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Accurately detecting and locating the center of the tropical cyclone is critical for the trajectory forecasting.+is study proposed an
automatic method for centers’ location of the tropical cyclones based on the visible or the infrared satellite images. +e
morphological structure of the tropical cyclone is modeled using the circular pattern. +e tropical cyclone center is located based
on regional pixels instead of skeleton points. All pixels in a segmented cloud cluster vote for a 2-dimensional accumulator. +e
center of the cloud cluster is computed by the mean voting distances, which are calculated by fitting quadratic functions in every
column of the two-dimensional (2D) accumulator. +en, a linear function is fitted according to the functional relationship
between the mean voting distance and voting angle. +e fitted coefficients of the linear function are the center coordinates of the
tropical cyclone. +e proposed method for centers location of the tropical cyclones is tested using visible and infrared satellite
images. +e results of center location are compared with the best track provided in JMA datasets.

1. Introduction

+e tropical cyclone is a kind of atmospheric circulation
systems, which may cause disasters and lead to economic
loss in coastal areas. +e trajectory forecast [1, 2] of tropical
cyclones is very significant in order to avoid the destruction
by tropical cyclones. Meteorological satellites offer a reliable
solution to observe tropical cyclones [3, 4]. +e trajectory of
a tropical cyclone can be analyzed and estimated based on
satellite images [5]. +e first comprehensive technique for
analyzing tropical cyclones using satellite images was
Dvorak techniques [6].

+e center location for a tropical cyclone is important
for the trajectory forecast of the tropical cyclone [7–9].
+e center position of the tropical cyclone is estimated by
finding the spiral origin [10] or by fitting the elliptic center
[11]. Huadong et al. [12] and Ryglicki and Hart [13] in-
vestigated various methods of tropical cyclone center
location and classified methods into two categories:
morphological pattern analysis method and wind field
analysis method.

+e first kind of method is based on pattern analysis of
morphological characteristics of the tropical cyclone
[14, 15]. By using image processing techniques [16], the
spiral center of the cyclone is determined by finding the
origin of a logarithmic helix [17] or by locating the point
where the gradient vectors of brightness temperature are
converging [18]. In order to detect the tropical cyclone
center, the density matrix [19] and the deviation angle
variance [20] are exploited. +e located center is accurate,
but it does not work well when the morphological structure
of the tropical cyclone is not apparent.

+e second kind of method is based on the wind field
analysis [21, 22].+e center of tropical cyclone is determined
by finding the minimum value of wind speed or the max-
imum value of cyclone vortices [23]. In order to locate the
center position of the tropical cyclone, a mathematical
morphology method [24] or saliency detection method [25]
are utilized. It can deal with the center location of weak
circulation, but the wind field inversion is affected.

+e current methods for center location of the tropical
cyclone require applying an edge detector to extract skeleton
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points in satellite cloud images. However, the extracted
skeleton is usually inaccurate due to noise and disturbance.
+e tropical cyclones are often segmented from the images
before the circle detection, so the shape of the tropical cy-
clone relies on the segmentation result. When the noise is
incorporated into the segmentation result, the shape of the
tropical cyclone is distorted. +e circular skeleton is not
enough definite for the successive circle detection. It will lead
to the failure in the circle detection. In order to overcome the
problem of edge extraction, the tropical cyclone center is
analyzed and located based on regional pixels instead of
skeleton points.+emethods based onHough transform can
be used to detect circles [26, 27]. +e voting of parameters
determines the locations and the sizes of the circles. Using a
modified Hough transform [28], the center position of the
tropical cyclone is determined by fitting a linear function
according to the functional relationship of the mean voting
distance, which is calculated in each column of the accu-
mulator by fitting a quadratic function.

2. Methods

+e satellite cloud image is segmented; firstly, the segmented
cloud cluster with the most pixels is selected. After regional
pixels’ vote, the center of a cloud cluster is determined by
function fitting techniques. +e proposed algorithm is made
up of four steps: image binarization, Hough vote, searching
voting distances, and solving the center coordinates. +e
flowchart of the proposed algorithm is shown in Figure 1.

2.1. Satellite Cloud Image Segmentation. +e image is seg-
mented using seed expanding and the threshold constraint
[29–31]. Two thresholds are defined.+e first threshold T1 is
defined as the quantity of pixels whose intensity greater than
T1 is less than 300. +e second threshold T2 is defined as the
quantity of pixels whose intensity greater than T2 is less than
30000. A pixel, whose intensity is greater than T1, can be
selected as a seed. If the intensity of its neighboring pixel is
greater than T2, the region is expanded [32].

