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Accurate image feature point detection andmatching are essential to computer vision tasks such as panoramic image stitching and
3D reconstruction. However, ordinary feature point approaches cannot be directly applied to fsheye images due to their large
distortion, which makes the ordinary camera model unable to adapt. To address such a problem, this paper proposes a self-
supervised learningmethod for feature point detection andmatching on fsheye images.Tismethod utilizes a Siamese network to
automatically learn the correspondence of feature points across transformed image pairs to avoid high annotation costs. Due to
the scarcity of the fsheye image dataset, a two-stage viewpoint transform pipeline is also adopted for image augmentation to
increase the data variety. Furthermore, this method adopts both deformable convolution and contrastive learning loss to improve
the feature extraction and description of distorted image regions. Compared with traditional feature point detectors andmatchers,
this method has been demonstrated with superior performance on fsheye images.

1. Introduction

In recent years, visual feature extraction and keypoint
matching have been widely applied in computer vision tasks,
such as motion and behavior analysis [1, 2] and visual lo-
calization [3], which are essential to autonomous driving
vehicles. In autonomous driving perception tasks, the tra-
ditional way to obtain environmental information is to use a
narrow-angle pinhole camera, which yet has a limited feld of
view (FOV), and thus leads to a large range of blind spots.
On the one hand, when the camera pose changes, the limited
viewing angle can lead to the loss of feature points. On the
other hand, the small FOV of the narrow-angle pinhole
camera can be easily occupied by dynamic vehicles and
pedestrians, resulting in incorrect pose estimation.

In contrast, the fsheye camera can perceive a wide range
of a scene, and even obtain visual information about the
hemispheric domain theoretically [4]. Figure 1 shows the
visual diference between fsheye images and standard im-
ages. Te middle part of the fsheye image protrudes and the
part on the image boundary is compressed, leading to sig-
nifcantly varied resolution across the image. Tis distortion

characteristic is a particular challenge for vision tasks such as
keypoint matching and object detection. Standard images
are with a consistent resolution and look closer to the real
world. Usually, fsheye images should be rectifed before
applying conventional image-processing algorithms.

Te large distortion in the fsheye image is attributed to
the unconventional fsheye lens, which corresponds to a
nonlinear projection as shown in Figure 2. In the pinhole
projection model, the perspective projection of a point P
from the 3D camera coordinate system X-Y-Z to the im-
aging plane us-vs (denoted as uI-vI in the fsheye model) can
be simply formulated by

ρ � f · tan θ, (1)

where ρ denotes the distance between the projected point p′
on the imaging plane and the optical axis while f is the focal
length. Te angle of incident light is denoted as θ. However,
the nonlinear projection of a fsheye lens is more complex
and can be expressed by diferent mathematical models [4]
according to the design and manufacturing, such as ste-
reographic projection, equidistance projection, equisolid
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angle projection, and orthogonal projection, respectively,
interpreted as follows:

ρ � 2f · tan
θ
2

,

ρ � f · θ,

ρ � 2f · sin
θ
2

,

ρ � f · sin θ.

(2)

Te spatially varying distortion induced by the fsheye
lens leads to strong appearance variations of the objects,
especially for those in close-by surroundings [5]. Terefore,
the processing algorithms for fsheye images are much more
sophisticated, which are comparatively underexplored than
those on standard images. However, the research about
processing fsheye images is of great practical signifcance, as
fsheye cameras have been widely applied inmany felds such
as navigation, road and tunnel inspection, and video sur-
veillance, with details stated as follows. (1) Navigation:
mobile robot navigation with panorama vision is one of the
focuses of current researches. Te perception module
consisting of fsheye cameras can obtain a surround-view
perception of the environment at a reduced number of
perception sensors, and beneft the subsequent tasks such as
trajectory tracking and navigation [6]. (2) Road and tunnel

inspection. Health assessments of infrastructures are es-
sential for construction tasks. For surface damage detection
with a coverage of 360°, techniques with panorama vision
such as fsheye cameras are prevalent [7–9], which helps to
avoid serious incidents and thus ensure public safety. (3)
Video surveillance: the hemispherical lens is commonly
applied in modern surveillance devices [5] to provide a large
FOV containing as much information as possible from the
monitored environments. Fisheye cameras are also highly
favored in tasks related to autonomous driving and 3D
reconstruction, where accurate keypoint matching lays a
solid foundation for follow-on vision tasks. However, due to
signifcant distortion, general camera models (such as the
pinhole model) and ordinary keypoint descriptors cannot be
well applied in processing fsheye camera images (Figure 3).

