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The cluster evaluation process is of great importance in areas of machine learning and data mining. Evaluating the clustering
quality of clusters shows how much any proposed approach or algorithm is competent. Nevertheless, evaluating the quality of any
cluster is still an issue. Although many cluster validity indices have been proposed, there is a need for new approaches that can
measure the clustering quality more accurately because most of the existing approaches measure the cluster quality correctly when
the shape of the cluster is spherical. However, very few clusters in the real world are spherical. Therefore, a new Validity Index for
Arbitrary-Shaped Clusters based on the kernel density estimation (the VIASCKDE Index) to overcome the mentioned issue was
proposed in the study. In the VIASCKDE Index, we used separation and compactness of each data to support arbitrary-shaped
clusters and utilized the kernel density estimation (KDE) to give more weight to the denser areas in the clusters to support cluster
compactness. To evaluate the performance of our approach, we compared it to the state-of-the-art cluster validity indices.

Experimental results have demonstrated that the VIASCKDE Index outperforms the compared indices.

1. Introduction

Clustering approaches are unsupervised learning techniques
that separate data into groups called clusters according to the
similarities and dissimilarities among the data [1, 2]. The
DBSCAN [3], kmeans [4], BIRCH [5], Spectral Clustering
[6], Agglomerative Clustering [7], HDBSCAN [8], Affinity
Propagation [9], and OPTICS [10] are some examples of
them, and they are used in many fields such as pattern
recognition [11-13], machine learning [14-16], data mining
[17, 18], web mining [1, 19], bioinformatics [20, 21], and
streaming data mining [22, 23]. On the other hand, mea-
suring the performance of any proposed clustering approach
is also an important issue because each algorithm has its
special point of view, and the results of each clustering
technique vary. Therefore, to overcome this problem, cluster
validation analysis or cluster validation indices have
emerged. These approaches are generally used for two
purposes, which are measuring the performance of clus-
tering algorithms and contributing to clustering algorithms
as a guide by finding the optimum number of clusters.

Cluster validation indices are divided into two main
categories as internal and external indices. In external in-
dices, true class labels are compared with the labels that are
assigned by the proposed algorithm to measure the per-
formance. Therefore, to use these indices, there is a need for
true class labels. The Purity [24], Rand Index [25], Adjusted
Rand Index [26], Accuracy, Precision and Recall [27],
F-Measure [28], and NMI [29] can be given as examples of
these types of indices. On the other hand, in the internal
indices, we do not need actual class labels to measure the
quality of clusters. In these indices, the evaluation of clus-
tering performance is based on how similar the data in the
same cluster are to each other, known as compactness, and
how dissimilar the data in different clusters are from each
other, known as separation. The Silhouette Index (SI) [30],
Dunn Index [31], Davies-Bouldin (DB) [32], Calinski-
Harabasz (CH) [33], Xie-Beni (XB) [34], S_Dbw [35], and
RMSSTD [36] can be mentioned as primary cluster validity
indices. Besides, there are many new cluster validity indices
such as the CVNN [37], CVDD [38], DSI [39], SCV [40], and
AWCD [41].
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The main problem of the majority of state-of-the-art
cluster validity indices is that they measure the cluster
quality correctly when the shapes of the clusters are
spherical. As an example, Silhouette Index (SI) uses the
means of distances of each data in the cluster to evaluate
their quality. Similarly, Davies-Bouldin (DB) uses cluster
diameters and cluster centroids, and the Calinski-Harabasz
(CH) uses the square of intracluster and intercluster dis-
tances. These all calculations are ideal if the shape of the
cluster is spherical. However, the shapes of the minority of
clusters are spherical in the real world. Additionally, if the
shape is arbitrary, these indices cannot measure the cluster
quality correctly because the center of gravity of any cluster
is in the middle only if the shape is spherical.

