equipment in the
monitoring video of the substation are richer.

Based on the three-dimensional model of the substation
established in this paper, Matlab simulation software is used
to simulate a real earthquake disaster, given that the nodes
sampled by the substation information are 200, the maxi-
mum daily load is 120 kW, the active power of the substation
is 42 kW, and the simulated earthquake disaster level is 6.7.
Due to the difference between different regions and the
distance from the earthquake source, the damage of high-
voltage electrical equipment in different regions is different,
and the distance between the substation and the earthquake
source is used as the standard to divide the studied region
into six regions from A to F. Based on the above settings, the
damage of high-voltage electrical equipment in each region
is shown in Table 3.

'e results in Table 3 show that the number of damaged
devices decreases as the distance from the source increases,
which are consistent with reality and fully verifies the ef-
fectiveness of the simulation of high-voltage electrical
equipment in the substation. Based on the visualization and
monitoring interface, it can be seen that the main damage
states of the porcelain column-type equipment in the sub-
station, except for transformers, are fracture damage and
crack damage. Equipment fracture damage affects the use of
equipment, equipment cracks do not affect the continued
use of equipment cracks set to undamaged, the equipment
fracture state is classified as complete damage. Transformer
damage state in the earthquake is mainly manifested as
wheel rail fixing device damage, oil pillow damage, and other
component damage, it can be seen that the transformer has a
low vulnerability. Transformer damage can be divided into
two states: damaged parts and undamaged parts, and
transformer parts are undamaged when the damage to the
parts is less than one-fifth of the transformer itself and does
not affect the normal operation of the transformer; other-
wise, the transformer parts are damaged.

4.2. SSA-LSTM Prediction Optimization Analysis. 'e slid-
ing window width is set to 10, the learning rate of the
optimizer is 0.001, the number of neurons in the hidden
layer is 50, the step size parameter is 64, the model is trained
200 times, and the Adam optimizer is selected to optimize
the model. When the training samples are 20,000, the LSTM
model training loss is shown in Figure 1. In Figure 1, the
dashed line represents the loss variation of the model val-
idation set, and the solid line represents the loss variation of
the training set. Analysis of the curves in the figure shows
that the training loss of the LSTM model has converged to
around 0.13 at about 105 iterations.'e samples after feature
fusion processing were selected as training data to construct
ISSA-LSTM model and compared with the optimized
models of other swarm intelligence optimization algorithms
to verify the optimization of ISSA, SSA, PSO, and GWO on
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the detection model, and the model validation set accuracy
rates are shown in Table 4.

From Figure 2 and Table 4, it can be seen that the LSTM
and its coupled models ISSA-LSTM, SSA-LSTM, PSO-
LSTM, and GWO-LSTM are in a stable state after reaching a
certain number of training sessions and slowly improve,
increasing with the number of training sessions. However, it
is found that the prediction effect of LSTM model is

significantly lower than its coupled model, and the pre-
diction accuracy of LSTM model is 97.77% after 20,000
training times, while the prediction accuracy of PSO-LSTM
model, which is the worst prediction effect among the
coupled models, is 99.07, which is significantly higher than
that of LSTM model. In addition, the improved SSA model,
whose improved model ISSA coupled with LSTMmodel has
the highest prediction accuracy of 99.85% after 20,000
training cycles, which indicates that the LSTM model alone
has a certain prediction deficiency, probably due to its own
model factors, but coupling it with other model algorithms
can significantly improve its prediction accuracy and pre-
diction effect.

In addition, this study takes 20,000 training samples, and
the rest parameters are kept consistent for the experiments,
and the parameters of the group intelligence algorithm
optimization model are shown in Table 5. Compared with
SSA, PSO, GWO, and other group intelligence optimization

Table 1: Benchmark function results.

Benchmark function Dimension Search space Optimal value SSA ISSA
F1(x) � 

n
i�1 x2

i 3 [−100, 100]n 0 4.006×10−3 4.006×10−89

F2(x) � 
n
i�1 |xi| + 

n
i�1 |xi| 3 [−100, 100]n 0 1.049×10−1 6.023×10−17

F3(x) � 
n
i�1 (

i
i�1 xj)

2 3 [−100, 100]n 0 2.891× 10−1 1.343×10−89

F4(x) � maxi |xi|, 1≤ i≤ n  3 [−100, 100]n 0 1.779×10−1 1.624×10−46

F5(x) � 
n−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 3 [−30, 30]n 0 3.262×10−2 1.0667×10−3

Table 2: Objective index comparison of image quality before and after fusion.

