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ECG (electrocardiogram) identi�es and traces targets and is commonly employed in cardiac disease detection. It is
necessary for monitoring precise target trajectories. Estimations of ECG are nonlinear as the parameters TDEs (time
delays) and Doppler shifts are computed on receipt of echoes where EKFs (extended Kalman �lters) and electrocardiogram
have not been examined for computations. ECG, certain times, results in poor accuracies and low SNRs (signal-to-noise
ratios), especially while encountering complicated environments. �is work proposes to track online �lter performances
while using optimization techniques to enhance outcomes with the removal of noise in the signal. �e use of cost functions
can assist state corrections while lowering costs. A new parameter is optimized using IMCEHOs (Improved Mutation
Chaotic Elephant Herding Optimizations) by linearly approximating system nonlinearity where multi-iterative function
(Optimized Iterative UKFs) predicts a target’s unknown parameters. To obtain optimal solutions theoretically, multi-
iterative function takes less iteration, resulting in shorter execution times. �e proposed multi-iterative function provides
numerical approximations, which are derivative-free implementations. Signals are updated in the cloud environment; the
updates are received by the patients from home. �e simulation evaluation results with estimators show better per-
formances in terms of reduced NMSEs (normalized mean square errors), RMSEs (root mean squared errors), SNRs,
variances, and better accuracies than current approaches. Machine learning algorithms have been used to predict the stages
of heart disease, which is updated to the patient in the cloud environment. �e proposed work has a 91.0% accuracy rate
with an error rate of 0.05% by reducing noise levels.

1. Introduction

Target identi�cations/tracking, management of air tra�c,
and remote sensing are all common uses of ECG [1, 2] where
transmitters send signal bursts and receivers receive dis-
persed versions of those signals. �e scattering of signals is
measured using TDEs and Doppler shifts in received signals,
and the target’s range and radial velocities are computed.
�ese measurements are employed as measurements in ECG

[3]. �e fundamental concept of radars is similar to that of
sound wave re¤ection. Radars detect and locate objects by
using electromagnetic radiation bursts. Radars can be
classi�ed in a variety of ways, but categorized into eleven
groups based on their functionality and primary charac-
teristics [4].

Generic pulse radars play a prominent role in ECG
where they emit a series of short-duration rectangular pulses
in repeated patterns. Pulse radars can be divided into two
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categories, namely, radars with MTYIs (moving target in-
dications) and radars with pulse Doppler. Both these types
employ Doppler frequency shift, which works with in-
coming signals to find a moving target. *e TDEs and
Doppler shift are used to calculate measures such as range
and radial velocity based on these two kinds. Difficulties in
calculating TDEs between received signals of same trans-
mitters are known as TDEs [5] where computing these
parameters is critical for detecting targets with radar’s
transmitters. *ese received echoes are referenced with
signals by the usage of filters to estimate TDEs and assure
target recognitions.

New techniques in nonlinear estimation [6, 7] such as
KLMSs (Kernel Least Mean Squares) have been developed
that are efficient in estimating TDEs and Doppler shifts.
Employing representational theorems and iterative esti-
mation of nonlinearity between unknown parameters,
RKHSs (Reproducing Kernel Hilbert’s Spaces), are used to
return signals while using KLMS estimators to estimate
nonlinearity. *e LMS approach in RKHSs is used to
adaptively update the parameters that have been
determined.

EKFs and UKFs are nonlinear estimators that are often
employed in radar measurements and have been examined
for tracking objects in radar measurements [8, 9]. Specific
uses of synthetic aperture radars are as follows: Kalman
filter’s variant MCKFs (Modified Convolution Kernel
Functions) [10] assessed parameters of returning LFMSs
(Linear Frequency Modulated Signals) in certain cases [10].
TDEs and Doppler shifts in target tracing applications are
estimated using EKFs and UKFs, which have not been
studied in detail.

Rather than producing linear models, they approach
nonlinear systems using first-order linearization, which
results in linear models [11]. Because of their weak accuracy
and stability in difficult situations with low SNRs and heavy-
tailed clutters, they are unable to distinguish between targets
with high certainty. In addition, improved EKFs and UKFs
assess systems in their nonlinear true forms, which aids in
the estimation of reliable parameter estimations even in
challenging contexts [12]. It should be noted that the goal of
IEKFs is to seek for superior linearization that is suitable for
severe nonlinearities rather than to repair linearization er-
rors directly [13].*ey are a logical extension of EKFs, which
combine NLSs (nonlinear least squares) with GNs to form a
new class of EKFs known as IEKFs (Gaussian Newton).

