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Mixed pixels in aerial and satellite images are common, especially near the boundaries of two or more discrete classes; that is, they
tend to occur at the transitional region between two classes. Ideally, to decipher the mixed pixel, a soft classi�cation is performed
compared to a hard- or a per-pixel classi�cation. Soft or subpixel classi�cation is carried out where the fractional cover of the
LULC contained within a pixel is derived. Endmembers are extracted for three VNIR bands of ASTER data for two image datasets
using three approaches, namely, principal component analysis (PCA), pixel purity index (PPI), and convex hull-Graham scan
(CHGS). On comparing the DN values of the identi�ed endmembers, it is observed that the CHGS method provides the most
appropriate end members than the PCA-derived and PPI-derived end members. �is is based on deriving the endmembers from
two di�erent image conditions. Convex hull implemented using the Graham scan algorithm delineates the pure pixel and
pinpoints the exact number of endmembers. �ese accurate end members would result in accurate proportions of the land cover
for better modeling of the terrain.

1. Introduction

Remote sensing image classi�cation helps in the mapping of
land use/land cover for themonitoring and understanding of
various physiological and climatological changes happening
on the Earth’s surface. �e result of the classi�cation is
generally a thematic map that aids in several remote sensing
applications. Scientists working on image classi�cation have
been successful in obtaining the output for the investigation.
However, the accuracy of the classi�cation depends on
several factors since image classi�cation is a complex pro-
cess. �e complexity arises due to the changes and cor-
rections applied to atmospheric and radiometric calibration,

LULC of the region, and the available techniques (Lu and
Weng). With the increase in resolution of the sensors in
recent days, accuracy increases with increased resolution as
observed in. However, there is still a lack of availability of
high-resolution data, and other techniques such as image
fusion are sought after. An alternative approach to deal with
this is to resort to mixed pixel classi�cation or soft classi-
�cation. �is is known as subpixel classi�cation. Subpixel
classi�cation provides the user with the fractional cover of
LULC within a pixel. Ideally, subpixel classi�cation requires
pure pixels as input to the algorithm. Unless there is suf-
�cient ground truth information available for a scene, the
problem of mixed pixel and therefore, the identi�cation of a
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pure pixel becomes difficult. .is study discusses a few
methods that are conventionally used for the extraction of
pure pixels of land cover components, their merits, and
demerits and also introduces a new method for the selection
of the endmembers using the principles of convex geometry.

Endmembers are also known as pure pixels that consist
of a single LULC class. An LMM is modeled as a linear
function of spectral reflectance of endmembers to derive the
fractional area of land cover classes. .e quality of the
fraction images derived from spectral unmixing depends on
a sufficient number and the proper selection of end mem-
bers. It is also believed that an exact number of end members
is required to account for the spectral variability of the scene
(Sabol et al.). Spectral unmixing requires accurate, well-
characterized endmembers (Elmore et al.; Milton; Tompkins
et al.). If the end members are not obtained properly, i.e.,
improper selection of end members leads to erroneous
computation of fractions of LULC classes present in an
image. .erefore, the concept of an appropriate spectral
endmember is fundamental to the technique of spectral
unmixing. .e identification and description of the physical
and spectral properties of endmembers are thus of great
importance in spectral unmixing (Milton; Tompkins et al.)
[1–20].

2. Selection of Endmembers

.ere are several algorithms for the selection of endmembers
to be used in spectral unmixing. A few of them are inputs
from field-based or lab-based spectra, transformation-based
inputs, MESMA, n-dimensional visualization tools, etc.
Most such techniques derive the endmembers from the
image. .e advantage of using image endmembers in
unmixing is that image scene variability can be taken into
account when image endmembers are utilized to produce
fraction images. .erefore, it is possible to model the image
in a better fashion. In this study, endmembers are derived
from three techniques, namely, pixel purity index (PPI),
principal component analysis (PCA), and a new approach.
.ese three methods were chosen because their performance
varies depending on the preprocessing techniques they
employ, such as initial conditions and dimensionality re-
duction transforms..is study proposes a novel endmember
extraction technique based on convex hull property
ensembling the scatter plot of the DN values from two bands.
A comparison of these three techniques in terms of the
digital numbers of the image endmembers is carried out and
the results are discussed.