Similar to our approach, there is another kernel density
estimation-based cluster validation index, named the M,
[42]. In the M, the authors used a function of estimation
of the mode to assess cluster quality. This mode function
allows the index to assess the cluster quality by adopting
interpoint distance measures that can be defined to have a
probability density function. To evaluate clustering with the
number of clusters greater than 1 (K> 1), they applied the
mode estimation procedure for interpoint distances that are
assumed to have a probability density function between the
data members. On the other hand, in this study, we proposed
a novel Internal Validity Index for Arbitrary-Shaped
Clusters based on the kernel density estimation (the
VIASCKDE Index). We aimed to calculate the cluster quality
accurately by using compactness and separation of each data
to support arbitrary-shaped clusters and the kernel density
estimation (KDE) to weight denser regions in the clusters to
the compactness of the clusters. Therefore, the advantages of
our new approach can be listed as follows:

(i) The VIASCKDE Index can evaluate arbitrary-sha-
ped clusters correctly

(ii) It weights denser regions to support the compact-
ness of clusters

(iil) It is suitable for all types of clustering techniques,
especially for density-based algorithms

(iv) It can be used for micro-cluster-based approaches

(v) It has greater performance when compared with
state-of-the-art techniques

The rest of this paper was organized as follows: in Section
2, the related studies were reviewed. In the 3™ section, the
problem with existing works and the need for the proposed
approach was explained. While details about the VIASCKDE
Index were given in the 4™ section, the comparison of ex-
perimental results with the state-of-the-art approaches on real
and synthetic datasets was given in the 5™ section. After that,
the discussion on the results was provided in Section 6. Fi-
nally, the conclusion of the study was presented in Section 7.

2. Background and Related Works

As cluster validation techniques, in internal methods, we do
not need the actual class labels. The cluster validation op-
eration is done by calculating the similarities in the
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FiGure 1: The example of the relationship between the com-
pactness and separation concepts of two clusters in a two-di-
mensional data space.

intraclusters and the differences in the interclusters pro-
duced by the model to reveal how consistent the produced
clusters are [43]. As mentioned above, in the internal
methods, cluster quality is evaluated in the aspects of two
concepts [44]:

(1) Compactness: it states how much the data, which is in
the same cluster, are close to each other. Closer data
mean better clustering.

(2) Separation: it evaluates how much the clusters are far
from each other. In the clustering evaluation, it is
expected to be far from each other as much as
possible.

The illustration of these two concepts is presented in
Figure 1, while the equation is demonstrated in Eq. (1). Here,
o and f3 are the weights.

aeCompactness

(1)

Index = - .
PeSeparation

There are many internal methods proposed in the lit-
erature. In this section, we focused on the validation indices
that are relevant to our approach. To make definitions
shorter and more understandable, the general definitions are
as follows:

Let X = {x}, X3. . ,X,} € R be a dataset containing # points
in a d-dimensional space, and x; € R%. X is a set of disjoint k
clusters (where C; is a cluster and i=1,2,3,...,k), and #;
data are in the C; cluster. While the cluster center that is
the gravity center of cluster C; is the mean of the data that
belongs to C; and calculated by 4 = 1/n;}., ¢ x;, the mean
of all datasets is calculated by g =1/n) .xx. In the
present study, the mentioned distance is the Euclidean
distance; one of each x and y is data of the dataset, and the
Euclidean distance between these two data is expressed as
d.(x, y).Inlight of this information, we can briefly list the
main internal cluster validity indices as follows:

Silhouette Index (SI) [30]: as given in Figure 2, the
compactness value of one of the data in any cluster is
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calculated by measuring the distance from the data to each
data in the same cluster. Then, the compactness of the
cluster, which is notated as a(x), is calculated by measuring
the mean of compactness of all the data that the cluster has.
The average of the distances from the elements of the nearest
cluster, to which the mentioned data do not belong, gives the
separation value of that data. After that, the separation value
of the cluster is found by calculating the mean of the sep-
aration values of all the data of the cluster and it is notated as
b(x). From now on, we can calculate the SI value, which is the
cluster validity index of the model. The equations to calculate
SI, a(x), and b(x) are given in equations (2)-(4), respectively.
The SI value is [-1, +1]. While -1 means the worst clustering,
+1 means the best clustering.

a(x) =

— ) d(xy), (2)

i x,y€CLy #x

b(x) =minj_, i = d(xy) ¢ (3)
# .