Using optimization approaches, this work offers a
multi-iterative function for monitoring filter perfor-
mances in real time and striving to enhance them as much
as possible. *e usage of cost functions might help you
keep track of state corrections and save money [14]. *e
optimization of a new parameter is carried out using
MCEHOs, which approximate the nonlinearity of the
system, and multi-iterative function, which estimates the
unknown parameters of a target [16]. In order to optimise
the underlying cost functions, a multi-iterative function
technique based on the MCEHOs approach is used. As
proven by the simulation findings, this research is able to
obtain higher levels of accuracy.

2. Literature Review

Singh et al. [4] in their study proposed nonlinear esti-
mations based on sparse KLMSs (Kernel Least Mean
Squares). *eir scheme used adaptive kernel width op-
timizations for reducing computational complexities and
easier implementations [17]. *e study used modulated
and orthogonal frequency division multiplexed radar
signals where Cramér–Rao lower bounds were con-
structed for their proposed estimations. Target ranges
were estimated by Singh et al. [18] where unique iterative
nonlinear KLMSs estimations were used. *eir scheme
when compared with FTs (Fourier Transforms) based
estimation in simulations showed KLMSs converged with
reduced MSEs. KLMSs have significant limitations in
assessments on characteristics including kernel widths,
step sizes, and dictionary threshold values, and when
these parameters are run on specified ranges, they yield
suitable values [19].

Kulikov and Kulikova [20] suggested accurate con-
tinuous-discrete EKFs based on ODEs (ordinary differ-
ential equations) with global error controls. *ey
compared their proposed scheme with continuous-dis-
crete cubature and UKFs using seven-dimensional radar
tracking where aeroplanes made coordinated turns [21].
*e study proved the worthiness of nonlinear filtering
techniques in their tests by using them for actual target
tracking; however, their accurate continuous-discrete
EKFs were found to be versatile and resilient in their tests
[22]. It could successfully address air traffic control situ-
ations for diverse data and variety of sample times without
any manual adjustments.

Gu et al. [23] suggested multicomponent LFMS pa-
rameter estimations based on MCKFs. *e suggested
scheme was quicker as there were no searching operations,
reduced external influences, and lowered computing bur-
dens [24]. Furthermore, it was resistant to additive noises.
*eir suggested strategy was supported by simulated and
real-world data. On the other hand, EKFs and UKFs have
not been used to estimate the TDEs and Doppler shift for
target tracking.

For global optimization issues, Ibrahim et al. [25] pre-
sented SKFs (Simulated Kalman Filters), a population-based
metaheuristic optimization, based on Kalman filter esti-
mations. State estimations were treated as optimization is-
sues where SKF agents were Kalman filters. A population
agent using a typical Kalman filter framework to solve
optimization issues comprised simulated measurement
procedures [26]. *eir findings from SKF were compared
with other metaheuristic algorithms using statistical analysis
where findings revealed that the suggested SKF algorithm
was a promising technique that outperformed various well-
known metaheuristic algorithms such as GAs (Genetic
Algorithms), PSOs (Particle Swarm Optimizations), BHAs
(Black Hole Algorithms), and GWOs (Grey Wolf Opti-
mizers) [27].

Nonlinear estimators based on KLMSs were proposed
by Singh et al. [18], and they outperformed traditional
estimators. KLMSs estimators have poor selections of
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system parameter, and to overcome their limitations,
nonlinear estimators, namely, EKFs and UKFs, were used
in this study [28]. EKFs were selected due to their ease in
implementations, but suffered from inadequate repre-
sentations of nonlinear functions for 1st order lineariza-
tion, while UKFs outperformed EKFs by providing
stableness by treating nonlinearities precisely. *e sug-
gested EKFs- and UKFs-based estimators of the study
enhanced accuracies, according to the study’s simulation
findings [29].

Eden et al. [30] investigated sub-Nyquist cognitive
radars in which overall transmitting powers of multiband
cognitive waveforms were conventionally equivalent to
full bands which lowered MSEs of single-target TDE
estimates. To improve accuracies of delay estimations, the
study selected best bands and distributed total power in
the bands [31]. Using Cramér–Rao limits, the study
showed that, in cognitive radars, equal width subbands
resulted in superior delay estimations than conventional
radars. Cognitive radars performed effectively in terms of
low SNRs in their investigation utilising Ziv-Zakai bounds
[32].

