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Wiper motor noise has an important impact on vehicle comfort. Accurate prediction of wiper motor noise can obtain motor NVH
performance in motor manufacturing or earlier stage and provide necessary support for NVH performance design of parts and
vehicles. However, the prediction accuracy of wiper motor noise by the traditional CAE or testing method is low. Data-driven
technology provides a new idea for wiper motor noise prediction with its advantages of high efficiency and high precision. +is
paper studies the wiper motor noise prediction algorithm based on the motor vibration signal, respectively, using the transmission
path analysis theory and the support vector machine theory, and carries on the test verification and comparative analysis of the
effect. +e results show that the method based on support vector machine is more accurate in the prediction of wiper motor noise
and has higher practical engineering value.

1. Introduction

With the continuous upgrading of consumption in the
automobile industry, consumers are paying more and more
attention to the performance of noise, vibration, and
harshness (NVH) of automobiles. Comprehensive perfor-
mance parameter testing standards focus on increasingly
stringent requirements for vibration and noise [1]. Auto-
mobile wiper is not only one of the key safety parts of the
automobile but also has a huge impact on the comfort of the
car. Accurately predicting the noise of the wiper motor can
optimize the NVH performance of the motor in the
manufacturing or earlier stages. +erefore, the accuracy and
efficiency of automobile wiper motor noise prediction have
high engineering practical significance for NVH perfor-
mance design of components and vehicle system [2, 3].

+e main components of motor noise of automobile
wiper are electric drive system noise and structural sound
radiation, and the electric drive system noise is composed of
motor noise and transmission noise. +e existing research
on motor noise prediction mainly adopts CAE calculation
method. Firstly, the motor structure model is established,

and the modal frequencies and modal shapes of each order
of the motor are calculated. After that, the electro-me-
chanical force is calculated through finite element analysis,
and then the sound pressure level of motor noise is cal-
culated with the help of commercial software such as ANSYS
and LMS Virtual.Lab [4–9]. +e mechanism of motor noise
can be analyzed and optimized by CAE calculation method,
but its prediction accuracy depends on the accuracy of
various parameters of the motor, and the analysis process is
heavy and the prediction cycle is long. +e transfer path
analysis method is applied to motor noise prediction, which
dilutes the research on the mechanism of motor noise and
directly establishes the connection between vibration and
sound pressure, which can realize the rapid prediction of
motor noise. In the background of the development of data-
driven technology, the relationship between vibration and
sound pressure is established through data mining, which
provides a new idea for motor noise prediction [10, 11].

In this paper, the transmission path analysis method is
used to study the noise transmission characteristics of au-
tomobile rear wiper motor and calculate the radiated noise.
After obtaining a certain amount of data, a noise prediction
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model is established by data-driven method, and the con-
nection among noise, vibration, and skeleton function is
established by using support vector machine to predict
motor noise.

2. Prediction Methods

2.1. Prediction Based on Traditional Transfer Path Analysis.
TPA (transfer path analysis) is an analysis method based
on source-path-receiver model, which is used to trace the
root cause of vibration and noise [12, 13]. It has been
widely used in the field of vehicle NVH and is an effective
method to solve vehicle NVH problems. TPA methods
are mainly divided into TPA in the time domain and TPA
in the frequency domain. In both cases, the inverse matrix
method is used to multiply the response of the indicating
point by the inverse matrix of the frequency response
function matrix to obtain the excitation force [14, 15].
+e response of the target point can be expressed as
follows:

P(ω) � 􏽘
i

NTFi(ω)Fi(ω) + 􏽘
j

NTFj(ω)Qj(ω), (1)

where P(ω) is the total sound pressure of the target point, Fi

represents the structural load on the transmission path i, Qj

represents the acoustic load on the transmission path j, and
NTFi and NTFj represent the transfer function of the
corresponding path, respectively [12, 16].

In TPA analysis, the inverse matrix method (as shown in
Figure 1) uses the transfer function VTF and the response
signal of the passive part of the motor to inversely calculate
the excitation force under the working state of the motor. At
the same time, by measuring the transfer function NTF from
the excitation point to the target point, the transfer relation
between the motor excitation force and the sound pressure
at the human ear is established, so as to realize the calcu-
lation of the noise at the human ear.

