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�e state of charge (SOC) is one of the main indexes of the lithium-ion battery, which a�ects the practice range of new energy
vehicles and the safety of the battery. Nevertheless, the value of SOC cannot be measured directly. At present, the algorithm for
estimating the state of charge is not very satisfactory. �e multilayer perceptron algorithm designed during this paper en-
compasses a sensible impact on state estimation. During this paper, the multilayer network is designed to estimate the charged
state of lithium batteries from the three-layer arti�cial neural network to the eleven-layer arti�cial neural network. After
preprocessing the dataset and comparing several activation functions, the ten-layer fully connected neural network is the most
e�cient to estimate the SOC. In order to prevent over-�tting of the multilayer perceptron algorithm, the two techniques of the
BatchNormalization layer and Dropout layer work together to inhibit over-�tting. At the same time, the accuracy of extended
Kalman �lter, long and short memory network, and recurrent neural network are compared. �e multilayer perceptron network
designed during this paper has the highest accuracy. Finally, in the open dataset, both the training and test errors achieve good
results. �e algorithm developed in this paper has made some progress in SOC estimation.

1. Introduction

Since the twenty-�rst century, the energy crisis [1], auto-
mobile exhaust pollution, and alternative issues became
progressively outstanding, and reducing carbon emissions
has become an agreement. Environmentally friendly vehicle
suggests that transport has so ushered in unprecedented
development opportunities. As a “zero-emission” vehicle,
new energy vehicles have attracted international attention.
In addition, the development of pure electric vehicles [2] is
very rapid. �e main reason is the energy data storage
medium used in electric vehicles–lithium-ion battery [3].
Lithium-ion batteries have the advantages of long cycle life,
high energy density, and low internal resistance.

Nevertheless, the lithium-ion battery has typically been
concerned in severe accidents, like the explosion of tele-
phones, whereas charging and therefore the spontaneous
combustion of automotives. �ese batteries run the risk of
overcharging or over-discharging. �ese problems can lead
to battery overheating and spontaneous combustion, and
these problems have received a lot of attention. In order to
reduce or eliminate these problems, the battery management
system plays a critical role. In the battery management
system [4], the accuracy of battery state of charge (SOC)
estimation is an important indicator to measure battery
performance. SOC is one of the critical parameters of
lithium-ion batteries. �e more accurate the battery SOC
estimation, the better the performance of the battery
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management system. Accurate SOC estimation can not only
reflect the battery’s remaining capacity but also effectively
prevent battery risks in advance. It can not only ensure the
safety of pure electric vehicles but also ensure the safety of
human life. *erefore, the research on SOC estimation is of
great significance.

2. Related Work

*e estimation methods of SOC can be divided into three
categories [5, 6]. *e first category is the simple table lookup
method [5, 6], which is mainly represented by the ampere-
hour integration method and open-circuit voltage method
[7]. *ese methods are mainly by making a table of the
OCV-SOC [8] corresponding curve. *e microcontroller
canmodify and estimate SOC simply by looking up the table.
*is method is usually used in conjunction with ampere-
hour integration. *e ampere integral method uses dynamic
estimation. *e magnitude of the discharge current is in-
tegrated according to time. *e remaining charge is then
calculated by subtracting the initial charge from the integral.
*e ratio of the remaining power to the initial power is the
value of SOC. *is simple lookup table method [9] is widely
used in engineering. However, the estimation error of this
method is large, and it cannot be used for fast real-time
estimation. *e second category is model-based SOC esti-
mation methods [10]. Due to the internal complexity of the
battery, there is no ready-made model for use.*is direction
is equivalent to the battery by building its model. *e SOC
estimation in the model is used to replace the SOC esti-
mation of the battery. *ere are several approaches to this
direction. Electrochemical Model (EM) [11] is a battery
model based on the porous electrode and solution con-
centration theory, which are mainly based on the electro-
chemical reaction process to calculate the terminal voltage
and SoC of the battery. In addition, Electrochemical Im-
pedance Model (EIM) [12] was developed. Electrochemical
impedance spectroscopy (EIS) [13] is also commonly used as
a model for estimating SOC. EIM and EIS both believe that
there is a certain correspondence between battery imped-
ance and SOC. *e SOC can be accurately estimated by
measuring and calculating the battery’s impedance.