Roemer et al. [31] examined challenges in predicting
unknown delay(s) as systems receive linear combinations
of multiple delayed copies of known broadcast wave-
forms. *is issue was noticed in a variety of applications,
including timing-based localizations and wireless syn-
chronizations. With the purpose of reducing hardware
complexities, the study suggested compressed sensing-
based system design that measured values below Nyquist
rates, yet delay estimates were accurate [33]. *e study’s
design of kernels for measurements with frequencies
showed optimal numerical choices and outperformed
functions that were randomly chosen for estimating
delays.

Cobos et al. [29] suggested a subband technique for
estimation of TDEs with the goal of increasing traditional
GCC (generalized cross-correlation) algorithms. *eir
suggestedmethod used sliding windows to extract numerous
distinct correlations amongst cross-power spectrum’s fre-
quency bands of the phase [24]. *eir key contributions
could be summed up as follows: (1) GCC subband repre-
sentations of cross-power spectrums which have lower
temporal resolutions and estimate TDOAs (time difference
of arrival) better; (2) when signals are without noises, their
matrix representations exploited scenarios for achieving
robust and accurate GCCs; (3) designing low-rank ap-
proximations for processing GCC subband matrices
resulting in improved TDOA estimates and source locali-
zation performances [22]. To show the validity of their
suggested technique, their scheme was tested with large
number of experiments.

Li et al. [26] introduced a new approach for exploiting
space-frequency features to estimate DOAs (direction-of-
arrivals) and TDEs of multipath OFDM (orthogonal fre-
quency division multiplexing) signals. *e study’s scheme
combined array structures and frequencies to generate
extended virtual arrays. *e study reduced impacts of
multipath by constructing extended channel frequency

response matrices which were smoothened [34]. *e
study’s DOA estimations used quick closed solutions with
minimum complications where one-dimensional spec-
trum searched estimated TDEs. *e study’s simulations
demonstrated that their suggested approaches operated
well in a variety of multipath settings, even when SNRs
were low. Furthermore, as compared to multidimensional
spectral peak search approaches, their methods substan-
tially lowered computing costs with superior estimation
performances.

Compressed sensing which reaches high resolutions was
exploited by Li and Ma [25] to estimate signal parameters
based on the signal’s sparseness. *eir approaches used high
resolutions after l0-norm optimizations. Generalized filter
outputs or ambiguous functions result in sparse represen-
tations where prior studies used sparse representations for
channel responses. *e study deconvolved outputs of gen-
eralized matching filters using greedy optimizations and
Bayesian methods for two-dimensional estimations of
Doppler shift and TDEs.*eir simulations showed that their
technique outperformed other sparse representations of
channel data in low SNRs.

3. Proposed Methodology

*e main aim of this study is to predict TDEs and
Doppler shifts (radial velocities) of signals. *ese esti-
mations are based on nonlinear estimation approaches,
namely, multi-iterative function and EKFs. To obtain
theoretical optimal solutions, multi-iterative function
consumes fewer iterations, resulting in shorter running
times, and is useful for estimating target’s properties
accurately even in complicated contexts. *is study’s
suggested estimators showed lower errors and variances
in simulations.

3.1. Signal Model Formulation. *is section derives radar
return signals by connecting radar return and required
unknown parameters such as TDEs and Doppler shift
where monostatic LFM radars [3] were used to keep ra-
dars static. Figure 1 shows a block diagram of the sug-
gested scheme where monostatic radars were considered.
Radars’ transmitters emit LFM pulses at baseband fre-
quencies (refer to Figure 1) with LFM pulses separated by
set periods called PRIs (pulse repetition intervals). Re-
ceived signals get dispersed from their initial broadcasting
signals. *is scattering occurs due to two factors, namely,
TDEs (signal transmissions between antennas and targets)
and Doppler shifts which occur due to radial velocities of
targets.