+e region with the most pixels is considered as a
candidate of the tropical cyclone. An example of cloud image
segmentation is shown in Figure 2. Although the shape of a
segmented cloud cluster is irregular, it is modeled using a
near-circular pattern. +e circle center is considered as the
center of a cloud cluster corresponding to a tropical cyclone.

2.2. Regional Pixels’ Voting. In order to extract the center of
the near-circular cloud cluster, a modified Hough transform
is used. Instead of skeleton points, the regional pixels vote
for a 2-dimensional accumulator. +e voting formula is

ρ � x · cos θ + y · sin θ, θ ∈ 0 π􏼂 􏼁, (1)

where θ is the Hough voting angle and ρ is the computed
voting distance. For a voting angle θi, the validated voting
distance ρ is limited. It is shown in Figure 3. ρm is the mean
voting distance with respect to each voting angle θ. It is also
the regional center voting for the 2D accumulator. +e
voting value H(θ,ρ) increases from 0 to the maximum and

then decreases to 0. Let ρm(θ) be the mean voting distance
corresponding to the voting angle θ.

After all regional pixels have voted for the 2D accu-
mulator, a quadratic function is fitted using the voting in-
formation in each column of the 2D accumulator.

2.3. Quadratic Functions’ Fitting. +e voting value H(θ,ρ)
corresponding to distance ρj and angle θi is illustrated in
Figure 4. +e voting value is

H(ρ, θ) � 2 ·
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− ρ − ρm( 􏼁
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􏽱

. (2)

+us, the functional relationship of the voting value
H2(θ,ρ) with respect to the voting distance ρ is a quadratic
polynomial function, whose maximum is located at the
mean voting distance ρm. +erefore, ρm can be obtained by

Image binarization

Hough vote

Search the voting distance corresponding to the maximum 
voting value ρm

Solving the center coordinate of a circle

Figure 1: +e flowchart of the proposed algorithm.

Figure 2: Extraction of the cloud cluster.
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fitting a quadratic function using the voting values in each
column of the 2D accumulator.

In column θi of the 2D accumulator, all cells with
nonzero votes are searched, and a quadratic function f is
fitted to the data pairs (H2, ρ). +e fitted function is denoted
as

f: H
2
(ρ, θ) � a2ρ

2
+ a1ρ + a0. (3)

Figure 5 shows an example of the quadratic function
fitting. +e mean voting distance is determined by

ρm � ρ | zf

zρ
� 0. (4)

2.4. Linear Function Fitting. For each voting angle θ, the
computed mean voting distance ρm(θ) is located at ρ whose
voting value is the maximum. Following Figures 3 and 4, the
line corresponding to maximum voting value passes through
the center of the circular region, which means the center

(x0, y0) of a cloud cluster always votes for the distance ρm;
therefore, there is the following formula:

ρm(θ) � x0 · cos θ + y0 · sin θ. (5)

+us, the relationship between the computed mean
voting distance ρm(θ) and the voting angle θ is a sine
function, whose coefficients rely on the coordinates (x0, y0)
of the region center. +e center can be calculated by fitting a
sine function. In order to calculate the center coordinates,
conveniently, the sine function is linearized as

ρm(θ)

cos θ
� x0 + y0 · tan θ. (6)

+us, the functional relationship between ρm(θ)/cos(θ)
and tan(θ) is linear. We fit a linear function g using data
pairs (ρm(θi)/cos(θi), tan(θi)). When the voting angles equal
40°, 48°, 56°, 64°, 72°, 80°, 88°, and 96°, the corresponding data
pairs (ρm(θi)/cos(θi), tan(θi)) are shown in Table 1, and the
linear function fitting is illustrated as Figure 6. In addition,
to avoid the setting of θ to 90°, θ is often sampled at the
discrete values around 90°.
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Figure 3: Voting of regional pixels.
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Figure 4: Voting value H(θ,ρ).
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H2 (θ, ρ)=-2.6156ρ2+1874ρ-330374
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Figure 5: Quadratic function fitting.
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Figure 6: Linear function fitting.

Table 1: +e relationship between ρm(θ)/cos(θ) and tan(θ).