2.1. Principal Component Analysis (PCA) Approach.
Multispectral image bands are often well correlated..is can
be attributed to several factors such as material spectral
correlation, topography, and sensor band overlap (Scho-
wengerdt). .erefore, analysis of such correlated bands is
difficult due to redundancy arising from the above-
mentioned factors. .erefore, it is required to reduce the
dimensionality of the large and multiple band dataset using
transformation (Jollife and Cadima). Principal component

analysis is one such technique that is widely used. A feature
space transformation for removing this redundancy is the
principal component transformation (PCT). .e result of
the transformation is a set of principal component images,
which determine the intrinsic dimensionality of the data.
.e principal components are based on the eigenvectors of
the covariance and the correlation matrix. .e eigenvector
associated with the largest eigenvalue has the same direction
as the first principal component. .e principal components
are obtained in the order of decreasing variance. .is means
that the first PC accounts for most of the variance, the
second for lesser variance, and so on (Lillesand et al.). .e
decorrelation and high measures of statistical significance
provided by the first few principal component axes are no
guarantees of having the best subset of features. Nadler
suggests that PCA finds feature combinations that model the
variance of a data set, but these may not be the same features
that separate the classes, i.e., the PCA components that
model the largest contributions to the data set variance may
work poorly for pattern recognition. .e principal com-
ponent analysis can be used for the following applications:

(i) Effective classification of land use with multiband
data.

(ii) Color representation or visual interpretation with
multiband data.

(iii) Change detection with multitemporal data.

It is well known that PC1 and PC2 are two bands with
very low correlation. .e spatial distribution of the pixels
in a two-dimensional feature space can be seen in the
scatter plots created by charting the various principal
components. .e plot’s form provides an estimate of the
number of endmembers (Bryant and Gilvear; Scho-
wengerdt; Shanmugam and Barnsley). .is indicates that
the number of endmembers correlates with the number of
vertices in the data cloud of the scatter plot of PC1 vs. PC2
(Ann Bateson et al.; Bateson and Curtiss). As a result, a
triangular plot is likely to have three endmembers, while a
rectangular plot is likely to have four endmembers. .e
vertices or outermost corners of the data cloud are where
the plot’s purest pixels are found. .e scatter plot’s ad-
ditional pixels stand in for the scene’s mixed pixels.
.erefore, the vertices of the polygon in the plot are the
endmembers that may be chosen from the scatter plot of
PC1 against PC2. When compared to other methods, PCA
takes less processing time and maximizes the amount of
data variance and signal-to-noise ratio in the visual scene
(Dópido et al.; Karamizadeh et al.).

2.2. Pixel Purity Index (PPI) Approach. Pixel purity index
(PPI) is another technique for the delineation of the pure
pixel, which involves repeatedly projecting n-dimensional
scatter plots onto a random unit vector (Boardman et al.).
.e highest and lowest reflectance pixels of the projection
are scored including any other pixels located within a
specified standard deviation range (i.e., the designated
threshold value). Pixels with extreme values are scored most
often and represent the corners (i.e., vertices) of the
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multidimensional cloud of data points (Boardman et al.). By
understanding the vertices in the plot, it is possible to un-
derstand the spectral mixes in those LULC features. PPI, like
PCA, allows spatial data reduction. Pixels in the image with
the “most pure” spectral signatures are identified. Such
pixels are taken as endmember pixels representing the mixed
pixels. .e PPI is carried out on MNF (maximum noise
transform) image data suggested by Green et al. .is is
because MNF determines the intrinsic dimensionality of the
image data excluding noise and decreases the computation
burden of the algorithm in the further processes to be carried
out (Boardman et al.).

.e result of the application of PPI is a PPI score image
with bright and dark pixels, each pixel having a distinct
score. .e PPI score indicates the purity of the pixel. A pixel
with a higher PPI score indicates higher purity and hence,
appears brighter in the image. Pixel with the lower score is
less “spectrally pure” and appears darker in the PPI image.
Pixels with higher PPI scores are usually taken as end-
members for use in spectral unmixing (Boardman et al.). It
must be noted both PPIs require the number of endmembers
for the image scene to be specified in advance (Tao et al.).
.e simplest method of implementation of endmember
extraction is PPI (Heylen and Scheunders). However, the use
of PPI is limited and is accessible in the Envi software
package (Chang and Plaza).