Operational path analysis (OPA) is amethod used entirely
in the operating state of a mechanical system [17, 18]. +e
analysis process only measures the operating condition data,
without measuring the frequency response function at any
position. +e application of the transmissibility concept in
OPA-based approaches is themajor alternative to TPA, which
provides a different solution by significantly reducing com-
plexity and measurement time [19]. OPA analysis calculates
the noise at the ear directly by estimating the transmissibility
of the sound pressure signal transmitted from the motor
vibration signal to the ear. Based on the calculation criterion
of transmissibility, the response of the target point is
expressed as the combined form of the response of the load
position under the sameworking condition, so as to derive the
analysis result similar to TPA.+e response of the target point
is shown in the following formula:

P(ω) � 􏽘
i

Ti(ω) €Xpi(ω) + 􏽘
j

Tj(ω)Pj(ω),
(2)

where Pj refers to the working sound pressure of the sound
source, €Xpi(ω) refers to the working acceleration response of

the structure transfer path along the passive part, and Ti and
Tj represent the transfer rates of sound pressure and ac-
celeration between the target point and the loading position
of the working load, respectively [20].

2.2. Prediction Based on SVM. Support vector regression
algorithm is a machine learning method based on statistical
learning theory and result risk minimization principle,
which can solve small sample problems well [21, 22].
Support vector regression is divided into linear regression
and nonlinear regression. In practical application, data are
often not linearly separable. Support vector machine maps
input xi to a high-dimensional feature space through
nonlinear mapping [23–25] and then constructs a linear
model in this feature space.+emapping process is shown in
Figure 2 and calculated by the following formula:

f(x) � 􏽘
d

i�1
ωiφi(x) + b, (3)

where d is the dimension of the characteristic space, φi(x)

represents the nonlinear mapping, ωi is the coefficient, and b

is the deviation term. Different from the traditional re-
gression model, support vector regression can tolerate the
maximum ε deviation between the regression value f(x)

and the actual value y. +e loss is calculated when
|f(x) − y|> ε, as shown in the following formula:

Lε(y, f(x)) �
0, |y − f(x)|≤ ε,

|y − f(x)| − ε, otherwise,
􏼨 (4)

where Lε is the insensitive loss function, ε is the preset
threshold value, and an interval band of width 2ε is con-
structed with f(x) as the center. If the sample falls into the
interval band, its classification is correct. Using insensitive
function in the feature space to linear regression, and by
minimizing the ‖ω‖2 to reduce the complexity of the model,
support vector regression method can be expressed as
solving the following optimization problem, as shown in the
following formula:

min
w,b

1
2
‖ω‖

2
+ C 􏽘

m

i�1
Lε(y, f(x)), (5)

where C is the regularization parameter used to control the
compromise between model complexity and approximation
error, and m is the number of support vectors. +e kernel
function K(xt, x) is used to avoid the calculation of mapping
function φi(x) and reduce the computational complexity of
high-dimensional hidden space.

3. Prediction Model Design and Wiper Motor
Noise Test

3.1. Transfer Path Analysis Model. TPA analysis requires
that the number of indicator points should be at least
twice the number of paths. +e establishment of TPA
analysis model requires that on the basis of obtaining
motor vibration and sound pressure signals, the transfer
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function VTF from motor excitation point to passive part
and the transfer function NTF from human ear should be
measured by hammer method. +e excitation force of the
motor on the excitation point is calculated to predict the
noise at the ear. OPA analysis only needs to measure the
working condition data, calculate the transmissibility
through the vibration and sound pressure signals of the
motor during operation, and establish the OPA analysis
model. +e noise prediction and analysis process of rear
wiper motor based on transfer path analysis is shown in
Figure 3.

3.2. Establishment of SVR Prediction Model. +e collected
test data were classified and all data were divided into
training set and test set. In order to avoid using the same data
as the test set in the training set, the test data of motor A was
selected as the training set, and the test data of motor B was
selected as the test set. Different motors have different ex-
citation characteristics, and the problem frequency and peak
value are changed, which ensures the uniqueness of test set
data and the generalization ability of model.