θ 40 48 56 64 72 80 88 96
ρm 358.2352042 350.6212455 336.8496554 316.8497009 290.6307249 259.0087804 259.0087804 259.0087804
tan(θ) 0.839099631 1.110612515 1.482560969 2.050303842 3.077683537 5.67128182 28.63625328 −9.514364454
ρm/cos(θ) 467.6428468 523.9952292 602.385426 722.7886763 940.5007823 1491.572119 7421.562053 −2477.878008
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+e center coordinates (x0, y0) of the cloud cluster
happen to be the fitted coefficients. +e calculated center of
the tropical cyclone is labeled in Figure 7.

3. Results

3.1. Implementation Details. +e dataset used to test the
proposed method is from Meteorological Satellite Obser-
vation Images of Typhoon Saomai (No. 200608) and Maria
(No. 201808) provided by the Japan Meteorological Agency
(JMA). Both the visible images and the infrared images are
tested. With the satellite observation images, the cloud
cluster of the tropical cyclone is extracted and its center is
located.

+e satellite cloud images are segmented using seed
expanding techniques and threshold constraints. +e seg-
mented cloud cluster with the most pixels is recognized as
the tropical cyclone; its center is calculated by voting and
fitting. +e center location results on two visible images and
two infrared images are shown.

3.2. Experiments’ Analysis. In Figure 8, it is noted that,
despite of either the visible images or the infrared images, the
proposed method is able to extract the regions of tropical
cyclone. Based on the regions, the centers of the tropical
cyclone can be further determined. In addition, the method
can also deal with both eye cyclones and noneye cyclones. It
is largely attributed to the fitting for the shape of the cyclone
regions. Even though the shapes of tropical cyclones are
irregular, the shapes are still approximated by circles. Once
the circles are found, the centers can be determined. +e
located centers of typhoons are also compared with the Best
Track (BT), and the averaged location errors are shown in
Table 2. Because the size of typhoons is in itself large enough,
these location errors can be tolerated. +e experimental
results show that the proposed center location method
provides reliable estimates of tropical cyclone centers.

As illustrated in Figures 9 and 10, the segmentation of
the typhoons region has great influence on the determi-
nation of the centers. When the segmented region covers
most of the tropical cyclone, the shape of the cloud region is
more likely to be a circle. As a result, the accuracy in the
fitting of the circle is significantly improved. In Figure 7(a),
while the tailor of the tropical cyclone is discarded, the
segmentation maintains the central part of the tropical
cyclone. +e central part almost covers the whole tropical
cyclone. Compared with the segmented cloud in Figure 9(a),
the tropical cyclone in Figure 10(a) undergoes the defor-
mation. It is obvious that the shape of the tropical cyclone in
Figure 10(a) is irregular. It further causes the error in the
estimation of the center of the tropical cyclone. Although it
is inevitable for the error to be produced, the increase in the
number of voting angle θ will reduce the error.

Like other methods for centers’ location, the estimation
of centers depends on the segmentation of the typhoons’
region. +e locating results are improved by using function
techniques. A set of quadratic functions are fitted to voting
values corresponding voting distances, and a linear function

is fitted to mean voting distance with respect to the voting
angle.

4. Discussion

In general, due to the existence of cloud tailors, small cloud
clusters, and so on, it is difficult for the segmentation to
generate the result of the tropical cyclone with the regular
circular shape. Hence, it is important for the method to resist
against the noises inherent to the segmentation results. +e
proposed method alleviates the errors in the estimation of
centers caused by the irregular typhoons regions. Similar to
other methods based on the morphological pattern analysis,
the proposed method also relies on the organization
structure of the tropical cyclone. Different with other
methods, the proposed method uses not only skeleton points
but also regional pixels. +erefore, the edge extraction,
which is very sensitive to disturbance and noise, is not
necessary. +e proposed method is more robust than
methods based on skeleton information. +e robustness is
largely attributed to the setting of multiple voting angles.

From Figures 11–18, the voting process of the param-
eters related to the circular region covering the typhoons
region in Figure 2 is shown. At the same time, the fitting
process is also given in these figures. In detail, a quadratic
function is adopted to fit the relationship between the voting
angle and the voting distance. To acquire the two-dimen-
sional center location, it requires that at least two fitting
functions are offered. In fact, the typhoons’ region is often
irregular, so the center location solved by two fitting
functions is coarse. It means that more fitting functions are
needed so as to give rise to an accurate estimation. In
Figures 11–18, the voting angles are, respectively, sampled at
40°, 48°, 56°, 64°, 72°, 80°, 88°, and 96°. As a result, eight fitting
functions are obtained. Among them, while the estimations
of the voting distance in Figures 11 and 12 nearly distribute

x0=212.04 y0=288.53

Figure 7: Center location.
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(a)

(b)

Figure 8: Center estimates for eye and noneye cyclones in visible and infrared satellite images. (a) Satellite images in the infrared channel.
(b) Satellite images in the visible channel.