Currently, research works on fsheye images mostly
focus on undistortion schemes [10, 11]. In the image reg-
istration task, these schemes are utilized to undistort fsheye
images, on which the keypoints are extracted and matched.
However, the undistortion process in such methods will
inevitably give rise to feld-of-view loss and resampling
artifacts [5]. Let alone, very few pioneer researches have
explored keypoint detection and matching, which can di-
rectly apply to fsheye images. Additionally, uncertainties or
noises in images can also infuence the detection. Efective
solutions are image preprocessing methods such as fuzzy
logic-based ones [12, 13].

Figure 1: Te signifcant visual distortion of the fsheye image (a) and compared to that of the standard image (b).
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Figure 2: Projection models of the pinhole camera (a) and fsheye lens camera (b).
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To date, keypoint models can be mainly categorized into
traditional and deep learning-based methods. Compared to
traditional ones, descriptors generated by deep learning can
interpret much richer image information. Under the
background that deep learning-based methods gradually
occupy themainstream, the research of fsheye images in this
feld currently encounters the following problems:

(i) Computer vision algorithms based on supervised
learning require large-scale accurately annotated
images. However, the scarcity of well-labeled fsheye
image datasets limit the development of corre-
sponding image-processing algorithms based on
supervised learning.

(ii) Te nonlinear projection of the fsheye lens leads to
the large distortion of images. Terefore, image-
processing algorithms based on the pinhole camera
model cannot be directly applied to fsheye images. It
is necessary to create algorithms to extract features
according to the characteristics of fsheye images.

Considering the problems, we propose a self-supervised
learning method for fsheye image keypoint detection and
matching, whose performance surpasses the traditional
models.

Our contributions are summarized as follows:

(i) We introduce a keypoint detection and matching
approach for fsheye images based on self-super-
vision within one round of learning

(ii) We present an image transform pipeline to simulate
the viewpoint change of fsheye images, which can
help the self-supervised learning of keypoint cor-
respondences across images

(iii) We integrate both the deformable convolution and
the contrastive learning loss into the network to
strengthen the feature learning on fsheye images

(iv) We conduct comprehensive evaluations on the
WoodScape fsheye dataset and demonstrate that

our method outperforms the baseline, as well as the
traditional methods such as SIFT, SURF, ORB,
BRISK, KAZE, and AKAZE.

Te remainder of this work is organized as follows:
Section 2 gives an overview of related work. Section 3 in-
troduces the fsheye image viewpoint transform scheme, and
the self-supervised learning approach for fsheye image
keypoint detection and description. Section 4 shows the
experimental results. Section 5 concludes this work.

2. Related Work

Here, research studies related to this work are reviewed in
three aspects: (a) handcrafted keypoint models, (b) learning-
based keypoint models, and (c) fsheye image undistortion
approaches.

2.1. Handcrafted Keypoint Models. Traditional feature point
detection methods include FAST [14], SIFT [15], SURF [16],
ORB [17], KAZE [18], and AKAZE [19]. Te FAST is a
simple and efcient detector by comparison only with the
surrounding pixels [14]. However, it cannot characterize
feature points. Unlikely, the SIFT includes a descriptor of
local image features that are invariant to rotation, scaling,
and brightness changes, and also maintain a stability to a
certain extent for angle changes, afne transforms, and noise
[15]. However, its computational load is high. Te SURF is a
simplifed version of SIFT with gradient approximation by
Haar-like flters [16]. However, its advantages on runtime
are still limited. Te ORB algorithm is based on the di-
rectional FAST feature detection and the BRIEF feature
description [17]. KAZE [18] and AKAZE [19] deploy ap-
proximations to speed up calculation in nonlinear scales. It
enjoys a fast processing speed and can be applied in sce-
narios with high real-time requirements.