*e LFMSs (vLFM(t)) can be depicted as

vLFM(t) � a exp exp jπct
2

􏼐 􏼑􏽮 ; 0≤ t≤To 0; T0 < t<TPRI, (1)

where a represents amplitude, c represents sweep rate’s
frequency, To represents duration of pulses, and TPRI rep-
resents PRIs. Frequency of LFMSs varies with time where
immediate frequency is computed usingfi(t)2 � ct.*emth
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pulse when MLFM pulses burst can be represented as time
shift forms of LFMSs and is shown as

vj(t) � v t − nTPRI( 􏼁for0≤ t≤To, (2)

where n ∈ [0, 1, . . . , N − 1] and N represents total pulse
count in a burst. vj(t) gets modulated by high-frequency
carrier signals where modulations can be represented
mathematically as

v(t) � vj(t)􏽮 􏽯exp exp j2πfct( 􏼁, (3)

where fc represents carrier signal’s frequency. Returning
signals pm(t) are time-delayed variants of v(t), where τm

stands for TDEs of the mth pulse when equation (4) is
satisfied:

τm � τo −
2
C

vmTPRI􏼈 􏼉, (4)

where τo represents first pulse’s TDE, v represents radial
velocity, and c represents light’s velocity. For maintaining
generality of target’s time (N pulses), v is considered con-
stant or constant Doppler shifts are assumed. *en, time
differences 2/c {vm TPRI} in time shifts of return signals when
targets change positions over nTPRI result in subsequent
changes to pn(t) and are given by

pn(t) � vj t − τn( 􏼁􏽮 􏽯exp exp j2πfc t − τn( 􏼁( 􏼁 + km(t), (5)

where km(t) represents additive thermal noises. Returning
signals, pn(t), of basebands when depicted mathematically
take the form

pm(t) � vj t − τn( 􏼁􏽮 􏽯exp exp −j2πfcτn( 􏼁 + km(t), (6)

which implies Pn(f) can be written as

Pn(f) � VLFM(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 exp exp −j2πfcτn( 􏼁exp exp −j2πfτn( 􏼁

+ km(f),

(7)

where VLFM(f ) represents Fourier transform LFMSs sam-
pling frequency l � [0, 1, . . . , L − 1] with interval Δf, and
dividing by |VLFM(lΔf)|2 yields the following equation:

p(n, l) � exp exp −j2πfcτn( 􏼁exp exp −j2πfτn( 􏼁 + k(n, l),

(8)

where k(n, l) represents thermal noise’s discrete samples.
Substituting τn from equation (4) results in the following
equation:

p(n, l) � exp exp j2πnfdTPRI( 􏼁exp exp −j2πlfτo( 􏼁exp

exp j2πfdml
TPRIf

fc

􏼠 􏼡􏼠 􏼡 + k(n, l),

(9)

where fc � 2vfc/c represents unknown Doppler shifts
caused by target’s radial velocities. From equation (9), it
can be noted that returning signals, r(m, l), are non-
linearly and exponentially related to TDEs (τo and fd)
which are estimated from returning signals r(m, l) using
EKFs and UKFs. Gaussian filters were used instead of
particle filters as they result in acceptable estimation with
low processing costs. *e suggested EKFs and OIUKFs
for estimating TDEs are Gaussian filters. *e LFM radar
system’s state assessment model was developed using
Bayesian framework followed by EKFs and OIUKF es-
timations for τo and fd.

*is study uses notations for mathematical represen-
tations where constants are in uppercases, vectors are
boldfaced uppercases, superscript representations are
Ttransposes, Hcomplex conjugate transposes of matrices,
and ∗scalar complex conjugate operations, statistical ex-
pected outcomes are represented by E[·], and R denotes
real numbers, while C stands for complex numbers where
R (·) implies real parts and I (·) stands for imaginary parts.

3.2. State Assessment Models for RSs. *e suggested state
evaluations in this study contain measurement models in
which the states are assessed via the use of mathematical
linkages. *e state is represented by the TDEs (_o and f d),
whilst the observed values (returning signals p(n,l)) are
represented by the measurements and variables specified as
x� [ o f d]T and y� [R(r(m,l))I(r(m,l))]T, respectively. Be-
cause of the expected stability of radial velocities in the state
space model specified in equation (9), the intervals and
TDEs in the model grow consistently. *e errors resulting
from the constant assumptions used in this research are
referred to as process noise.