In this paper, the Gaussian radial basis function is chosen
as the kernel function of the SVR model. +e penalty pa-
rameter c and the internal parameter g of the radial basis

function are very important to the model, and the best c and
g parameters are obtained by cross-validation and grid
search in MATLAB.+e input parameters of SVR model are
variables of five dimensions, among which the three-way
vibration acceleration signal of active point A occupies three
dimensions, and the frequency point and the calculation
results of sound pressure analyzed by OPA occupy one
dimension, respectively. +e output parameter of the model
is a one-dimensional variable, that is, the sound pressure
level near the ear. +e inputs and outputs of the SVR model
are shown in Figure 4.

SVR method uses data to drive noise prediction. From
the perspective of acoustic vibration isolation, vibration
data is the variable that can best establish connection with
sound pressure data. +erefore, the three-way vibration
acceleration of the active part measurement point is se-
lected as the input parameter. We also used vibration
signals of both active and passive part as input parameters
to make noise prediction, but the prediction result was not
improved compared with the model with only active part
data, so the vibration data of passive part was not included
in the SVR model. When training SVR models, one model
training is adopted for every 1000 Hz frequency range, so
frequency is taken as one of the input parameters. In
addition, the OPA analysis results are put into the SVR
model as one-dimensional input, because OPA analysis
can be calculated using existing data without additional
function transfer test, and the OPA method includes the
mechanism of noise generation, which improves the ac-
curacy of SVR model. However, after acquiring more test
data, the SVR model can automatically mine the deep
relationships between the data, without necessarily using
OPA analysis results.

In order to prevent the values with large influence on the
dependent variable from beingmasked, the input and output
parameters are normalized in the range of [−1, 1], and the
normalization equation is shown as follows:

Point 1

Path 1 Path 2 Path N

Hit point

Point 2 Point N

Passive part

Active part

Inverse Matrix

Figure 1: TPA inverse matrix.

Input Space

ϕ

Feature Space

Figure 2: Mapping to higher dimensions in SVM.
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x
∗

� 2∗
x − xmin

xmax − xmin
− 1, (6)

where xmax and xmin represent the maximum and minimum
values in the data set, respectively; x and x∗ represent the
values before and after normalization, respectively.

When training the SVR prediction model, it is important
to balance the accuracy and efficiency of the model. Mean
absolute error (MAE) was used to evaluate the accuracy of
the prediction model, and the MAE calculation formula is
shown in the following formula:

MAE �
􏽐

n
i�1 yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n
, (7)

where n is the total number of frequency points, yi is the test
value of sound pressure level at the ith frequency point, and
􏽢yi is the predicted value of sound pressure level at the ith
frequency point. If the prediction accuracy does not meet the

requirements, the SVR model needs to be adjusted and the
training samples need to be relearned. Model training flow
chart is shown in Figure 5.

3.3.WiperMotor Noise Test. +emodel used for the test was
the LYNK and CO O2, and the test motor was a rear wiper
motor. According to the needs of the transmission path
analysis model, a three-way vibration acceleration sensor is
arranged at the active part of the motor and two three-way
vibration acceleration sensors are arranged at the passive
part of the motor. +e active part sensor is attached to the
motor gearbox housing, and the passive part sensor is at-
tached to the rear glass outside. +e sound pressure sensor is
arranged at the right ear of the driver. Sensors used in noise
test are shown in Table 1. +e sampling frequency is set to
12800Hz and the sensor placement position is shown in
Figure 6. TPA analysis requires testing the transfer function

TPA

Motor A

Motor B

Impact

Inverse Matrix

Acceleration of
initiative side and

passive side

Acceleration of
initiative side and

passive side

OPA

Transfer Path Analysis

Transfer
function

Force
excitation

Operational
Transfer function

Comparison and
evaluation

Comparison and
evaluationNoise

prediction
Noise

prediction
Test noise
beside ear

Figure 3: Transfer path analysis process.

X - direction vibration
acceleration

Y - direction vibration
acceleration

Z - direction vibration
acceleration

input

Training data set

Noise in the ear

output

SVR

Frequency

OPA analysis results

Figure 4: +e inputs and outputs of the SVR model.
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from the motor excitation point to the passive part and the
human ear, where the NTF measured by the hammering
method to the human ear is shown in Figure 7.