2.2. Learning-Based Keypoint Models. Simo-Serra et al.
proposed a simple scheme of a Siamese network consisting
of two same branches to learn the discriminating repre-
sentation of a local patch [20]. By mining both positive and
negative samples, they achieved high performance in the
patch description. Te LIFT [21] uses a spatial transformer
layer to rectify the image patch for feature point detection,
description, and orientation estimation. However, it is
trained in multiple steps and requires the supervision from
structure from motion (SFM) systems. Te QuadNetworks
[22] trains CNNs to rank points in a transform-invariant
fashion. Tey can perform both single-modal and cross-
modal interest point detection, yet without providing de-
scriptors. Te TILDE [23] selects keypoint candidates across
multiple images from the same viewpoint to learn regressors,
which are robust against drastic image changes by weather
and lighting conditions. However, their approach is not
explicitly trained for rotation and scaling invariance. Te
SuperPoint [24] built a self-supervised framework to train
both detectors and descriptors for interest points, which are
extracted from semidense grids. Tis method is frst trained

match=320

Unwarped
Image

match=152

Fisheye
Image

Figure 3: An example of image rotation. Te number of matched
points by SIFT on unwarped images is 320 (a), while on fsheye
images (b), it is only 152, with a reduction of more than a half.
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on synthetic data and then on real images, resulting in two
tedious rounds of training. Te UnSuperPoint [25] was
proposed as an improvement of the SuperPoint. It predicts
keypoint locations by regression, and introduces a new loss
function to train point detectors within a Siamese archi-
tecture in a self-supervised manner. It requires only one
round of training and does not require the generation of
pseudo ground truth points. Nevertheless, the above
methods are mainly applied to pinhole camera images.

2.3. Fisheye Image Undistortion. Te fsheye image undis-
tortion is to correct distortions of the image induced by the
nonlinear characteristics of the lens. Te correction process
starts from the optical imaging model, and reconstructs the
incident ray using the camera parameters obtained by
the calibration. Ten, it builds a spatial mapping from the
spherical perspective projection to the plane (or cylinder)
projection [4]. Kannala and Brandt [26] proposed a fexible
radially symmetric projection model with circular control
points to improve the calibration accuracy. It is easy to
expand and versatile and can be applied to cameras of both
narrow and wide-angle lenses. Hartley and Kang [27]
proposed a new scheme that does not establish any specifc
distortion model, but calibrates the radial distortion in a
parameterless manner. However, this scheme is relative
sensitive to noise. Wang et al. [28] proposed an extremely
wide-angle camera model which complies with the equi-
distant projection principles. Based on that, it also gives four
calibration methods that can be applied to a variety of
application scenarios with high accuracy.

In this paper, we also propose a deep learning-based
approach for feature point detection and description. Our
approach is based on the UnsuperPoint [25] yet difers from
it in three points. Firstly, based on the fsheye image
undistortion, we adopt an image transform pipeline for data
augmentation which is consistent with the viewpoint change
of fsheye images, and thus benefcial for the learning of
keypoint correspondences in real scenes. Furthermore, we
integrate both deformable convolution and contrastive
learning loss to enhance the feature learning on fsheye
images, yielding more discriminative keypoint descriptors.

3. Proposed Approach

3.1. Fisheye Image Viewpoint Transform. As in [25], the self-
supervised learning of keypoints requires transformed image
pairs. However, the direct homography transform used by
pinhole camera images cannot be applied to fsheye images
due to their nonlinear projection characteristics. Terefore,
we adopt a fsheye image viewpoint transform, as shown in
Figure 4. Te source fsheye image is frstly undistorted
according to the projection model. A homography trans-
form is then applied on the unwarped image. After that, the
image is further warped into the target fsheye image, which
can be considered as the source fsheye image undergoing
viewpoint change.