Equivalent Circuit Model (ECM) [13–15] is used to
describe and simulate the dynamic characteristics, which are
treated as a two-port network. Standard models include the
Rint model, *evenin model, and Partnership for a New
Generation of Vehicle (PNGV) model [15]. *e curve fitted
by the model-based SOC estimation method has a higher
matching degree with the real voltage curve. Still, the circuit
model becomes more complex, and the increase of pa-
rameters makes parameter identification more challenging
to achieve. ECM is simple in structure and easy to calculate.
Researchers often combine ECM with adaptive algorithms
such as the Kalman filter to estimate battery SOC. *e third
category is a data-driven estimation. *e data-based esti-
mation method refers to the direct estimation of SOC using
battery data by measuring battery parameters such as cur-
rent, voltage, temperature, and internal resistance. With the
rapid development of machine learning and deep learning,

data-driven SOC estimation methods often use the machine
learning platform. Intelligent algorithms automatically learn
network parameters and obtain the relationship between
electricity pool parameters and SOC. Machine Learning
methods commonly used for SOC estimation include neural
network and deep learning algorithm, Support Vector
Machine (SVM) [7], and Extreme Learning Machine (ELM)
[9, 16].

All of those strategies can estimate the SOC of lithium-
ion batteries. However, these estimation algorithms become
additional and inaccurate with the period of lithium-ion
batteries. *e main disadvantages of the ampere-hour in-
tegration method and the open-circuit voltage method are
time-consuming, low efficiency, and low precision. *e
ampere-hour integration method and the open-circuit
voltage method have not been able to form a closed loop.*e
most disadvantage of the second category of model-based
estimation strategies is the issue of modeling. It conjointly
has some disadvantages like the severe parameter identifi-
cation problem and an oversized quantity of calculations.
*e third category could be a data-driven estimation. Its
main disadvantages are the high demand for information
and the long training time. Owing to these shortcomings, in
this paper, the estimation of lithium-ion batteries uses the
algorithm based on a multilayer perceptron. It uses open
datasets. It can compute on computers and in cloud servers,
making computing very fast because of the excellent per-
formance of cloud servers and computers. In order to meet
the optimal estimation of SOC training error and testing
error of lithium-ion battery, different multilayer perceptron
depth is designed in this paper. *e SOC is calculable by the
multilayer perceptron algorithm designed during this paper.
*ey can do sensible accuracy. *e algorithm designed
during this paper will promote the correct estimation of
SOC. It has a massive impact on the range and safety of pure
electric vehicles. Additionally, the algorithm designed
during this paper can also be applied to alternative fields like
mining machinery and instrumentation state assessment,
metallurgic instrumentation running state assessment, etc.

3. Method

3.1.4eDefinition of SOC. In general, SOC [3, 17, and 18] is
the ratio of the remaining electric quantity to the rated
electric quantity. Lithium-ion batteries have typical non-
linear characteristics, and it is difficult to measure the total
power released by existing means or methods. According to
the theory of ampere-hour integration, SOC is particularly
critical because it can accurately reflect the energy state, and
its calculation formula is as follows:

SOC �
Qc

Q0
,

SOC � 1 −
QT

Q0
.

(1)

Qc is the remaining electric quantity, and Q0 is the initial
electric quantity at a certain temperature or the rated charge
at a certain temperature. QT is howmuch electric quantity of
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the battery has already been released. *e definition of the
calculation form of the ampere-hour integral method is
generally used in the calculation process. *ere is no direct
way to measure the amount of electric quantity released by a
lithium-ion battery during a real process. *erefore, under
the circumstances, it is based on the discharge current in-
tegral accumulative as the release of electric quantity.

SOC(t) � SOC0 −
􏽒

t

0 ηI(t)dt

Qrated
. (2)

SOC0 indicates the initial charge state of the battery. η in-
dicates the charging and discharging efficiency. Qrated in-
dicates the rated capacity of the battery. (t) indicates the
current value at time T, which is greater than 0 indicates
discharge, and less than 0 indicates charging. *e SOC of

lithium-ion batteries is between 0 and 1. Under ideal con-
ditions, when the charge runs out, the SOC� 0, and for a
fully charged new battery, the SOC� 1.

At present, the SOC estimation methods are as follows
from Figure 1.