*e modelled state can be depicted mathematically as

yk+1 � f yk( 􏼁 + ηk � yk + Δy + ηk, (10)

where k ∈ 1, 2, . . . , K{ }, K � ML stands for discretized
sample counts of signals returned, and Δx � [To/K, 0]

represents changes/shifts between successive returning
signals. ηk represents noises that are additive and assist in
modelling error compensations. Based on equation (9),
measurements (xk+1) can be depicted as

Input ECG 
electrodes

Converter to 
convert 

analog to 
digital

transforms to 
cloud network

Stored in 
Patient data

classify the 
data

Figure 1: Block diagram of the proposed ECG.
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xk+1 � c xk+1( 􏼁 + dk+1

�

R exp exp j2πnyk+1(2)TPRI( 􏼁exp exp −j2πlΔfyk+1(1)( 􏼁exp exp j2πyk+1(2)ml
TPRIΔf

fc

􏼠 􏼡􏼠 􏼡􏼠 􏼡

I exp exp j2πnyk+1(2)TPRI( 􏼁exp exp −j2πlΔfyk+1(1)( 􏼁exp exp j2πyk+1(2)ml
TPRIΔf

fc

􏼠 􏼡􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ vk+1,

(11)

where dk stands for noises measured. *ese measurements
help mitigate signal errors that occur while collecting/pro-
cessing them. ηk and vk represent Gaussian filter’s assumed
zero means with covariance Qk and Rk *is study considers
additive impacts of process/measurement noises.

3.3. Bayesian Filters. Bayesian filtering is two-step opera-
tions using predictions and updates.

3.3.1. Predictions. *is phase creates the PDFs (probability
distribution functions) of state one-time step forward (re-
lation to the available observations) by utilising Chap-
man–Kolmogorov equation [35] given as follows:

P x1: k−1( 􏼁 � 􏽚 P yk−1( 􏼁P x1: k−1( 􏼁dyk−1, (12)

where P(·) stands for PDFs and P(x1: k−1) stands for prior
PDFs.

3.3.2. Update. PDFs are reconstructed in this step when new
measurement values from Bayes rule [35] yk are received
and depicted as

P y1: k−1( 􏼁 � P y1: k−1, yk( 􏼁 �
1

ckP xk( 􏼁P y1: k−1( 􏼁
, (13)

ck � P y1: k−1( 􏼁 � 􏽚 P xk( 􏼁P y1: k−1( 􏼁dxk, (14)

where P(xk) stands for likely measures achieved using
equation (11) and ck represents constant for normalizations.
*e use of Bayesian filtering results in the construction of
posterior PDFs P(y1: k).

3.4. TDE Estimations Using EKFs. *e estimations of TDEs
(τo and fd) from returning signals, r(m, l), of the investi-
gated RSs using equations (10) and (11) are simplified from
state assessment as estimations of x k from known y k
measurements where EKFs are analytical simplifications of
Bayesian frameworks and conditional PDFs in Bayesian
framework equations (12)–(14) are assumed to be Gaussians
as shown in the following equations:

P xk|k−1􏼐 􏼑 ∼ N xk|k−1; 􏽢xk|k−1, Pk|k−1􏼐 􏼑, (15)

P xk|k􏼐 􏼑 ∼ N xk|k; 􏽢xk|k, Pk|k􏼐 􏼑, (16)

where real Gaussian distributions are represented as N.
xk|k−1 stands for mean values, while Pk|k−1 implies covariance
of xk|k−1 and similarly xk|k implies mean values and Pk|k

covariance of xk|k. xk|k−1 and Pk|k−1 are predicted, while xk|k

and Pk|k are updated as detailed below.

3.4.1. Prediction. In this step, prior PDFs (xk|k−1 and Pk|k−1)
result when Jacobian (Fk) of f(xk) [35] is used and depicted
as follows:

Fk �
zf(x)

zx
|x � 􏽢xk−1|k−1 � [1001 ]. (17)

3.4.2. Update. In the initial part of this step, measurements
(􏽢yk|k−1) are predicted along with error covariance (PYY

k|k−1)
using Jacobian (Hk) of h(·) [35] which results in new
measurements yk. Subsequently, posterior estimates and
covariances, 􏽢xk|k−1 and Pk|k, are obtained using Kalman filter
gains (Kk) where posterior estimations 􏽢xk|k � [􏽢τok

􏽢fdk
]T

result desired TDEs and Doppler shift outcomes.