More specifc steps about this process are described here:
we defne the 2D spatial mapping from the fsheye image

domain I2 to the unwarped image domain S2 as:
F: I2⟶ S2. Tus, the inverse operation F− 1 denotes the
mapping from the unwarped image domain to the fsheye
image domain:F− 1: S2⟶ I2. Te homography transform
of an ordinary image S ∈ S is denoted as: SH � H(S). With
the operations described, we can generate a new fsheye
image I′ from the source I in following steps:

I′ � W(I) � F
− 1

(H(F(I))). (3)

Te mapping F varies with the undistortion scheme.
Trough the mapping W, we can obtain the paired fsheye
images before and after the viewpoint transform. It should
be noted that although the method is based on an undis-
tortion scheme, the fnal output is still a fsheye image.

3.2. ImageWarping Scheme. Here, we assume both extrinsic
and intrinsic parameters of the fsheye camera are given.
According to the spherical projection model, pixels on the
fsheye images are frstly projected onto the spherical surface
of a unit radius. Tus, points can be represented with 3D
coordinates in the camera coordinate system. In a further
step, the points are converted into the world coordinate
system through the camera’s extrinsic parameters. After
that, the pinhole camera model is used to project the 3D
points back to the ordinary image plane coordinates. In this
way, the unwarped image after distortion correction can be
obtained. Practically, to avoid image sparsity, each pixel on
the new image is inversely transformed to the corresponding
subpixel position on the original image, and the bilinear
interpolation is used for sampling.

In this work, the camera is oriented in the horizontal
direction. Te image coordinate system is modifed by lo-
cating its origin at the image center and changing the unit to
the meter. Given a pixel with coordinates ps � (us, vs) on the
unwarped image SH, which has undergone the homography
transform H, we frst use the pinhole camera model to
project it onto the cylindrical surface and further convert it
to a point P on a spherical surface with a unit radius.

Unwarped ImageFisheye Image

Viewpoint Transformed
Fisheye Image

Homography Transformed
Unwarped Image

W H

F

F–1

Figure 4: Overview of the fsheye image viewpoint transform.
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According to [29], its 3D coordinates can be formulated as
follows:
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with θs � arctanus/f, and f denotes the focal length.
Ten, we use the fsheye camera model to project the

point from the 3D space back to the image coordinates p′ �
(uI, vI) on the new fsheye image I′ [26]. Te projection
process in the fsheye camera model is shown in Figure 5.
Te coordinates of point p′ can be calculated as follows:
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ρ(θ) � a1θ + a2θ
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+ · · · + anθ
n
,
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(6)

Te coefcients a1, . . . , an can be provided by the fsheye
camera projection model.

3.3. Self-Supervised Keypoint Learning. Te fsheye view-
point transform is incorporated into the self-supervised
keypoint learning architecture as shown in Figure 6. Tis
architecture utilizes a Siamese structure with a twin of
branches. Te input of branch A is the source image, while
for branch B it is the viewpoint-transformed version of the
source image by mapping W. Both images undergo a
random nonspatial transform such as color conversion or
noising. Tereafter, a shared keypoint network is applied to
predict keypoint scores, relative positions, and descriptors
on both images. Prediction errors of the two branches are
calculated in the loss function to guide the network training.

3.3.1. Keypoint Detection and Description Network. Te
keypoint detection and description network used in the self-
supervised learning architecture is based on the work [16]
and its parameters are listed in Table 1.Tis network consists
of a backbone and three output heads. Te RGB image is
frstly fed into the backbone to generate a small feature map
with a size of only 1/8 of the input image. Te feature map is
further processed by the subsequent heads to output three
tensors with the same size, each in the representation of
scores, relative positions, and descriptors of keypoints, re-
spectively. As can be seen, each score, relative position, and
descriptor in the output corresponds to an 8 × 8 region of
the input image.