] xECj,yECj

b(x) —a(x)
Z 2 ax (@ (0, b G )

i=1 xeC;

Dunn Index (DI) [31]: the DI calculates the success of the
model based on compactness and the separation between the
clusters. To do this, the DI value of a cluster is calculated by
the distance to the closest cluster and its own diameter. Let
dmin (C;,C ]-) be the closest distance between clusters C; and
Cj, and let diam(C;) be the diameter of the cluster C;, and the
values of these two variables are calculated by d,,,;, (C;,C;) =
MiM cc, x eC, d,(x; ;) and diam (C)) = max, .,
xJEC (x,, yl) Therefore, by knowing the value of dmm
(C,,C; ) and diam(Cy), the DI of the model is calculated by
equation (5). The larger the result value, the more successful
the clustering is.

| . dmin(ci’cf)
DI'=miny ;g minjy; \cjck max, g {diam (C))} | |- ;

Calinski-Harabasz (CH) [33]: the CH calculates com-
pactness and separation values via the mean of the squares of
the interclass and intraclass distances. The CH index value is
calculated by (6). In the CH index, the goal is to make the
result as large as possible.

i mide (o w)/ (k=1)
Zle erci di (X) Pi)/ (n-k)

Davies-Bouldin (DB) [32]: the compactness value is
calculated over the mean of the variance of the data in each
cluster. On the other hand, the separation value is calculated
over the distance from the center of the cluster to the center
of the closest one. Let avg(C;), which is calculated by (7), be
the average of the distances of each data in the cluster i to the
cluster center, and the avg(C;) is calculated by (8).

CH =

(6)

1
avg(C;) = (- 1) thzeci de(xi”‘j)’ (7)

DB 1 z": max{ avg(C;) + avg(Cj) } ()

i=li#j,1<j<k de([’li’.“j)

S_Dbw Index [35]: The S_Dbw calculates the com-
pactness value of the clusters over the standard deviations
(0) of the data that the cluster has. On the other hand, it
calculates the separation value by the distance between the
centers of the clusters. The S_Dbw index is a type of index
that considers the density of clusters. Let den be the density
of the cluster, and the S_Dbw index value is calculated with
the following equations:

S_Dbw kZ

C,eC

U(X)

. 1 Z den(Ci, C]-)
k(k-1) dececcisc, max{den (Ci),den(Cj)}’

den(C Z f( p’“z)

den(C,-, Cj)

+‘le>

0, de(xp, yi) >0 (C),

Y

x,eGUC;

1, otherwise.

F(xp 1) = {

(9)

Distance-based Separability Index (DSI) [39]: the
DSl is another approach that measures the cluster quality
by the means of the distances based on intercluster
and intracluster. Let C; and C; be two clusters and have N;
and N; data points, respectively. The intracluster distance
set of cluster C; will be a set as given equation (13).
Moreover, the intercluster distance set is measured based
on the distances of data pairs of clusters C; and C;. To
compute the DSI, the Kolmogorov-Smirnov (KS) test was
utilized.

' {dci} ={de (X, Y)I X,y € Ci;x:/:y}’
If |C,-| =N, then'{dci}' = %Ni,(Ni, _ 1),
‘ (10)

' {dq’j} ={d,(xy)lxeCsyeCl,

then

If ICi| =N, 'C

=N, {dcf-fH = NN,

Let S, be Kolmogorov-Smirnov fest of cluster C;, which
is calculated as S¢, = KS({dC } T:ic }) and Sc, be of C;, and
the DSI of these two clusters is the Tesult of the followmg
equation:
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DsI({C,,C,}) = 5 (11)

RMSSTD [35]: the root-mean-square standard deviation
(RMSSTD) aims to calculate the clustering quality by
measuring the homogeneity of clusters. It is commonly used
for hierarchical clustering. Let the dataset consists of k
clusters, p be the number of independent variables, X;; be the
mean of data in variable j and cluster i, and n;; is the number
of data in variable p and cluster k. RMSSTD is measured by
equation (12). The lower RMSSTD means better clustering.