3.5. Optimized Iterative Unscented Kalman Filter (OIUKF).
*e calculation of an IUKF using the Fisher estimation
framework is described in [36], and it entails minimizing the
following cost function in the filter’s measurement update
phase:

􏽢yt|t � Z(y) �
1
2
f

T
(y)f(y), (18)

f(y) � R
−1/2
t yt − h(x)( 􏼁P

−1/2
t|t−1 􏽢xt|t−1 − x􏼐 􏼑􏽨 􏽩, (19)

Hi � P
xy
i( 􏼁

T
P

− 1
. (20)

It presupposes, like the IUKF version, that the mea-
surement function is affine in the vicinity of x and x i and
therefore that h x’ (x)� h x’ (x i)�Hi. *e Jacobian Hi is not
explicitly computed in the UKFs, but the fact that Pxy � PHT
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in the linear case may be used to infer a stochastic linear-
ization. As a result, the equation provides a fair estimate of
Hi in the IUKF (20).

When P’s symmetry has been exploited, Pxy implicitly
incorporates second-order transformation effects [37]. *e
state iteration in IUKF may be utilised to generate the
following equation using the preceding stochastic lineari-
zation approach:

xi+1 � 􏽢x + Ki y − 􏽢yi − P
xy

i( 􏼁
T
P

− 1
􏽢x − xi( 􏼁􏼐 􏼑, (21)

Ki � P
xy
i P

yy
i( 􏼁

− 1
, (22)

􏽢yi � 􏽘
k

W
(k)

Y
(k)
i . (23)

It can be utilised as a starting point in the IUKF. It is
worth noting that y � y (t|t-1) remains constant. *e
projected measurement y i must still be determined. *e
following equation can be used to express two different
natural alternatives:

􏽢y
∗
i � Y

(0)
i , (24)

i.e., the converted centre sigma point, represented by the
superscript ∗ in this case. Two somewhat different inter-
pretations of the cost function by equation result from the
options (25) and (26):

V(x) � yt − E[h(x)]( 􏼁
T
R

−1
t yt − E[h(x)]( 􏼁

+ 􏽢xt|t− 1 − x􏼐 􏼑
T
P

−1
(t−1) 􏽢xt|t−1 − x􏼐 􏼑,

(25)

V
∗
(x) � yt − h(x)( 􏼁

T
R

−1
t yt − h(x)( 􏼁

+ 􏽢xt|t− 1 − x􏼐 􏼑
T
P

−1
(t−1) 􏽢xt|t−1 − x􏼐 􏼑,

(26)

both depict different approximations of costs where cor-
rections to states can result in decreased costs, i.e.,
V(xi+1)<V(xi). If this is not the case, a step size parameter α
is given by

yj+1 � yj + αj 􏽢y − yj + Gj x − 􏽢xj − Hi 􏽢x − xi( 􏼁􏼐 􏼑􏼐 􏼑. (27)

MCEHOs are used to compute the step sizes where
EHOs (Elephant Herding Optimizations) use both global
and local searches [38]. Local searches, on the other hand,
aim to locate better step sizes in smaller search spaces with
smaller promising approximate predictions of time and
Doppler flaws. Elephant’s herding behaviours are char-
acterized as elephant populations (with varying step sizes)
split into clans. Generations have males which leave their
clans for optimal selections of step sizes. Clans represent
local searches in the algorithm through the optimum se-
lection of step sizes, but male elephants leaving clans are
global search implementations through step sizes.
Matriarchs are solution (elephants) in the clan with the
best fitness values for TDEs. Moving male elephants, on
the other hand, are solutions τo and fd with the worst
fitness function of RSs. MCEHO approach divides ele-
phant population into k clans, which are D-dimensional

solutions created randomly in search spaces by using lower
bounds xmin and upper bounds xmax of TDEs and using

x � xmin + xmax − xmin + 1( 􏼁rand, (28)

where rand implies random numbers between 0 and 1. New
solutions get generated in generations when clan members
(j) from clan (ci) with best fitness values get attracted by
solutions (xbest,ci

) [38]:

xnew,ci ,cj
� xci,cj

+ αmutation xbest,ci
− xci,j

􏼒 􏼓rand, (29)

where xnew,ci ,cj
represents j’s new solution in clan ci for

optimal selection of steps size in TDEs and Doppler effects,
xci,cj

represents previous generation’s solution, αmutation
represents generated parameter via mutation operator,
and algorithm’s parameter is set correspondingly for TDEs
and Doppler effect. If the mutated value is worse than the
new value that is created via new mutated value,
rand ∈ [0, 1] random numbers between (0,1) in uniform
distributions. Scaling factor α influences best TDEs and
Doppler effect values with their step sizes. and these po-
sitions in clans get updated based on the equation [38]
given below:

xnew,ci
� βxcenter,ci

, (30)

where [0, 1] is the second algorithm parameter, which de-
termines the clan centre’s effect, xcenter,ci