3.2. FullyConnectedNeuralNetwork. Fully connected neural
networks apply all input parameters to the hidden layer.
Figure 2 shows a three-layer network. In real conditions, the
hidden layer [10, 19, and 20] can have many fully connected
neural networks.

In this paper, D represents the meaning of the scale.
Different network layers have different values of D. It shows
howmany features there are. x1, x2,. . .. . . xd mean that there
are d characteristic inputs. Let m1, m2, m3,. . .. . . md

Looking up Table
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Figure 1: SOC estimation methods.
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Figure 2: Multilayer perceptron network architecture.
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represent features with d hidden layers. Different network
layers have different eigenvalues. h1, h2. . .. . ., hd represent
the number of features of the second hidden layer. o1
represents the value of the output of the multilayer per-
ceptron network. W represents the weight of each feature. B
is the offset. Capital W and X and M are matrices. f(·)

represents the activation function. *is function generally
has a nonlinear function.

z � 􏽘
D

d�1
w

1
dxd

⎛⎝ ⎞⎠ + b � W
T
1 X + b,

m � f(z),

s � 􏽘
D

d�1
w

2
dmd

⎛⎝ ⎞⎠ + b � W
T
1 M + b,

h � f(s),

o � 􏽘

D

d�1
w

3
dhd

⎛⎝ ⎞⎠ + b.

(3)

We usually express f of x as the activation function.*ere
are many options for activation functions. *e following
functions are commonly used.

f(x) � σ(x) � Sigmoid(x) �
1

1 + e
− x,

f(x) � tanh(x) �
e

x
− e

− x

e
x

+ e
−x ,

f(x) � ReLU(x) � MAX(0, x),

f(x) � Mish(x) � x∗ tanh 1 + e
x

( 􏼁.

(4)

Different activation functions are used to train the
network in the same network layer.

*is paper mainly belongs to the regression model. So
the loss function uses the mean square error loss function.
Yn represents the actual value, while On(x) represents the
value predicted by the model after multilayer neural network
training [20].

J(w) � L(x, y, w) � MSE �
1
N

􏽘

N

n�1
Yn − On(x)( 􏼁

2
,

J(w) � L(x, y, w) � RMSE �

�����������������

1
N

􏽘

N

n�1
Yn − On(x)( 􏼁

2

􏽶
􏽴

.

(5)

*e parameter updating optimization includes the sto-
chastic gradient descent method and the Adam optimization
method [21]. *e calculation steps of stochastic gradient
descent are as follows:

∇wJ(w) �
1
N

􏽘

N

n�1
∇wL x

n
, y

n
, w( 􏼁,

w � w + α∗∇wJ(w).

(6)

Ideally, the gradient should be updated after all the
training samples have been calculated. However, in practical
conditions, due to computer computing power and time
consumption, the small-batch stochastic gradient descent
method is generally used for gradient updating. K means
training samples in small-batch. *e random gradient de-
scent method in the small-batch is adopted. K is less than
N. α is the learning rate, which determines the speed of
gradient advance.

g �
1
K
∇w 􏽘

K

k�1
L x

k
, y

k
, w􏼐 􏼑,

w � w + α∗g.

(7)

*e small-batch stochastic gradient descent method [22]
has a slow convergence rate. *erefore, the Adam gradient
update algorithm can be used. Adam algorithm has the
advantages of very efficient calculation and less memory.
Adam algorithm has the following hyperparameters β1, β2
and ε. *e update from time t to time t + 1 is as follows:

gt+1 � ∇wJ wt( 􏼁,

vt+1 � β1 ∗ vt + 1 − β1( 􏼁∗gt,

st+1 � β2 ∗ st + 1 − β2( 􏼁∗g
2
t ,

vt+1 �
vt+1

1 − βt
1􏼐 􏼑

,

st+1 �
st+1

1 − βt
2􏼐 􏼑

,

wt+1 � wt − α∗
vt+1

���
st+1

􏽰
+ ε􏼐 􏼑

.

(8)

In actual training, the most important is to standardize
the data. Xmin represents the minimum value of the feature
column. Xmax represents the maximum value of the feature
column.