J=L2,0k o Mij — \2
Yicin,. p La=1 (xa_xij)

. (12)
Y (- 1)

RMSSTD =

3. Statement of the Problem

Although many approaches have been proposed, analysis of
the cluster quality is still an issue. Because there are many
clustering approaches in the literature, they differ from each
other in many aspects. Therefore, no cluster validation tech-
nique can evaluate the quality of all produced clusters precisely.
However, some approaches have been used in this task in-
cluding the Silhouette Index, Dunn Index, Davies-Bouldin,
Calinski-Harabasz, and S_Dbw. Although these indices have
been used commonly, each of them has a specific problem with
cluster validation as given in Table 1. For example, a significant
part of the proposed cluster validity indices assumes the shapes
of clusters are spherical. In fact, the minority of clusters are
spherical in the real world as some examples are given in
Figure 3. The SI can be given as an example of these kinds of
indices. It cannot achieve a good score if the shape of the cluster
is not spherical. On the other hand, the DB and the CH identify
clusters that are compact and well separated. However, in the
real world, very few clusters are in that shape. Similarly, despite
being better than the DB and the CH in case of the clusters are
not well separated, the DI encounters some issues with
computational cost when the number of clusters or dimen-
sionality is high. Besides, it is affected by the noisy data due to
increasing diameter. As for the S_Dbw, although it is proposed
as a density-supported validity index and gets a good score with
the compact and well-separated clusters, it is affected by the
distribution of the data. In addition, thanks to being a density-
based clustering validity index, the DSI is good at dealing with
arbitrary-shaped clusters. It can successfully evaluate any
cluster quality. However, the DSI is also another cluster validity
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index that is affected when clusters are too close. Likewise, the
RMSSTD is another validity index that encounters some
problems when the clusters are close to each other. The ex-
amples of the problems on the shapes of clusters that existing
indices come across can be increased.

Another problem with existing cluster validation indices
is that they assume that all the data in any cluster have a
homogeneous distribution. However, data inside the cluster
mostly have various regions that have different densities, as
seen in Figure 4 (darker areas mean denser regions).
Moreover, the data in the same cluster may not have ho-
mogeneous distribution as can be seen in Figure 4(b). So, any
approach that considers the density of data in the clusters is
still needed to support the compactness of the cluster. Al-
though the S_Dbw and the DSI are two examples of cluster
validity indices that take into consideration the density of
clusters, they do not examine the density areas inside the
clusters. These kinds of indices are useful to discover the
shapes of clusters. However, maybe, some regions are denser
than the other regions inside the cluster, and these indices do
not take into account such problems. Giving more weight to
denser regions may make the approach more accurate while
identifying it because of supporting compactness. In the
present study, we proposed a new cluster validity index that
can discover the arbitrary-shaped clusters and weight the
denser regions by using the Kernel. Density estimation was
explained in Section 4.2.

4. Proposed Cluster Validity Index: A Novel
Internal Cluster Validity Index for Arbitrary-
Shaped Clusters Based on the Kernel Density
Estimation (The VIASCKDE Index)

4.1. Basic Idea. In the present study, a new cluster validation
index, which has been named shortly the VIASCKDE (the
Validity Index for Arbitrary-Shaped Clusters based on the
Kernel Density Estimation) index, was proposed. The
VIASCKDE Index is a kind of index that is not affected by
cluster shape, and thus, it can make a realistic evaluation of
clustering performance regardless of the clusters’ shape.
Unlike the existing cluster validation indices, our index
calculates the compactness and separation values of the
cluster based on calculating the compactness and separation
values for each data separately. In other words, it calculates
the compactness and separation values of the cluster over the
distance of data, independent of parameters such as the
cluster center because, in nonspherical clusters, the distance
of the data to the closest data is more important than its
distance to the cluster center. As can be seen in the example
given in Figure 5, the closest data in the cluster that “it
belongs to” are used when calculating the compactness value
for the data x. Similarly, the separation value of x is cal-
culated by the distance to the closest data of the cluster that
“it does not belong.”