, for TDEs and
Doppler effect. Clan centre is defined by the following
equation [38]:

xcenter,ci,d
�

1
nci

􏽘

nci

l�1
xci,l,d

, (31)

where 1≤ d≤D represents the dth dimension and nci
is the

number of reduced TDEs and Doppler effect in clan ci. In
each clan, nci

solutions with the worst fitness values for TDEs
and Doppler effect of the clan ci are chosen to be replaced by
the following equation [39]:

xworst,ci
� xmin + α xmax − xmin + 1( 􏼁rand, (32)

where xmin and xmax represent lower and upper bounds of
search spaces for TDEs and Doppler effects in the interval
rand∈[0, 1]. TDEs and the Doppler effect were used to
represent a random integer from uniform distributions
where they use two separate one-dimensional maps, circles,
and sinusoidal maps to generate random numbers [40]. *e
circular maps [39] can be described by

yg+1 � yg + a −
b

2π
sin sin 2πyg􏼐 􏼑􏼢 􏼣mod1, (33)

where the produced chaotic sequence is inside b� 0.5 and
a� 0.2 (0, 1). *e equation for a sinusoidal map is as follows
[39]:

yg+1 � by
2
g sin πyg􏼐 􏼑, (34)

where for b� 2.3 and y0 � 0.7, the following simplified form
is obtained.
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4. Results and Discussion

*e proposed scheme using EKFs and OIUKF estimations
were tested with MATLAB simulations and compared with
other nonlinear estimators based on UKFs, KLMSs, and
modified NCs. Two monostatic ECG with different pa-
rameter values were studied and are listed in Table 1 for
scenarios 1 and 2, which refer to the two ECG [34]. Scenario
1 depicts realistic LFM ECG, where parameter values differ
from those of Scenario 2’s ECG.

For both scenarios 1 and 2 estimators based on EKFs and
multi-iterative function, Rk � σ2I (where σ2 is obtained
according to specified SNRs defined as relative strengths of
signals with respect to noises in this work).

SNR � h xk+1( 􏼁
Th xk+1( 􏼁

nσ2
. (35)

TDEs and Doppler shift were estimated for SNR of
20 dB; however, a comparative study is presented for SNRs
ranging from 30 dB to 20 dB. *e proposed algorithm of
both scenarios sigma�0.5 was evaluated with and 5 sigma
points in simulations taking 2n +1 (where n is the dimension
or 2 in this study).

Using EKFs and OIUKF-based estimating procedures,
the final NMSE can be achieved after approximately three
thousand and fifty-five iterations, UKFs-based estimation
can be achieved after approximately three thousand and
fifty-five iterations, and KLMS-modified NC can be
achieved after approximately four thousand and fifty-five
iterations. Furthermore, compared to the other tech-
niques, OIUKF produces a much lower end NMSE than
the others. *e OIUKF estimator converges rapidly and
produces much lower final MSE than earlier techniques,
in contrast to estimators based on EKFs, UKFs, and
KLMS-modified NC, which need longer time to converge.
As shown in Figure 2, for 5000 iterations in scenario 1 in
estimation of TDEs, the proposed OIUKF-based esti-
mation has a lower mean square error (NMSE) of 0.0032,
whereas other approaches such as EKFs, UKFs, and
KLMS-modified NC have higher mean square errors
(NMSEs) of 0.42, 0.029, and 0.012, respectively. Figure 3
represents the 5000 iterations in the proposed work.

Table 2 represents the noise estimation of the proposed
work.