X � X∗
X − Xmin

Xmax − Xmin
. (9)

3.3. Improved Multilayer Perceptron Algorithm. However,
the simple and shallow multilayer perceptron algorithm is
insufficient to meet the requirements. *e multilayer per-
ceptron algorithm also needs to change. First, the Batch-
Normalization layer has been added for input to the fully
connected network. BN means BatchNormalization layer.
*e BatchNormalization layer can improve the stability of
network training depth. Second, the width of the fully
connected neural network is changed. *e width of the fully
connected network is also a key factor affecting the algo-
rithm’s accuracy. Its value range is [30, M]. M is a positive
integer greater than or equal to 30. *ird, the activation
function changes. By changing the activation function to
adapt to the lithium-ion battery data, the most suitable
activation function for lithium-ion battery data was found.
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Fourth, in order to prevent over-fitting of the depth mul-
tilayer perceptron algorithm, the Dropout layer is added to
perform pruning. Finally, to increase the network depth of
multilayer perceptrons, a BatchNormalization layer plus a
fully connected neural network plus an activation function
layer plus a Dropout layer is defined as a Block in this paper.
*e depth of the whole algorithm model can be increased by
increasing the depth of the Block layers. *e value of the
Block layer is [3, N]. *e value of N is a positive integer
greater than 3. FCN stands for the fully connected neural
network.

*e activation function selection range is Sigmoid and
tanh and ReLU and Mish. *e width M of FCN(fully
connected neural network) is roughly 30 and 50 and 80 and
150 and 300. *e most suitable FCN width for a lithium-ion
battery was selected by testing. *e value of Block Number
ranges from 3 to 11. *e network depth with better per-
formance is chosen as the final network depth of the al-
gorithm. Figure 3 shows the improvedmultilayer perceptron
algorithm.

4. Experiments

*is article uses an open dataset. *e battery test data came
from the Centre for Advanced Life Cycle Engineering

(CALCE) Battery Research Group of the University of
Maryland.*e battery models and detailed information used
in this document are shown in Table 1.

Since the estimation process of SOC is a continuous
process, the SOC value at t time has great reference sig-
nificance to the SOC value at t+ 1 time.*erefore, this paper
preprocessed the training data. Discard the data in the first
line and take the SOC value of the data in the first line as a
characteristic parameter of the data in the second line, re-
cursively in turn. In addition, because the values of Inter-
nalResistance, IsFCData, ACImpedance, and
ACIPhaseAngle have not changed, the estimation rela-
tionship between these four characteristic values and SOC is
zero after thermal analysis.*erefore, in this paper’s training
and testing process, these four features were removed, and
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Figure 3: Improved multilayer perceptron algorithm.

Table 1: Details of the batteries used in the experiment.

Type Detail
Battery cell INR 18650-20R
Nominal capacity 2000mAh
Cell chemistry LNMC/Graphite
Upper cut-off voltage 4.2 V
Lower cut-off voltage 2.5 V
Nominal voltage 3.6 V
Dimensions(mm) 18.33± 0.07mm
Usage temperature 0–50°C
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Figure 4: Voltage and current curve in the initial capacity test of
lithium-ion battery.
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the feature UPValue was added. In addition, in the pre-
treatment process, some standardized processing is done for
these features, which is more conducive to the convergence
of the model algorithm.

*e battery parameters and initial capacity tested in the
dataset are shown below in Figure 4.

Initial capacity testing is critical to determine the ac-
curate SOC of lithium batteries. It determines the value of
the initial SOC when the SOC is first evaluated. But the
initial capacity itself is also temperature-dependent.
*erefore, when testing the initial capacity, it is necessary to
add the characteristic parameter of temperature to deter-
mine the initial capacity. In this paper, the lithium-ion
battery is mainly tested at 25 degrees Celsius, so it needs to
test its initial capacity at 25 degrees Celsius. Initial capacity
testing can be done in two general ways. *e first is Low-
Current OCV. It used C/20 or C/25 to charge and discharge

the battery so that the corresponding terminal voltage is an
approximation of Incremental Current OCV.

*e actual running process of the electric vehicle is quite
complicated. To simulate the engineering reality of these
electric cars, there are generally FUDS(*e Federal Urban
Driving Schedule), DST(Dynamic Stress Test), US06(Urban
Dynamometer Driving) Schedule, and BJDST(Beijing Dy-
namic Stress Test). In this paper, FUDS and BJDST
[3, 23–26] are used to test procedures through these two
working conditions to test the multi-neural network training
test.

*e test results are as follows in Figure 5 when the
temperature is 25 degrees Celsius under FUDS condition.