As mentioned before, another problem with existing
cluster validity indices is to assume that the distribution of
the data inside the cluster has homogeneous distribution,
even if the shape of the cluster is arbitrary. Therefore, they
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TaBLE 1: Comparison of clustering validity indices that were used for experimentation in the present study.
Considering Handling
Cluster validity Notation Runtlme Optimal denser arbitrary- Advantages Disadvantages
Index complexity  value I shaped
region?
clusters?
. The score is higher when Good a handling the
Silhouette Index 5 spherical clusters,
SI O(n*) Max. X X the clusters are dense and |, .
(30] high computational
well separated .
complexity
High computational
Competent at cluster cost with high-
Dunn Index [31] DI O (n?) Max. X v peten dimensional data and
validity task
the number of
clusters
Good at well separated .
Calinski-Harabasz and compact clusters, its It is not competent
CH O(n) Max. X X . ? enough at the cluster
Index [33] computational A
A validation task.
complexity is very low
Good at well separated .
Davies-Bouldin and compact clusters, its It is not competent
DB O(n) Min. X X . ’ enough at the cluster
Index [32] computational .
A validation task.
complexity is very low
s . Affected negatively
S_Dbw validity S_Dbw O(n) Min. X v Its cor.npllltatlonal by the distribution of
Index [35] complexity is very low data
Affected negatively
Distance-based Useful to discover the when clusters are too
Separability Index DSI o) Min X v close and its
shape of clusters -
[39] computational
complexity is high
. . Has issues when the
Root-mean- RMSSTD O(n) Min. X X Good for hle_rarchlcal clusters are close to
square std dev [35] clustering
each other
It can handle the
arbitrary-shaped
clusters, take into Has issues when the
VIASCKDE Index VIASCKDE O (n?) Max. 4 v account the denser clusters are close to

(proposed)

regions, can be used for
density-based and
micro-cluster-based
approaches

each other

weight each data of the cluster as the same value, whereas, as
presented in Figure 4, the distribution of data that is inside
the same cluster may vary. Therefore, we need a new method
that considers this situation. To overcome this problem, we
proposed the kernel density estimation (KDE), which is
detailed in the next section based on weighting method.

4.2. Kernel Density Estimation-Based Weighting. In the lit-
erature, there are two types of distribution estimation
methods that are parametric and nonparametric. In
parametric methods, for example, the Gaussian distribu-
tion assumes the distribution of any dataset is gathered
around the center and the majority of the data is in a circle
having a radius of the standard deviation. It means that the
curve has only one peak on distribution. It is important to
keep in mind that the univariate normal distribution, with
mean y and variance ¢, has the probability density
function

1 e )o]?
f) = e bl (13)
0

where x is in -00 < x < 0o interval. On the other hand, in
nonparametric distribution estimation methods, it is as-
sumed that there may be more than one distribution peaks
on the curve. Let X = [X,,...,X,]" be an n-dimensional
vector that has a multivariate Gaussian (or normal) distri-
bution with the n-dimensional mean vector peR" and ) be
the n x n covariance matrix. The multivariate Gaussian
distribution is calculated as follows:

_ 1 TS e
plx, %) = (2n)”|2|eXp( 2(71 wE(x y)). (14)

The kernel density estimation (KDE) is a nonparametric
density estimator that is used for density estimation. It is also
a method that is used to analyze existing data to decide
which incoming data is placed correctly in which place. For
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FIGURE 3: Some examples of the arbitrary-shaped cluster.
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FIGURE 4: An example of various densities in clusters: example of an Aggregation dataset. (a)Density distribution of the dataset. (b) Density

distribution inside a cluster.

this ability, it is commonly used in many areas such as data
analysis procedures in healthcare services, artificial intelli-
gence applications, the stock market, and many other areas
[2]. The bar graph represents the histograms, and the orange
line represents the KDE, and it is calculated over the his-
tograms as presented in Figure 6. In analyzing the data and
representing its application, it figures out the distribution of
data according to various methods, which are given in

Figure 7. Each one has its characteristic and equation. In
mathematical formulation, the KDE is a function

_ 1 & X. —
Pn(n)z%ZK< Ih x)y
i=1

where K(.) is one of the functions, which are given in
Figure 7. The most commonly used one is the Gaussian

(15)
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function. These functions are known as smooth functions
that control the amount of smoothing where the h > 0. The
KDE smooths each data; here, it is X;, one after the other one
until reaching the final density estimation.