Since the visual features are nonuniformly scaled due to
the distortion on the fsheye image, it will be inappropriate to

apply the same convolutions on diferent image regions.
Terefore, we apply the deformable convolution in the
keypoint network based on the fact that it has a stronger
adaptability than ordinary convolution to complex geo-
metric deformation. Specifcally, in the convolutional layers
of both backbone and output heads, we adopt the de-
formable convolution so that the model can better learn the
features in the distorted image.

Additionally, for each convolutional layer, the stride is
set to 1 and the kernel size equals 3. All convolutional layers
are followed by batch normalization and an activation
function of Leaky ReLU, except the last layer in each head.

3.3.2. Learning Loss. Te learning loss considers the simi-
larity of corresponding points on their positions, scores, and
descriptors. Simultaneously, it encourages the spatially
uniform distribution, repeatability of feature points, and
decorrelation between nonidentical point descriptors, sim-
ilar to [25]. Te total loss can be decomposed into four parts:
the self-supervised loss Lssp, the uniform position distri-
bution loss Luni, the descriptor correspondence loss Ldesc,
and the descriptor decorrelation loss Ldecor, interpreted as
follows:

L � αsspLssp + αuniLuni + αdescLdesc + αdecorLdecor, (7)

where αssp/uni/ de sc/ de cor indicates the corresponding weight.
Te self-supervised loss Lssp can be further interpreted as

follows:

Lssp � αposLpos + αscoreLscore + αrepLrep, (8)

where the position loss Lpos is designed to minimize the
Euclidean distance of paired points, thus ensuring that each
pair corresponds to the same point in the original image.Te
score loss Lscore is to ensure an identical score prediction for
point pairs, specifcally by minimizing the squared score
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Figure 5: Fisheye camera projection model.
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diference. Te repeatability loss Lrep is to ensure that paired
points with a close distance have a higher score, while pairs
of far away points have a lower score. Given the predicted
scores sA and sB by the twin branches A and B of the Siamese
learning architecture for the i-th point pair, the loss Lrep can
be calculated as follows:

Lrep � 􏽘
i

sA + sB

2
di − d􏼐 􏼑, (9)

where di indicates the distance between the i-th paired
points, while d represents the mean distance of all point
pairs.

Te loss Luni is to ensure a uniform distribution of
predicted keypoints within the grid, rather than concen-
trating on the grid boundary. Tus, it is represented by
summed diferences between the distribution of predicted

point coordinates and a uniform distribution. Te loss Ldecor
aims to improve the compactness of descriptor by mini-
mizing the correlation coefcients between nonidentical
point descriptors within the same Siamese branch.
Te detailed calculation for Lrep and Ldecor can be referred to
[25].

Since the spatial relationship of feature point pairs is
described by the complex mapping W, the descriptor cor-
respondence cannot be measured by linear operations. In-
spired by the recent progress in contrastive learning of visual
representation [30], we reinterpret the loss Ldes as follows:

Ldes � 􏽘
i

−log
exp sim fA

i , fB
j􏼐 􏼑􏼐 􏼑

􏽐k1[k!�j]exp sim fA
i ,fB

k( )( )
, (10)

with

sim f i, fj􏼐 􏼑 �
f⊤i · fj

τ f i

����
���� · fj

�����

�����
, (11)

where fA
i and fB

j denote the i-th and j-th descriptor pre-
dicted by branch A and B, respectively. Here, (fA

i , fB
j ) is

considered as a positive pair.Te one-indicator 1[k!�j] is only
valid when k is not equal to j. Since there are 8 × 8 keypoints
predicted for each image, a keypoint i on source image can
only match one keypoint j on target image, while the rest 63
keypoints are considered as negatives for i. Tus, it ensures a
nonzero denominator. Te temperature τ is a hyper-
parameter, with a small value to reduce the impact of hard
negative samples during the descriptor learning.