*e test results are as follows in Figure 6 when the
temperature is 25 degrees Celsius under the BJDST
condition.

In general, PCA [27] is performed on the columns of the
dataset. *is removes columns that are not closely related to
the target column. PCA operation can improve the speed of
matrix operation. However, there are fewer columns in this
dataset. In this case, PCA is a waste of time. Figure 7 is a
thermal diagram of column relationships.

5. Result and Discussion

In the design of a multilayer perceptron algorithm, different
network depths are used to evaluate the error of SOC es-
timation. *rough the design of different network depths,
relatively good network depth is selected as the standard
network model for SOC estimation. *is paper involves a
total of three-layer neural networks to eleven-layer neural
networks.*e network depth which is most suitable for SOC
estimation of lithium-ion batteries is examined by different
network depths. *is article uses 30% of the dataset as the
testing dataset. 70% of the dataset is the training dataset. *e
number of training cycles is initialized to 50. Epoch� 50.
Select 64 for small batch quantity and BatchNum� 64. *e
hyperparameter of the learning rate was set at 0.001.*e data
set was divided into BJDST and FUDS, which performed
differently for different network depths. In this paper, the
depth of the network is tested separately. Figures 8 and 9
show the training errors tested at different network depths.

In the FUDS test, the training network uses a total of
three-layer to ten-layer neural networks, and it can be seen
that nine-layer neural networks and eight-layer neural
networks perform better. However, the advantage of net-
work depth has not been shown due to the small gap between
network layers and the small number of cycles. *erefore,
eight-layer neural networks and ten-layer neural networks
were selected as the comparative experimental parameters
for different epochs in the future. It is the equivalent of
setting up a controlled trial like group A and group B. It can
be seen from BJDST that the performance of a six-layer
neural network and ten-layer neural network is better.
*erefore, in the BJDST data set, this paper chooses the
comparison test after a six-layer neural network and a ten-
layer neural network. *is can test the effect of neural
networks with different depths as the epoch increases. *e
following Figures 10 and 11 show the performance of two
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Figure 5: FUDS test voltage and current at 25 degrees Celsius.
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Figure 6: BJDST test voltage and current at 25 degrees Celsius.
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groups of neural network depths under the same epochs. At
the same time, the performance of training errors of different
network depths under different epochs can also be seen.

With the increase in the number of epoch cycles, the
training error gradually decreased. In addition, it can be seen
from the FUDS data set that when the epoch is greater than
60, the training error of the ten-layer neural network is
smaller than that of the eight-layer neural network. It can be
seen from the experimental results in this paper that with the
increase in the number of epoch, the performance of the
deep neural network is better than that of the shallow neural
network. In the BJDST data set, the performance gap be-
tween a six-layer neural network and a ten-layer neural
network is not particularly obvious. But when the epoch
equals 100, the training error of a ten-layer neural network is
better than that of a six-layer neural network.

Network width is also a key factor affecting the per-
formance of deep learning algorithms. When the width of
the network is small, it cannot extract many features, which
will affect the expression ability of the deep learning algo-
rithm. However, the wider the network width is not better;
too wide a network is prone to an over-fitting phenomenon.
*e main idea of this paper is this. When comparing net-
work width and network depth, this paper gives priority to
increasing network depth rather than network width. *is
idea is also in line with the idea of the deep learning
algorithm.

As shown in Figure 12, the best results are achieved when
the network width is 300. However, when the network width
increases from 150 to 300, the test error is not significantly
reduced.*erefore, the maximum network width selected in
this paper is 150.

Table 2 shows the training errors of different activation
functions. *e data in Table 2 were tested when the neural
network width was 150, the network depth was 10, and the
epoch was 100.

Under the above conditions, the ReLU activation
function has the smallest training error and performs best.
Tests for the rest of this article use the ReLU activation
function. However, as the network depth increases, there is a
high probability that Mish activation functions will
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Figure 10: Training error curves under the different epochs of the
FUDS dataset.
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Figure 11: Training error curves under the different epochs of the
BJDST dataset.
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Figure 12: Training error curves under the different epochs of the
BJDST dataset.

Table 2: Training errors in different activation functions.