2.3. Limitations of PCA and PPI Approaches in Selecting
Endmembers. .ough there are several advantages of PCA
and PPI techniques for the selection of the endmembers,
some of the drawbacks of the same have been identified in
this study.

PCA technique fundamentally finds the intrinsic di-
mensionality of the image data and the scatter plot con-
taining the principal components gives the location and
number of the endmembers. .e derivation of the end-
members from such a plot is basically through manual/
interactive means by the analyst. .is interactive method
involves two kinds of errors:

(i) .e vertices may contain a group of pixels, which
may not correspond to the pure pixel. In case of such
a selection of more than a pixel, mean statistics of the
pixels representing a land cover class are taken as an
input for unmixing.

(ii) .e selected pixel may not correspond to the purest
pixel in the plots of principal components.

.us, there is a possibility of the pure or wrong selection
of pure pixels representing the land cover class, which is
mainly attributed to manual error..is kind of manual error
is common while using the PCA technique for the selection
of endmembers. PCA performs a dimensionality reduction
of second-order statistics, which means that endmembers
are information of higher order with noise getting removed
because of the increase in inherent intrinsic dimensionality
of the data with spectral bands. Hence, PCA-based trans-
forms result in endmembers that are not pure enough to be
input in spectral unmixing.

PPI, on the other hand, gives the purest pixels with a high
PPI score.

In reality, it is observed that pixels with a high PPI score
do not represent the purest pixels. .e case of mapping
different vegetation species of a region is considered. A PPI
image of such a region would only provide three to four
pixels with a high PPI score neglecting the different species
of vegetation for mapping the region. Pixels with a lower
score of PPI may correspond to an endmember representing
a species of vegetation. It may also happen in such a way that
the pixels with higher scores correspond to a single species of
vegetation. PPI may not produce as many or as finely
separated endmembers as a user would desire. .erefore,
PPI does not produce pure pixels to the expectation of the
analyst and lacks in providing the exact number and type of
endmembers..e PPI used in this study is derived from Envi
4.5, an image processing software. Envi is used in several
applications successfully (Qi et al.). .e PPI algorithm has
been widely used in the remote sensing community due to its
publicity and availability, provided by Research Systems’
ENVI software package (Plaza and Chang).

Envi uses two parameters to determine the final set of
endmembers for the PPI calculation: k (random vectors
referred to as skewers) and t (cutoff value). It has been noted
that the PPI data obtained from the Envi do not adhere to the
iterative process, which can prevent the genuine end-
members from being displayed. Consequently, a fast itera-
tive PPI was put into place (Chang and Plaza). Additionally,
the original set of skewers used to implement PPI cannot be
changed (Chaudhry et al.). However, in this work, the
endmembers are derived using the PPI’s ENVI version.

While the error involved in the PCA technique for the
derivation of the endmembers is attributed to manual and
interactive reasons, the error with the PPI technique is that
of an algorithm/system-based error. Hence, a new method
for the derivation of pure pixels from the scatter plots is
required. In this study, an approach is suggested based on
the original spectral reflectance of the land cover classes
without any need for the transformation of the satellite
image data. .e algorithm and method of derivation of
endmembers using the approach are discussed in the fol-
lowing sections [20–35]:

2.4.%e Convex Hull Algorithm. Considering the lack of the
above-said factors for the selection of endmembers, in this
study, a novel approach, namely, the convex hull approach is
proposed to exactly pinpoint the vertices of the scatter plot,
i.e., the most accurate endmembers (Graham). Since end-
members tend to be pure for any component, they occur at
the extreme corners of a scatter plot of image data (Scho-
wengerdt; Shanmugam and Barnsley). .erefore, the con-
cept of the convex hull is helpful in the delineation of pure
pixels for use in spectral unmixing, which has been adopted.