4. Experiment and Analysis

4.1. Experimental Setup

4.1.1. Dataset. Te proposed self-learning architecture for
keypoint detection andmatching is evaluated on the released
FV set of the WoodScape fsheye data [29], which consists of

Branch ANon-spatial
Augmentation Only for Training

Original Image
Fisheye Image

(3 * h * w)
(1+2+256) * h/8 * w/8 Score,

rel. Position,
DescriptorBranch A

Keypoint
Network Loss

Function
Homography

Estimation
Branch B Score,

rel. Position,
Descriptor(1+2+256) * h/8 * w/8

Transformed Image

Non-spatial
Augmentation Branch B

Viewpoint Transformed Image

W

W

F

H

F–1

F–1

F–1

Figure 6: Overview of proposed self-learning architecture.Te source fsheye image is frstly transformed into a viewpoint-changed version
by undistortion, homography transformation, and warping, respectively. Te keypoint network is applied on both source and transformed
fsheye images to detect keypoints, interpreted by scores, relative positions, and descriptors. Based on the matching of keypoints, the
homography transform between two fsheye images is further estimated and the losses are calculated (during training).

Table 1: Parameters of the keypoint network. “DConv” denotes the
deformable convolution. All convolutional layers are followed by
batch normalization and an activation function of leaky ReLU,
except the last layer in each head.

Module (kernel size) Channel (in, out) Stride

Backbone

2×DConv (3× 3) (3, 32) 1
1×MaxPool (3× 3) (32, 32) 2
2×DConv (3× 3) (32, 64) 1
1×MaxPool (3× 3) (64, 64) 2
2×DConv (3× 3) (64, 128) 1
1×MaxPool (3× 3) (128, 128) 2
2×DConv (3× 3) (128, 256) 1
1×DConv (3× 3) (256, 128) 1

Head 1
1×DConv (3× 3) (128, 256) 1
1×DConv (3× 3) (256, 1) 1

1× sigmoid (1, 1) 1

Head 2
1×DConv (3× 3) (128, 256) 1
1×DConv (3× 3) (256, 2) 1

1× sigmoid (2, 2) 1

Head 3 1×DConv (3× 3) (128, 256) 1
1×DConv (3× 3) (256, 256) 1
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2037 training images and 442 test images collected by the
fsheye camera installed on one vehicle. Te camera’s in-
trinsic and extrinsic parameters are also calibrated. Tere-
fore, fsheye images can be undistorted through the image
unwarping process introduced in Sec. 3.2. On the Wood-
Scape dataset, the polynomial ρ(θ) in equation (10) is set
with an order of n � 4 with given coefcients a1 ∼ a4.

4.1.2. Implementation. Te proposed self-learning archi-
tecture is implemented with PyTorch on a desktop with an
Intel Xeon CPU of 2.5GHz and an Nvidia 2080Ti GPU. Te
network is pretrained on the ordinary images in MS COCO
dataset [31] and further trained on the WoodScape fsheye
images. During the pretraining, ordinary homography
transforms are utilized to generate paired images. In further
training, a random mapping W is applied for target fsheye
image generation. Te involved homography transform in
mapping W consists of scaling, rotation, and perspective
transform, which are uniformly sampled with a margin of
0.1, π/2, and 0.1, respectively. Te weights for loss terms are
empirically set to αrep � 1, αpos � 1, αscore � 2, αuni � 100,
αdes � 0.001, and αde cor � 0.03. We adopt the ADAM as the
optimizer. Te whole model is trained for ten epochs with
data shufing, a batch size of 16, and a learning rate of
0.000025. All images are resized to a uniform size of 240 ×

320 pixels for processing efciency.

4.1.3. Metrics. Te evaluation metrics adopted in experi-
ments include the repeatability score (RS), the localization
error (LE), the matching score (MS), and the homography
accuracy (HA). Te RS metric denotes the ratio between the
number of points with correspondence and the total number
of predicted points. A correspondence is established if points
predicted from both images are located within the threshold
ε � 3 by warping them into the same image plane. Te LE
metric is the mean distance between all matched point pairs
according to the descriptors. Te MS denotes the ratio
between the number of good matches and the total number
of points predicted in one image. A good match is defned as
two corresponding points, which are also the nearest
neighbors in descriptor space. To calculate HA, a source
fsheye image is frstly unwarped by F− 1. Te average
distance between the image corners transformed by the
estimated homography, and those transformed by the
ground truth homography is calculated and defned as
Homography error (HE). Te HA is the ratio between the
number of estimated homographies under a specifed HE
threshold (ε � 3) and the total number of homographies.