Activation function DataSet TrainLoss
Sigmoid FUDS 5.62
tanh FUDS 1.37
ReLU FUDS 0.09
Mish FUDS 0.35
Sigmoid BJDST 7.32
tanh BJDST 2.11
ReLU BJDST 0.21
Mish BJDST 0.76
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Figure 13: Test errors of different methods under the FUDS dataset.
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Figure 14: Test errors of different methods under the BJDST dataset.
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outperform ReLU activation functions. *is paper is limited
to optimal local selection under current conditions.

Ten-layer neural network was used to compare the test
errors. A unified neural network model was used to train
FUDS and BJDSTdatasets simultaneously. *is can improve
the robustness of the design algorithm model. *e ten-layer
neural network model algorithm designed in this paper is
compared with other algorithms when the epoch is equal to
100, and the maximum network width is equal to 150.

*e comparison of the test errors of the FUDS test and
the BJDST test from different methods is shown in Fig-
ures 13 and 14.

*is article estimates the SOC of the test dataset on
BJDST and FUDS, respectively, as shown in Figures 15 and
16.

SVM refers to support vector machine [7]. LSTM refers
to long short-term memory [7, 18, 21]. RNN means re-
current neural network [3, 28]. EKF means extended
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Figure 15: SOC estimation on FUDS testing dataset.
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Figure 16: SOC estimation on BJDST testing dataset.
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Kalman filter [29, 30]. ACKF means adaptive cubature
Kalman filter. PF refers to particle filter. GSA represents
Genetic simulated annealing algorithm [31, 32]. RBFNN
represents Radial Basis Function Neural Network [32, 33].
*e comparison between the test errors of the FUDS test set
and different methods is shown in the following Table 3.

*e test errors of the BJDST [32] test set are compared
with different methods in the following Table 4.

*ere are some good methods to reduce errors, such as
enhancing datasets and training deeper neural networks,
which have not been used. In addition, an attention
mechanism can better improve accuracy and reduce training
error and test error, which is not used in this paper. Future
work will be to use better methods to estimate SOC more
accurately.

6. Conclusions

*e structure of the improved multilayer perceptron algo-
rithm meets the need for SOC estimation of lithium-ion
batteries. *e convergence and accuracy of the algorithm are
accelerated by adding a Dropout layer and a BatchNorm-
alization layer to the full connection layer.

Meanwhile, this article compares the effects of the
Sigmoid activation function, tanh activation function, Relu
activation function, and Mish activation function on the
improved multilayer perceptron algorithm. Relu activation
function and Mish activation function are relatively accu-
rate. *e depth of the neural network is also a key factor
affecting algorithm performance. A block designed in this
article is the first layer, which contains the BatchNormali-
zation layer, a fully connected neural network layer, an
activation function layer, and a dropout layer. Blocks of
three to eleven layers are selected for comparison. Finally,
the 10-layer block is selected with relatively good network
depth. *e width of neural network has a significant in-
fluence on the performance of neural networks. *is article

compares the width of 50, the width of 80, the width of 120,
the width of 150, and the width of 300. A maximum width of
150 was selected. It is because maximum widths of 150 and
300 have very little effect on algorithm performance.
According to Occam’s Razor principle, the maximum width
is 150, which can not only reduce the complexity of the
algorithm but also reduce the training time, and meet the
requirements of SOC estimation for lithium-ion batteries.
Finally, relatively suitable network depth and network width
are selected to meet the needs of lithium-ion battery SOC
estimation.

*e algorithm designed during this article also can be
applied to many fields. *e algorithm during this paper can
be applied to the prediction of SOH, SOE, and also the
operation of an aero-engine field.

Data Availability

All data used to support the findings of the study are in-
cluded within the article.

Conflicts of Interest

*e authors declare no conflicts of interest.

References

[1] M. Wu, L. Qin, G. Wu, Y. Huang, and C. Shi, “State of charge
estimation of power lithium-ion battery based on a variable
forgetting factor Adaptive kalman filter,” Journal of Energy
Storage, vol. 41, Article ID 102841, 2021.

[2] M. Wu, L. Qin, and G. Wu, “State of charge estimation of
power lithium-ion battery based on an adaptive time scale
dual extend Kalman filtering,” Journal of Energy Storage,
vol. 39, Article ID 102535, 2021.

[3] Y. Liu, J. Li, G. Zhang, B. Hua, and N. Xiong, “State of charge
estimation of lithium-ion batteries based on temporal con-
volutional network and transfer learning,” IEEE Access, vol. 9,
Article ID 34177, 2021.