2.4.1. Principles of Convex Hull. .e convex hull for a
geometrical object or a set of geometrical objects is the
minimal convex set containing the given objects. For planar
objects, i.e., lying in a plane, an easy way to visualize the
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convex hull is to imagine a rubber band tightly stretched to
encompass the given objects; when released, it will assume
the shape of the required convex hull.

Computing the convex hull means that a nonambiguous
and efficient representation of the required convex shape is
constructed. .e complexity of the corresponding algo-
rithms is usually estimated in terms of n, the number of
input points, and h, the number of points on the convex hull
known as big O notation. Big O notation is a symbolism used
in complexity theory, computer science, and mathematics to
describe the asymptotic behavior of mathematical functions.
.e most common representation is the list of vertices of a
set of points ordered along its boundary clockwise or
counterclockwise.

.ere are many algorithms to construct a convex hull for
a given set of points. Two of the most widely used methods
are as follows:

(1) Gift-wrapping algorithm
(2) Graham scan algorithm

2.4.2. Graham Scan Convex Hull (GSCH) Algorithm.
Graham scan, who dealt with O (n log n) time complexity,
introduced the Graham scan convex hull as a sophisticated
approach. .e Graham scan algorithm is used to generate a
convex hull, and it does so quickly and reliably. .e steps
involved are as follows:

.e gift-wrapping algorithm has an O (n, h) complexity,
where h is the total number of points on the hull. Due to the
fact that it requires less checking when there are fewer points
on the hull, this algorithm performs well. When several (or
all) points land on the hull, a problem occurs. If so, it be-
comes clear that the complexity is much worse than the
Graham scan algorithm, rising to O (n, n) or O (n2).
Endmembers are seen near the corners of a scatter plot of
picture data because they are often pure for any component.
In order to distinguish pure pixels for use in the widely used
spectral unmixing method, the convex hull notion is useful.

To demonstrate the advantages of the convex hull al-
gorithm over PCA and PPI approaches, images of ASTER
VNIR and IRS 1C LISS-III sensors were used for this study
(Figure 1). ASTER (Advanced Spaceborne .ermal Emis-
sion and Reflection Radiometer) is an imaging instrument
that is flying onboard TERRA-1, a satellite launched in
December 1999 as a part of NASA’s Earth Observing System
(EOS). ASTER has three spectral bands in the visible near-
infrared (VNIR), six bands in the short wave (SWIR), and
five bands in the thermal infrared (TIR) regions, with 15, 30,
and 90m spatial resolution. .e ASTER data product is
Level 1B data, which contains radiometrically calibrated and
geometrically coregistered data for all the bands (Yama-
guchi, Kahle, Tsu, Kawakami and Pniel). .ree bands of
ASTER visible near-infrared (VNIR) data were used in this
study.

2.5. Study Regions and Dataset Used. Two regions were se-
lected for this study located near (a) Manamelkudi and (b)
Vedaranyam to demonstrate the principles of the convex

hull. .ese regions were chosen since they exhibited good
and diversified land use/cover patterns. In addition, the
scatter plots of DN values using band 2 and band 3 as well as
the principal component plot showed a four-limbed spatial
distribution of the points. .erefore, the study area is apt for
the demonstration of the concept of a convex hull and its use
in the delineation of exact endmembers as an input to
spectral unmixing.

ASTER (Advanced Spaceborne .ermal Emission and
Reflection Radiometer), an imaging instrument that is flying
onboard TERRA-1, consists of three spectral bands in the
visible near-infrared (VNIR), six bands in the short wave
(SWIR), and five bands in the thermal infrared (TIR) re-
gions. While the VNIR has a 15m spatial resolution, the
SWIR and the TIR bands have a 30m and 90m spatial
resolution, respectively. ASTER VNIR bands can provide
stereoscopic images due to a backward-looking camera.
ASTER image of the study area (Figure 1) in the VNIR
region with a spatial resolution of 15m was used for this
study. .e ASTER data product is Level 1B data, which
contains radiometrically calibrated and geometrically cor-
egistered data for all the bands (Yamaguchi, Kahle, A. BTsu,
Kawakami, and Pniel). .e fourth in the IRS series, IRS 1C
consists of three sensors, namely, a panchromatic camera
(PAN), linear imaging and self-scanning sensor (LISS-III),
and wide field sensor (WiFS). LISS-III camera provides
multispectral data in 4 bands used for this study (IRS 1C
Handbook). .e spatial resolution for visible (two bands)
and near-infrared (one band) is 23.5m with a ground swath
of 141 km. .e fourth band (SWIR band) has a spatial
resolution of 70.5m..ree bands with a resolution of 23.5m
were used for the demonstration of the principles of a convex
hull. .ree bands of ASTER-VNIR and IRS LISS-III data
were used for the extraction of endmembers using various
approaches to endmember extraction and the spectra thus
obtained are compared.