4.2. Exploration on Hyperparameter τ. Te temperature
parameter τ has a large impact on the descriptor corre-
spondence loss Ldes. For hard negative samples, which can be
easily classifed as false positives, a smaller τ will reduce their
weight during the learning. However, with an inappropriate
small τ, true positives initialized with faraway positions can
be neglected at the beginning of the training. To search for an
appropriate temperature parameter, we train the network

with diferent values of τ, and compare their test perfor-
mance. Te experimental results are reported in Table 2. As
can be seen, with the setting of τ � 0.05, the network ach-
ieves the best performance in terms of all metrics. Tus, we
choose τ � 0.05 as the optimal temperature parameter used
in subsequent experiments.

4.3. Ablation Study on Model Setup. To verify the beneft of
viewpoint transform (VT), deformable convolution (DC),
and contrastive learning loss (CL), we conduct ablation
studies on four diferent setups of the proposed network.Te
baseline (B) adopted in the experiment is the naive approach
from work [25].

Test results are reported in Table 3. Obviously, by directly
applying the baseline on fsheye images without viewpoint
transform, the mean location error of corresponding points
is relatively high, which is about 5 pixels and exceeds the
default correspondence threshold (ε � 3). Integrated with
the viewpoint transform of fsheye images, the mean location
error is reduced by about 2 pixels. Te contrastive learning
loss further yields a promotion on other metrics within the
range of 0.18 to 0.24. With all setups, the proposed archi-
tecture achieves the best performance in terms of all metrics,
demonstrating their improvements over the baseline.

4.4. Comparison with Nonlearning-Based Approaches.
Here, we compare our architecture with other nonlearning-
based keypoint approaches including SIFT, SURF, ORB,
BRISK, KAZE, and AKAZE. Evaluation metrics are the same
as in previous experiments. For SIFT, SURF, ORB, BRISK
KAZE, and AKAZE, we directly use their implementation
provided by OpenCV. To explore the performance of
compared approaches under diferent challenging scenarios,
we also add the following preprocessing operations to test
images, respectively.

(i) Contrast change: random change in image bright-
ness, saturation, and hue with up to 40%, 40%, and
20%, respectively

(ii) Motion blur: blur fltering with a random flter size
of up to 15 pixels

(iii) Random noise: Gaussian noise with a variance
randomly sampled from 30 to 70

For fairness, the viewpoint transform applied on one test
image is the same across all scenarios. Test results are re-
ported in Tables 4–6, respectively.

From the experimental results, it is obvious that our
proposed approach achieves the best matching score and
homography accuracy in scenarios with contrast change and
motion blur. It also achieves comparable results with the
top-ranked ORB and BRISK in terms of location error and
repeatability score metrics. Additionally, it can be seen that
the repeatability of the proposed approach is relative sen-
sitive to noise. We assume that the image noise afects the
keypoint selection in the proposed approach to some extent.
However, it still achieves the second best on the metric of
homography accuracy and matching score, only with minor
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gaps to the top-ranked SIFT. It is also noted that the pro-
posed approach achieves a much smaller location error
(second best) than SIFT. Test examples in diferent scenarios
are shown in Figure 7. Considering the comprehensive

performance, the proposed approach shows a relatively high
robustness against contrast change, motion blur, and noise.

Furthermore, we present the feature detection and de-
scription time of evaluated keypoint models in Table 7. As

Table 2: Test results of networks trained by a diferent temperature parameter τ. An up-arrow indicates that higher values are better. Te
best values are denoted in bold.