[4] J. Sobon and B. Stephen, “Model-free non-invasive health
assessment for battery energy storage assets,” IEEE Access,
vol. 9, Article ID 54579, 2021.

[5] W. Zhou, Y. Zheng, Z. Pan, and Q. Lu, “Review on the battery
model and SOC estimation method,” Processes, vol. 9, no. 9,
p. 1685, 2021.

[6] M. U. Ali, A. Zafar, S. H. Nengroo, S. Hussain, M. J. Alvi, and
H.-J. Kim, “Towards a smarter battery management system
for electric vehicle applications: a critical review of lithium-
ion battery state of charge estimation,” Energies, vol. 12, no. 3,
p. 446, 2019.

[7] D. Pan, H. Liu, D. Qu, and Z. Zhang, “Human falling de-
tection algorithm based on multisensor data fusion with
SVM,” Mobile Information Systems, vol. 2020, no. 7, 9 pages,
Article ID 8826088, 2020.

[8] C. Vidal, P. Malysz, P. Kollmeyer, and A. Emadi, “Machine
learning applied to electrified vehicle battery state of charge
and state of health estimation: state-of-the-art,” IEEE Access,
vol. 8, Article ID 52796, 2020.

[9] P. Shrivastava, T. Kok Soon,M. Y. I. Bin Idris, S. Mekhilef, and
S. B. R. S. Adnan, “Combined state of charge and state of
energy estimation of lithium-ion battery using dual forgetting
factor-based adaptive extended kalman filter for electric

Table 3: Test errors of different methods on FUDS dataset.

ID Methods RMSE
1 SVM 3.28
2 LSTM 2.49
3 SVM-PF 1.65
4 LSTM-ACKF 2.2
5 RNN 2.73
6 LSTM-PF 1.5
7 RNN-PF 1.25
8 MLP 0.96

Table 4: Test errors of different methods on BJDST dataset.

ID Methods RMSE
1 EKF 1.95
2 BPNN-GSA 0.95
3 ECM 3.01
4 ELM-GSA 0.76
5 RBFNN-GSA 1.12
6 MLP 0.68

Computational Intelligence and Neuroscience 11



vehicle applications,” IEEE Transactions on Vehicular Tech-
nology, vol. 70, no. 2, pp. 1200–1215, 2021.

[10] K. Laadjal and A. J. Marques Cardoso, “A review of super-
capacitors modeling, SoH, and SoE estimation methods: is-
sues and challenges,” International Journal of Energy Research,
vol. 45, no. 13, Article ID 18424, 2021.

[11] Y. Wang, J. Tian, Z. Sun et al., “A Comprehensive Review of
Battery Modeling and State Estimation Approaches for Ad-
vanced Battery Management Systems,” Renewable and Sus-
tainable Energy Reviews, vol. 131, 2020.

[12] Y. Song, D. Liu, H. Liao, and Y. Peng, “A Hybrid Statistical
Data-Driven Method for On-Line Joint State Estimation of
Lithium-Ion Batteries,” Applied Energy, vol. 261, 2020.

[13] W. Shi, Q. Li, R. Zhang et al., “QoE ready to respond: a QoE-
aware mec selection scheme for DASH-based adaptive video
streaming to mobile users,” in Proceedings of the 29th ACM
International Conference on Multimedia (MM ’21), China,
October 2021.

[14] Y. Shen, “A Combined State Space Model with Adaptive
Neural Compensator Based State of Charge Determination
Method for Lithium-Ion Batteries,” ElectrochimicaActa,
vol. 336, 2020.

[15] P. Shrivastava, T. K. Soon, M. Y. I. B. Idris, and S. Mekhilef,
“Overview of model-based online state-of-charge estimation
using Kalman filter family for lithium-ion batteries,” Re-
newable and Sustainable Energy Reviews, vol. 113, Article ID
109233, 2019.

[16] M. Schmid, H.-G. Kneidinger, and C. Endisch, “Data-driven
fault diagnosis in battery systems through cross-cell moni-
toring,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1829–1837,
2021.

[17] M. Naguib, P. Kollmeyer, and A. Emadi, “Lithium-ion battery
pack robust state of charge estimation, cell inconsistency, and
balancing: review,” IEEE Access, vol. 9, Article ID 50570, 2021.