In Doppler shift estimation, the proposed OIUKF-based
estimation yields a decreased NMSE value of 0.00094,
whereas other approaches such as EKFs, UKFs, and KLMS-

(1) Set step sizes for TDEs and Doppler effects
(2) Assign generation counter t� 1 and value for Max Gen//maximum generations
(3) Assign initial population with step sizes of TDEs and Doppler effects
(4) Repeat
(5) Sort all the elephants according to their fitness via filter function
(6) ci is the step size for all clans
(7) ci do for all elephants j in the clan
(8) Update xci, and generate xn, cj by equation (29), generate mutation is via mutation operator
(9) if xci, j� xbest, ci then
(10) Update xci, and generate xn, cj by equation (30) via step size in TDEs and Doppler effect
(11) end if
(12) end for
(13) end for
(14) Do this for all ci clans in the population
(15) Get rid of the clan’s worst elephant.ci by equation (32) and apply circle map
(16) end for
(17) Assess the population in light of the newly revised positions according to step size for TDEs and Doppler effect
(18) until t<MaxGen
(19) Return the best found solution

ALGORITHM 1: Pseudocode of the MCEHO algorithm.

Table 1: LFM radar values of scenario I and scenario II used for simulation.

S.N. Quantity Values for scenario 1 Values for
scenario 2

1 Number of pulses (M) 10 20
2 Number of frequency intervals (L) 500 500
3 Frequency increment (∆f ) 10MHz 10MHz
4 Pulse duration (T0) 5 us 200 us
5 Pulse repetition interval (Tpri) 1 ms 0.4ms
6 Centre frequency (fc) 10GHz 9 GHz
Modified NCs. Two monostatic ECG with different parameter values were studied and are listed in Table 1 for scenarios 1 and 2, which refer to the two ECG
[34]. Scenario 1 depicts realistic LFM ECG, where parameter values differ from those of scenario 2’s ECG.
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modified NC give higher NMSE values of 0.36, 0.045, and
0.0092, respectively, after 5000 iterations in scenario 2
represented in Figure 4.

Figure 4 shows that the proposed OIUKF-based esti-
mation has a lower NMSE of 0.00092, whereas other ap-
proaches such as EKFs, UKFs, and KLMS-modified NC have

Table 2: NMSE estimation values of scenario I for estimators.

No. of iterations (k)
Time delay estimation Doppler shift estimation

KLMS-modified NC EKF UKF OIUKF KLMS-modified NC EKF UKF OIUKF
1000 1.28 0.095 0.044 0.0091 0.97 0.095 0.044 0.0082
2000 1.12 0.082 0.036 0.0067 0.68 0.072 0.026 0.0064
3000 0.98 0.055 0.022 0.0054 0.51 0.064 0.022 0.0042
4000 0.67 0.045 0.015 0.0046 0.43 0.051 0.015 0.0026
5000 0.42 0.029 0.012 0.0032 0.36 0.045 0.0092 0.00094

1000 2000 3000 4000 5000
Number of iteratios (k)

UKF
OIUKF

KLMS-Modified NC
EKF

1

0.1

0.01

0.001

Figure 2: For scenario 1, NMSE plots of time delay estimation with estimators based on KLMS-modified NC, UKFs, EKFs, and OIUKF.
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Number of iteratios (k)

UKF
OIUKF
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EKF

1
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0.01

0.001

0.0001
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SE

Figure 3: NMSE plots of Doppler shift estimation for scenario 1 using estimators based on KLMS-modified NC, UKFs, EKFs, and OIUKF.
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higher NMSEs of 0.33, 0.020, and 0.0087, respectively, after
5000 iterations in scenario 2 in estimation of TDEs.

5. Conclusion and Future Work

TDEs and Doppler shifts are used in ECG to derive measures
such as ranges and radial velocities. *e proposed multi-
iterative function and the EKFs are two unique nonlinear
estimation approaches that can overcome estimator’s lim-
itations, with enhanced outcomes for TDEs and Doppler
shifts. Nonlinearity is regarded as the genuine nonlinear
model for estimation in the proposed OIUKF system.
MCEHOs are used to optimise a new parameter using a cost
function. *e OIUKF system uses numerical approximation
to provide a derivative-free implementation. It is more stable
than the EKFs since it is implemented without derivatives.
EKFs are favorable because of their ease in implementations,
but they suffer from inadequate representations of nonlinear
functions by first-order linearization, whereas the proposed
multi-iterative function outperforms EKFs while having
better stability due to precise treatment of system’s non-
linearity. As a result, the multi-iterative function outper-
forms EKFs in terms of stability and yield estimates that are
better/similar in accuracies. In actuality, however, clutter,
which is frequently represented as non-Gaussianity, is
common. As a result, the nonlinear form of the Kalman filter
capable of coping with non-Gaussianity can be researched in
the future to deal with the impacts of clutter.*e tracker also
requires range, radial velocity, and angle information for
accurate tracking.
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