In addition to estimating the density function of uni-
variate data, as an example given in Figure 6, we can apply
the KDE to multivariate datasets. In this case, we have to use
a kernel function that could process a multidimensional
dataset. To achieve this, the mentioned kernel function
should be constructed by a product kernel or a radial basis
approach. Let X = (X, X,, X3,...,X,)/ denote a sample of
size n from a multivariate random variable with density
f (x) defined on R?, and let {x,, ..., x,} be an independent
random sample drawn from f (x). In the following example,
we only considered the two-dimensional case without the
loss of generality. Thus, X;,i=1,...,n is given by
(X;1> X;,), where X;, and X, denote the x and y coordinates,
respectively. The multivariate kernel density estimator at
point x is given by

fh(x) :% YK (x- X)), (16)
nlh| i=1

where K(.) is a multivariate kernel function and % denotes a
symmetric positive definite bandwidth matrix.

Although KDE is a nonparametric probability density
function to solve the inhomogeneous distribution problem,
we can also use it as a weighting function to support the
compactness of clusters. As the KDE of any data is the
summation of the data around it, it is expected the weight of
any data close to the edges of data distribution would be less,
while the KDE of the data in the near center would be more.
Therefore, the KDE could be used as a weighting function to
weight the data. In our approach, doing that will support the
compactness of the cluster regardless of its shape. Namely,
we used the KDE to weight each data to give more im-
portance to the data in the denser regions. Therefore, we
calculated the weight of each data that is Wxpg according to
obtained KDE value. For example, let us assume we want to
find Wipg values for data x; = 30 and x, =40 in the example
of the dataset given in Figure 6. Wipg for x; would be 0.007,
while Wipr would be 0.05 for x,, which is very high when
compared to the other one. That makes our approach su-
perior when compared with existing clustering validity in-
dices, which ignore the distribution of data in the same
cluster. In other density-based approaches, they would
weight x; and x, as equal for this example and this would be
incorrect.

4.3. Definitions and Equations. In light of these explana-
tions, let us explain the details of the VIASCKDE Index.

Definition 1. (CoSeD—Compactness and Separation Value
of a Data): the CoSeD can be described as the compactness
and separation value of any data. To calculate this value,
Wipg value of each data, which is explained in Section 4.2, is
calculated first. Let a( x ) (compactness) be the distance from
x to the closest data of cluster C; in which the data x also
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belong, and let b( x ) (separation) be the distance from x to
the closest data of cluster C; in which the data x do not
belong to; therefore, the compactness and separation value
of the data x, CoSeD( x ), are calculated by the following
equation:

a (x) = minxeci,yeci{de (X’ y)}’
b(x) = minxeci,yecj,x#y{de x y)}’ (17)

b(x)—-a(x)

CoSeD (x) = WKDEm'

Definition 2. (CoSeC—Compactness and Separation Value of
a Cluster): the CoSeC value is the average of the CoSeD
values of the data owned by the cluster. The CoSeC value of
the cluster C; is calculated by equation (18), where C; is the
cluster to which the data x belong, and # is the number of the
data that cluster C; possesses.