A motor and B motor were tested, respectively, and
vibration and sound pressure data of the motor were col-
lected under the condition of smooth operation. +e

Date collection and preprocessing

Define regression targets and
input characteristics

Build a predictive model of noise
prediction based on SVM

Train the model and optimize the
model parameters

Assess the accuracy of
the predictive model

Predict noise level

If the model accuracy is high

If the m
odel accuracy is low

Figure 5: SVR model training process.

Table 1: Sensors used in noise test.

Sensor type Microphone Accelerometer
Model PCB 378B02 PCB 356A02
Sensitivity 50mV/Pa 10mV/g
Frequency range 3.75 to 20000Hz 1 to 20000Hz
Mass loading 45.8 g 10.5 g

Point C
(Passive part)

Point B
(Passive part)

Point A
(Active part)

Hit Point Target Point

Figure 6: Sensor position diagram.
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sampling time was 3 s and the test times were 10 for each.
After processing the test data and comparing the frequency
spectrum of sound pressure values of motors A and B under
the condition of smooth operation, it can be found that the
problem frequency of noise generated by the twomotors and
the peak value at the problem frequency are significantly
different. +e comparison results are shown in Figure 8. On
the premise that the noise characteristics of two motors are
different, the TPA model and SVR model are established by
using the test data of motor A to predict the noise char-
acteristics of motor B.

4. Results and Discussion

+e excitation force of motor B calculated by TPA analysis
model during its smooth operation is shown in Figure 9,

and the sound pressure level at the ear is predicted. +e
predicted results and the actual measurement results are
shown in Figure 10(a). +e transmissibility of motor
during smooth operation is calculated from the test data
of motor A, as shown in Figure 11. After the OPA analysis
model is established, the sound pressure level near human
ear during motor B is predicted. +e predicted results and
actual measurement results are shown in Figure 10(b).
Based on the existing working data of motor A, the SVR
model was trained and the noise of motor B was predicted.
+e comparison between the prediction results of SVR
model and the actual measurement results is shown in
Figure 10(c).

+e accuracy of the predictionmodel was evaluated from
two aspects of peak error and MAE, and the comparison
results are shown in Table 2. +e three models can predict
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Figure 7: Transfer function from excitation point to ear.
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the peak frequency well and find the problem frequency that
affects the motor noise. +e prediction error of OPA model
at the peak frequency is obviously better than that of TPA
model and SVRmodel.+emean square error of SVRmodel
is smaller, and the overall trend is more consistent with the
test results.

In the noise spectrum, frequencies with larger amplitude
contribute more to noise and are often the key frequencies
causing auditory discomfort, which is also the focus of NVH
optimization.+e rear wiper motor generates noise peak near
440Hz, which is caused by vibration peak and transfer
function peak alone or together. In terms of the prediction
results at the peak, OPAmethod is obviously superior to TPA
and SVR, which is related to the mechanism of the prediction

method. TPA andOPAmethods need to establish the transfer
function from excitation to response to predict noise through
noise generation mechanism, while TPA method limited by
the transfer path in analysis may cause path omission,
resulting in TPA prediction results lower than the actual
value. +e OPA method directly establishes the function of
working condition without causing the omission of path. SVR
method establishes the connection between vibration and
noise through data-driven method, without solving the
structural transfer function, which may result in low pre-
diction results at the peak. However, with the increase of data
volume, SVR model can mine the deep relationship between
data and reflect the transfer mechanism in model parameters,
and the prediction accuracy will gradually improve.
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Figure 10: Working condition transmissibility.
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5. Conclusions

In this paper, the transmission path analysis method and
support vector machine were used to establish the motor
noise prediction model of the rear wiper motor, and the
motor noise level was predicted. +e accuracy of the pre-
diction model was verified by experiments. Compared with
the experimental results, it can be seen that these methods
can accurately predict the problem frequency of motor
noise. +e prediction model based on OPA has a better
prediction result at the peak, while the prediction model
based on support vector machine has a higher overall
prediction accuracy. Data-driven prediction models acquire
knowledge from data. With the increase of the quantity and
quality of test data, this method has greater development
potential in prediction accuracy and efficiency.
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