2.6. Applying Different Approaches to Endmember Selection

2.6.1. Derivation of Endmembers Using the PCA Approach.
.e PCA images were obtained by analyzing the Eigenvalues
applying PCTand the variance of the first component for the
two study regions were 86.91% and 76.29%, respectively..e
PC scatter plot for the study area was obtained by plotting
the first principal component against the second principal
component, which exhibited a highly scattered distribution
of the pixels, which is due to the inherent dimensionality of
the image data. .e endmembers for the area were chosen
manually by marking corner pixel/pixels in the plot and
linking it with the image. .e spectra of the endmembers
were noted down.

2.6.2. Derivation of Endmembers Using the PPI Approach.
PPI images for both study areas (1) and (2) were derived with
the number of iterations being 1,00,000 when the PPI curve
reached a stable straight line..e PPI curve is an indicator of
the number of pixels being “spectrally pure” and the straight
line indicates that the pure pixels have been recorded as
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extreme pixels. .e PPI images were then linked with the
FCC of the corresponding images to obtain the brighter
pixels, and hence, the spectra of the pixels with higher PPI
scores were noted down for each of the land cover
components.

2.6.3. Delineation of Endmembers from Convex Hull
Algorithm. In this study, the exact number and type of pure
pixels reflecting the number of land cover components were
delineated and chosen using the Graham scan algorithm. In
order to accomplish this, software was created utilizing the C
and IDL programming languages that extract the end-
members from a set of input points. All of the pixels’ DN
(spectral reflectance) values for each band in the image scene
serve as the input. All of the pixels’ band 1 values, band 2
values, and so on are defined by the algorithm. .e method
then calculates a collection of points sitting on the convex
hull based on the user-selected band for the convex hull’s
formation. Plotting the resulting collection of points yields a
convex hull, which may be used to identify the pure pixels
and use them as input for the spectral unmixing operation.

2.7. Results and Discussion. .e endmember spectra for
various land cover components from various approaches are
listed in Tables 1 and 2. Tables 1 and 2 list that there is
explicit variance in the DN of endmembers defined by
different techniques. Considering the DN of vegetation for
the three bands in Table 3, while PCA and convex hull
method give spectral values typically akin to vegetation, PPI
results in providing “not a true pixel” with spectral values
not representative of a vegetation class. A value of 123 in the
third band, namely, the NIR band, which is lesser than 124 in
the first band (green band) is evidence of the provision of
“not a true pixel” by the PPI technique.

2.7.1. Endmembers from PCA Approach. .e PCA scatter
plots for the study regions are shown in Figure 2. .e plot
shows a four-limbed distribution of the pixels for both the

Manamelkudi and Vedaranyam study areas. .is suggests
that there are four endmembers in the image scene. Ex-
amining the plot reveals that there are many pixels con-
centrated around the vertices of the plot. .erefore, there is
uncertainty in the selection of a pure and extreme pixel from
such grouped pixels..e clustered pixels in Figure 2(a) make
it challenging to distinguish the vegetation endmember from
the lower right corner. Figure 2 shows that study area 2 has a
worse situation (b). It is difficult to infer the endmembers
since the pixels are densely crowded at all of the vertices. .e
vegetation endmember produced even from such clustered
and dispersed pixels is not typical because the DN in the NIR
band (102) is lower than that of the green band (109). If this
fake endmember was used for spectral unmixing, the
components of the land cover would be disproportionate.