[18] Y. Liu, X. Shu, H. Yu et al., “State of charge prediction
framework for lithium-ion batteries incorporating long short-
term memory network and transfer learning,” Journal of
Energy Storage, vol. 37, Article ID 102494, 2021.

[19] S. Li and P. Zhao, “Big data driven vehicle battery manage-
ment method: a novel cyber-physical system perspective,”
Journal of Energy Storage, vol. 33, Article ID 102064, 2021.

[20] J.-H. Lee, H.-S. Kim, and I.-S. Lee, “State of charge estimation
and state of health diagnostic method using multilayer neural
networks,” in Proceedings of the 2021 International Conference
on Electronics, Information, and Communication (ICEIC),
pp. 1–4, Jeju, Republic of Korea, February 2021.

[21] G. Javid, D. OuldAbdeslam, and M. Basset, “Adaptive online
state of charge estimation of EVs lithium-ion batteries with
deep recurrent neural networks,” Energies, vol. 14, no. 3,
p. 758, 2021.

[22] I. B. Espedal, A. Jinasena, O. S. Burheim, and J. J. Lamb,
“Current trends for state-of-charge (SoC) estimation in
lithium-ion battery electric vehicles,” Energies, vol. 14, no. 11,
p. 3284, 2021.

[23] K. Park, Y. Choi, W. J. Choi, H. Y. Ryu, and H. Kim, “LSTM-
based battery remaining useful life prediction WithMulti-
channel charging profiles,” IEEE Access, vol. 8, Article ID
20786, 2020.

[24] T. Mamo and F.-K. Wang, “Long short-term memory with
attentionmechanism for state of charge estimation of lithium-
ion batteries,” IEEE Access, vol. 8, Article ID 94140, 2020.

[25] S. Jo, S. Jung, and T. Roh, “Battery state-of-health estimation
using machine learning and preprocessing with relative state-
of-charge,” Energies, vol. 14, no. 21, p. 7206, 2021.

[26] M. A. Hannan, D. N. T. How, M. B. Mansor, M. S. Hossain
Lipu, P. Ker, and K. Muttaqi, “State-of-Charge estimation of
Li-ion battery using gated recurrent unit with one-cycle
learning rate policy,” IEEE Transactions on Industry Appli-
cations, vol. 57, no. 3, pp. 2964–2971, 2021.

[27] Y. He, M. Li, Z. Meng et al., “An overview of acoustic emission
inspection and monitoring technology in the key components
of renewable energy systems,” Mechanical Systems and Signal
Processing, Article ID 107146, 2021.

[28] B. L. Bairwa, A. Soni, and K. Pareek, “Higher order equivalent
circuit model analysis of lithium ion battery for electric ve-
hicle,” in Proceedings of the ATwo-DayConference on Flexible
Electronics for Electric Vehicles, Manipal, India, March 2020.

[29] H. Ren, H. Zhang, Z. Gao, and Y. zhao, “A robust approach to
state of charge assessment based on moving horizon optimal
estimation considering battery system uncertainty and aging
condition,” Journal of Cleaner Production, vol. 270, Article ID
122508, 2020.

[30] L. Chen, Y. Chen, A. M. Lopes, H. Kong, and R. Wu, “State of
charge estimation of lithium-ion batteries based on fuzzy
fractional-order unscented kalman filter,” Fractal and Frac-
tional, vol. 5, no. 3, p. 91, 2021.

[31] K. Wang, X. Li, L. Gao, P. Li, and S. M. Gupta, “A genetic
simulated annealing algorithm for parallel partial disassembly
line balancing problem,” Applied Soft Computing, vol. 107,
Article ID 107404, 2021.

[32] M. S. Hossain Lipu, M. A. Hannan, A. Hussain, M. H. Saad,
A. Ayob, andM. N. Uddin, “Extreme learning machine model
for state-of-charge estimation of lithium-ion battery using
gravitational search algorithm,” IEEE Transactions on In-
dustry Applications, vol. 55, no. 4, pp. 4225–4234, 2019.

[33] Y. Yang, H. Tu, L. Song, L. Chen, D. Xie, and J. Sun, “Research
on accurate prediction of the container ship resistance by
RBFNN and other machine learning algorithms,” Journal of
Marine Science and Engineering, vol. 9, no. 4, p. 376, 2021.

12 Computational Intelligence and Neuroscience