Table 2: +e averaged errors of center location.

Tropical cyclones Saomai (km) Maria (km)
Averaged errors 18.62 20.56

(a) (b)

Figure 9: (a) +e region of the tropical cyclone is extracted from a visible satellite image by the segmentation. It is filled with the blue color.
(b) +e center of the tropical cyclone is determined based on the region of the tropical cyclone.
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around the quadratic fitting functions, some points in
Figures 13 and 14 significantly deviate from the fitting
function. Along the lines with the angles 56° and 64°, the
invagination of the shape inhibits the points from scattering
around the quadratic functions. +ese points are more likely
to be outliers. Hence, if only the points in Figures 13 and 14
are given, the quadratic functions estimated by these points
cannot accurately represent the boundary enclosing the
tropical cyclone. In Figures 17 and 18, θ is sampled at 88° and
96°, respectively, which are close to 90°. It avoids the setting
of θ to the trivial value of 90°.

In the proposed method, the center location is usually
located at the line with maximal voting distance. However,

once the shape of the typhoon region is an irregular circle, it
is possible for the estimated center to be far away from the
real center of tropical cyclone. +e usage of the fitting
function removes the lines existing in the form of outliers. In
Figure 13, the distribution of the points representing the
voting distances in the proximity of the peak of the quadratic
function is in chaos. Since that, in theory, the voting values
corresponding to the regular circle should satisfy the qua-
dratic function, the quadratic fitting to the function excludes
those values that are not in favor of the estimation of the
circle. Hence, it is obvious that the fitting to the quadratic
function enhances the robustness of the estimation. +e
fitting functions with respect to more voting angles lead to

(a) (b)

Figure 10: (a)+e region of the tropical cyclone is extracted from a visible satellite image by the segmentation. It is filled with the blue color.
(b) +e center of the tropical cyclone is determined based on the region of the tropical cyclone.
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Figure 11: +e voting angle θ is set to 40°. When the voting distance ρ is 358.24, H(θ,ρ) reaches the peak.
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more candidate centers. +e regression over these centers
can generate the reliable center. However, more fitting
functions incur heavier computation burden, and it reduces
the speed of finding the centers of tropical cyclones.
Sometimes, the speed is important for the alert of the
tropical cyclones.

In addition, the method is not sensitive to the type of
images. Whatever the infrared image or the visible image is,
the cloud cluster can be approximated as a near-circular
region. +erefore, the center location method can be applied
to the visible channel and infrared channel of meteorological
satellite images.
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Figure 12: +e voting angle θ is set to 48°. When the voting distance ρ is 350.62, H(θ,ρ) reaches the peak.
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Figure 13: +e voting angle θ is set to 56°. When the voting distance ρ is 336.85, H(θ,ρ) reaches the peak.
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Figure 14: +e voting angle θ is set to 64°. When the voting distance ρ is 316.85, H(θ,ρ) reaches the peak.
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Figure 15: +e voting angle θ is set to 72°. When the voting distance ρ is 290.63, H(θ,ρ) reaches the peak.
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H2 (θ, ρ) = -3.9406ρ2 + 2041.3ρ - 258135
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Figure 16: +e voting angle θ is set to 80°. When the voting distance ρ is 259.01, H(θ,ρ) reaches the peak.
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Figure 17: +e voting angle θ is set to 88°. When the voting distance ρ is 259.01, H(θ,ρ) reaches the peak.
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5. Conclusions

An automatic method for cyclone center location is pro-
posed based on regional pixels instead of skeleton points.
+e morphological structure of the tropical cyclone is
modeled using the circular pattern. +e skeleton extraction
is avoided. By fitting a linear function, the center coordinates
of the tropical cyclone happen to be the coefficients of the
fitted function.+emethod can deal with both visible images
and infrared images and both eye cyclones and noneye
cyclones. +e reliable estimates of tropical cyclone centers
are obtained in spite of the variability of TC morphological
structure in visible or infrared images. At present, the
thresholds for the image binarization are manually selected.
It cannot adapt itself to the segmentation requirement. In the
future, it is possible for the adaptive image binarization to be
brought into the image segmentation.

Data Availability
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