2.7.2. Endmembers from the PPI Approach. Figure 3 displays
the PPI images for the research locations. Slices of the
density levels of the PPI scores were used to choose the
endmembers for four classes. High PPI-scoring pixels were
used as endmembers. It is seen from Table 3 that the
endmember spectrum for vegetation has a low DN value of
NIR of 123 than the green band (124)..is pixel was the only
vegetation pixel with a PPI score as high as 11861, and
therefore, this pixel was chosen as the endmember for
vegetation. While PPI for soil and deep water was found to
have a maximum value of 22964 and 24362, respectively,
there was no pure pixel corresponding to shallow water..is
suggests that the purity of the pixels provided by PPI needs
to verify.

A similar observation for study area 2 for that of veg-
etation endmember as the spectra have a lesser DN value
(101) in NIR than that of the green band (104) raising doubt
about the purity of the pixel. It was also noted that while the
pixels of soil and shallow water had a score of 25418 and
20005, the pixel delineated as the endmember for deep water
had a very low score of 4523. .is also provides strong
evidence of the fewer pure pixels provided by the PPI
approach.

(a) (b)

Figure 1: FCC of (a) study area 1—Manamelkudi and (b) study area 2—Vedaranyam (red� band 3, green� band 2, and blue� band 1).
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2.7.3. Endmembers from the Convex Hull Algorithm. .e
endmember spectra for each class using a convex hull were
delineated as listed below. .e convex hulls for the study
areas are shown in Figures 4(a) and 4(b). It was observed that
all the points lying on the convex hull were not endmembers,
but the pixels at the vertices of the polygon enclosed by the
hull are endmembers. It can be seen from Figure 4(a) that
there exist two pixels for water in the lower left corner of the
hull. .e DN of these two pixels was 123, 85, 48, and 125, 84,
49 (corresponding to b1, b2, and b3). It is logical to note that
the DN of water is high in band 1, and therefore, the pixels
with the DN 125, 84, and 49 were chosen as the endmember.
A similar reason holds for vegetation pixels at the lower right
corner of the hull. .e two pixels have DN of 99, 64, 115 and
118, 80, and 120. Of these, the latter was identified as the
endmember since it has a high value in the NIR band.

For study area 2, there are two pixels of vegetation in the
proximity of the lower right corner of the convex hull. .e
DN of the two pixels was 97, 57, 127, 111, 59, and 128,
respectively. .e latter was taken as endmember since it has
a high DN in the NIR band. Similarly, there are three pixels
in the lower left corner of the hull, out of which the pixel with
DN 40, 59, and 93 was chosen as water endmembers..us, it
is possible to delineate the pure pixel for the land cover
components with the use of a convex hull approach.

2.7.4. Comparison of the %ree Approaches. .e vegetation
spectra from Table 1 are correctly provided by the convex
hull. .ough PCA represents vegetation spectra, convex hull
gives exact spectra of the same. .e vegetation spectra de-
rived from PPI are “not a true pixel.” .erefore, a convex
hull provides accurate spectra for vegetation. .e end-
member spectrum of soil is the same as derived by the three
techniques, whereas a slight variation is observed in the case
of deep water. .e spectrum of shallow water is identical for
the three approaches. A similar reason quoted for vegetation
endmember for Manamelkudi holds for vegetation spectra
in the Vedaranyam. .e spectrum of shallow water is the
same for the three techniques. Considering the spectra given
by the convex hull for shallow water, the PPI technique
presents with a score of 18992 for the same pixel location.
.is provides strong evidence for the false pure pixel gen-
erated by the PPI. Considering the soil spectrum PCA and
PPI provide a typical endmember, a convex hull produces an
endmember for the soil with higher values in all the bands.
.ere is no notable difference in the endmember spectra of
shallow water.

.e performance of the three approaches was compared
in Table 3. It is observed that the performance of the convex
hull algorithm was high in terms of accurate pinpointing of
the true pixel, correctness in the endmember spectral when

Table 1: DN (8 bit) of endmembers identified using various techniques from study area 1.