Temperature RS ↑ LE ↓ HA ↑ MS ↑
τ � 0.03 0.33 2.76 0.39 0.36
τ � 0.05 0. 5 2.7 0.42 0. 9
τ � 0.1 0.31 2.75 0.37 0.35
τ � 0.5 0.26 2.79 0.31 0.24

Table 3: Ablation study on diferent confgurations of the proposed approach. Te superscript ∗ denotes that the results are obtained at a
threshold of 5 pixels. In the naive baseline, a hinge loss is adopted instead of the contrastive learning loss to learn descriptor correspondence.
Te best values are denoted in bold.

B VT CL DC RS ↑ LE ↓ HA ↑ MS ↑
✓ — 4.98∗ — —
✓ ✓ 0.17 2.83 0.24 0.15
✓ ✓ ✓ 0.35 2.73 0.37 0.39
✓ ✓ ✓ ✓ 0.41 2.5 0.41 0.4 

Table 4: Test of keypoint models under contrast change. Best and second best are denoted in bold and italics.

Model RS ↑ LE ↓ HA ↑ MS ↑
SIFT 0.40 3.57 0.24 0.32
SURF 0.39 3.78 0.26 0.34
ORB 0.45 2.46 0.17 0.16
BRISK 0.48 2.98 0.20 0.27
KAZE 0.37 2.79 0.27 0.35
AKAZE 0.35 2.93 0.19 0.20
Ours 0.43 2.59 0. 8 0. 9

Table 5: Test of keypoint models under motion blur. Best and second best are denoted in bold and italics.

Model RS ↑ LE ↓ HA ↑ MS ↑
SIFT 0.42 3.61 0.23 0.40
SURF 0.43 3.85 0.25 0.39
ORB 0.40 2.56 0.09 0.09
BRISK 0.44 2.69 0.12 0.17
KAZE 0.36 2.98 0.22 0.29
AKAZE 0.33 3.03 0.10 0.14
Ours 0.45 2.68 0. 4 0.41

Table 6: Test of keypoint models under noise. Best and second best are denoted in bold and italics.

Model RS ↑ LE ↓ HA ↑ MS ↑
SIFT 0.41 3.49 0. 7 0. 9
SURF 0.39 3.77 0.31 0.31
ORB 0.40 2.55 0.15 0.11
BRISK 0.4 2.88 0.19 0.15
KAZE 0.34 2.65 0.23 0.24
AKAZE 0.28 2.78 0.11 0.17
Ours 0.33 2.61 0.33 0.32
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can be seen, the ORB approach is the fastest among all
handcrafted keypoint models, only requiring 0.06 second to
process one frame. By running on the GPU platform, our
proposed approach is also able to run in real time, with only
0.022 second per frame. Also, we calculate the value of
FLOPs (foating point operations) and the number of pa-
rameters of our network, which are 7.4G and 3.7M, re-
spectively, implying that our network is a relatively
lightweight model.

5. Conclusions and Future Work

In this work, we propose a self-supervised learning archi-
tecture to address the challenging task of keypoint detection
and matching on fsheye images. By integrating the view-
point transform pipeline, the deformable convolution, and
the contrastive learning loss, our method outperforms the
baseline by a large margin. Trough extensive experiments

on challenging scenarios such as contrast change, motion
blur, and noise, the comprehensive performance of the
proposed approach is also demonstrated robust in terms of
location error, homography accuracy, and matching score,
compared to handcrafted models. As a direction of our
future researches, we tend to integrate a more accurate and
learnable undistortion scheme, which is free from the de-
pendence on camera calibration parameters. Another di-
rection is to include the multiscale image features to further
improve the performance of the proposed approach.
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Figure 7: Examples of qualitative results in scenarios of contrast change (1st column), motion blur (2nd column), and noise (3rd column).
Correct matches are linked by green lines while false matches are in red.

Table 7: Feature detection and description time of compared keypoint models. Superscript ∗ denotes utilization of GPU.

Model SIFT SURF ORB BRISK KAZE AKAZE Ours∗

Time (s) 0.2 0.18 0.06 0.27 0.4 0.072 0.022
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