Objective indicators Prefusion results Postfusion result
Entropy 7.55 7.57
Standard deviation 55.39 56.48
Root mean square error 6.63 2.84
Peak signal-to-noise ratio 70.36 87.33
Spatial frequency 11.026 15.51
Average gradient 5.192 6.09

Table 3: Degree of damage to high-voltage electrical equipment.

Divide area Substation Total number of high-voltage electrical equipment Quantity of damaged equipment
A 6 243 197
B 4 185 115
C 6 285 97
D 5 219 76
E 4 197 58
F 4 193 39
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Figure 1: LSTM model training loss.

Table 4: Accuracy of swarm intelligence algorithm model.

Training
set LSTM ISSA-

LSTM
SSA-
LSTM

PSO-
LSTM

GWO-
LSTM

1000 93.25 95.24 93.96 93.37 94.31
2500 95.45 97.59 97.11 96.17 96.44
5000 96.64 98.33 97.23 96.93 97.14
10,000 97.50 99.36 98.69 98.33 98.48
15,000 97.74 99.67 99.26 99.07 98.90
20,000 97.77 99.85 99.46 99.16 99.49
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algorithms, the parameters of ISSA are better than those of
other group intelligence algorithms, and the judgment ac-
curacy of 99.85% can be achieved when the training sample
data is 20,000, which fully proves the effectiveness and re-
liability of ISSA-LSTM model. Meanwhile, the F1 scores of
both positive and negative samples show a decreasing trend.
However, the accuracy and recall rates of ISSA and GWO are
extremely close, which indicates that GWOmay be able to be
used as a potential coupled analysis model to enhance the
prediction effect of the LSTM model.

5. Conclusion

'e ISSA-LSTM coupled video overlay algorithm is applied
to the visual monitoring of high-voltage electrical equipment
vulnerability in substations.'e video overlay algorithm can
avoid the jaggedness and dark edges of the borders of the
close view of the overlaid video images, which meet the
practical requirements of high-voltage electrical equipment
vulnerability monitoring in substations. 'e researched
method has high 3D visualization monitoring performance,
strengthens the details of electrical equipment, enhances its
texture color and edge contrast, improves the richness of
electrical equipment details in the monitoring video, ac-
curately analyzes the vulnerability of high-voltage electrical
equipment using substation visualization monitoring, and

improves the safe operation of substations. 'e following
conclusions were obtained: (1) the images after the video
overlay algorithm can show the texture of high-voltage
electrical equipment in the substation in the visible video
and the information of the equipment in the infrared video
well, and the edge performance is more natural. (2) 'e
prediction effect of the LSTM model is significantly lower
than that of its coupled model, and the prediction accuracy
of the LSTM model is 97.77% after 20,000 times of training,
while as the coupled prediction accuracy of PSO-LSTM
model, which has the worst prediction effect, is 99.07, which
is significantly higher than that of LSTM model. (3)
Compared with SSA, PSO, GWO, and other group intelli-
gence optimization algorithms, the parameters of ISSA are
better than other group intelligence algorithms, and the
judgment accuracy of 99.85% can be achieved when the
training sample data are 20,000.

Data Availability

'e dataset can be obtained from the corresponding author
upon request.
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Figure 2: 'e relationship between the number of iterations and model accuracy.

Table 5: Comparison of optimized parameter results.

Swarm intelligence
optimization
algorithm

Positive sample
judgment accuracy

rate (%)

Negative sample
judgment accuracy

rate (%)

Positive sample
recall rate (%)

Negative sample
recall rate (%)

Positive
sample F1

score

Negative class
sample F1 score

ISSA 99.89 99.81 99.38 99.96 0.996 0.998
SSA 99.58 99.40 98.55 99.84 0.990 0.996
PSO 99.47 99.03 97.63 99.80 0.985 0.994
GWO 99.89 99.34 98.50 99.96 0.991 0.996
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