Techniques
DN of vegetation DN of soil DN of deep water DN of shallow water

b1 b2 b3 b1 b2 b3 b1 b2 b3 b1 b2 b3
PCA 99 64 115 181 164 124 123 85 48 211 175 100
PPI 124 83 123 181 164 124 101 69 66 — — —
Convex hull 118 80 120 181 164 124 125 84 49 211 175 100
Note. b1�ASTER band 1, b2�ASTER band 2, and b3�ASTER band 3.

Table 2: DN (8 bit) of endmembers identified using various techniques from study area 2.

Techniques
DN of vegetation DN of soil DN of deep water DN of shallow water

b1 b2 b3 b1 b2 b3 b1 b2 b3 b1 b2 b3
PCA 109 72 102 176 148 126 155 109 52 91 53 46
PPI 104 66 101 170 143 126 155 109 52 93 56 44
Convex hull 111 59 128 177 157 132 162 116 55 93 59 40
Note. b1� IRS 1C band 1, b2� IRS 1C band 2, and b3� IRS 1C band 3.

Table 3: Performance of the three approaches in the provision of endmembers.

Approaches
Aspects

DN Scatter plot/image Pinpointing of pure pixels Correctness of endmember
spectra

PCA Moderately typical Highly clustered Poor Moderate

PPI Typical Least number of pure pixels
depicted Moderate Moderate

Convex hull algorithm Highly typical Extreme pixels only depicted Excellent Excellent
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Figure 2: Scatter plot of PC1 against PC2 showing the locations of the endmembers for (a) study area 1 and (b) study area 2.
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Figure 3: PPI images of (a) study area 1 and (b) study area 2 showing the location of the endmembers. DW, deep water; SW, shallow water;
Veg, vegetation.

(a) (b)

Figure 4: Plot showing the convex hull obtained using Graham scan algorithm for the (a) study area 1—Manamelkudi and (b) study area
2—Vedaranyam.
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validated against the field spectra, and terms of the extreme
pixel corresponding to each class. .is is based on the fact
that the spectra obtained from all three algorithms were
compared with field spectra, in which CHGS spectra re-
sembled the closest to the field spectra.

Summing up the above-said factors, the PCA technique
provides pixels with partially true spectra. .e difficulty lies
in the delineation of individual, accurate endmembers when
they are clustered. PPI on the other hand gives false pixels,
which are not spectrally pure for all the land cover com-
ponents. It is the convex hull approach, which pinpoints
accurately the endmember spectra of the land cover com-
ponent. .e CHGS method is geometrically intensive and
preferred to be the best [17]. .is novel method also is quick
to provide the endmembers from the scatterplot with a
minimum of two bands. However, the CHGS method de-
mands a high computationally intensive system for the
extraction of endmembers with the large number of bands
because it considers all the points within the set both interior
and exterior points (Alshamrani et al.). .is might be be-
cause it takes most of the time for the calculation of convex
hulls (Heylen and Scheunders).

3. Conclusions

.is work offers a novel convex hull-based method for the
extraction of endmembers. .is study has shown that the
convex hull’s architecture is intended to allow for the
proper demarcation of endmembers. .is study established
that, in comparison to PCA and PPI techniques, the convex
hull approach utilizing the Graham scan algorithm offers
better endmember spectra. .e disadvantages of the PCA
technique are in the identification of the extreme pixel on
the scatter plot, even if it often offers endmembers of the
land cover components. .is is due to the clustered dis-
tribution of the pixels in the PC scatter plot. On the other
hand, the PPI technique results in providing false pixels,
representing the land cover components. .ese disad-
vantages make the PCA and PPI techniques unviable for
subsequent use in spectral unmixing. Convex hull imple-
mented using the Graham scan algorithm delineates the
pure pixel and pinpoints the exact number of endmembers.
.ese accurate endmembers would result in accurate
proportions of the land cover for better modeling of the
terrain. Future research in this field might involve a
demonstration of the convex hull theory in the quantifi-
cation of LULC abundances or fraction pictures of the
classes under consideration and utilization of hyperspectral
data to derive increased information. .e LULC of the
given scene would thus be accurately represented by a
fraction map as a result.
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