1 n
CoseC(C) = ) CoSeD (x;). (18)
i=1

Definition 3. (the VIASCKDE, the Value of Overall Clus-
tering): let k be the number of clusters, let n; be the number
of data that cluster C; possesses, and let CoSeC; be the value
of cluster Cp which is calculated in equation (18); therefore,
the VIASCKDE Index value is calculated by equation (19).
The VIASCKDE value is expected to be in between [-1, +1],
where +1 refers to the best possible value, and -1 refers to the
worst possible value.

k
- n.CoSeC
VIASCKDE = % (19)
j=11j

4.4. The Algorithm. Let Gaussian_KDE be a function that
calculates the KDE and MinMaxNormalization, which is
also a function that normalizes the data to the range of [0, 1].
The CoSeD and CoSeC values were explained in Section 4.3.
In light of this information and the equation given in the
previous section, the pseudocode of VIASCKDE Index was
given in Algorithm 1.

4.5. Computational Complexity. Let k be the number of
clusters in the dataset, let n be the number of data
that clusters possess, and let d be the number of
features each data possesses; therefore, the time com-
plexity of the VIASCKDE Index is calculated as the
O(kn?d), since it calculates the distance of each data to all
others. This means that the complexity of the proposed
approach is the O(n?). This is acceptable when the index
is compared with the complexity of other indices given in
Table 1.
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Input; X, labels

Output; VIASCKDE

KDE_X««Gaussian_KDE(X.T)

for k=1 to size (unique (labels)) do
data_of_Cluster_k—X[labels = k]
data_not_belong_k_X[labels # k]

for i=1 to size (data_of k)do
a; — closed_data (data_of cluster_k)

CoSeCy.=mean (CoSeDy,)
VIASCKDE=Y_, n;.CoSeC;/ ¥)_, n;

kde_k—MinMaxNormalization (KDE_X [labels =k])
>data of cluster k and normalize them

b; — closed_data (k_ait_olmagan_verileri)
>data to closest one that does not in the cluster k
CoSeD; = kde_k[i] * [(b;—a;)/max(a;, b;y)]

>Compactness-separation of Cluster k

>data belongs to cluster k
>data not belongs to cluster k
>KDE of each

»distance from i™ data
>to closed one in Cluster k

»distance from i"™

>Compactness and
>Separation of data i

>Overall VIASCKDE value of Clustering

ALGORITHM 1:

5. Experimental Study

5.1. Development Environment. To demonstrate the effec-
tiveness of the VIASCKDE Index (https://github.com/
senolali/ VIASCKDE) on the experimental studies, the
data were processed with using the Python language in the
Anaconda Spyder environment. Various machine learning
libraries of the Scikit-learn library such as the DBSCAN,
Spectral Clustering, HDBSCAN, and metrics were used. The
dataset was imported with the Pandas library, and mathe-
matical operations were performed with the NumPy library.
Visualization processes were also carried out with the
matplotlib library. All experiments and comparison oper-
ations were performed on a computer with 16 GB RAM,
Intel i7 processor, and Windows 11 operating system.

5.2. Used Datasets. To measure the performance of the
proposed approach, we performed an experimental study in
both synthetic and real datasets. Since the main purpose of
our approach is to measure the performance of nonspherical
clusters, artificial datasets containing clusters in different
shapes were used. In Figure 3, some of the used datasets that
contain clusters in different shapes are demonstrated. In
addition to these synthetic datasets, real datasets, which are
frequently used in the clustering field, were also used for
testing. Details of the datasets used in the comparison
process are provided in Table 2. Additionally, as given in
Figure 8, some imbalanced datasets were used to analyze the
performance of our cluster validation index on the imbal-
anced data distribution.

5.3. Experimental Procedure. For the experimental study, we
used the procedure given below. But firstly, to ensure that
each data are between the same ranges and to make it easy to
determine parameters, the data were normalized using the
min-max normalization that was demonstrated in (20). In
addition, the ARI (Adjusted Rand Index) was used as the
ground truth method to evaluate the performance of cluster

VIASCKDE Index.

validation indices by comparing the cluster labels that were
produced by the clustering algorithm with the actual cluster
labels. The reason we chose the ARI is that the generated
cluster labels do not need to be the same as the actual cluster
labels. For example, let us assume the clustering algorithm
produced {1,1,1,2,2,2} cluster labels and actual labels are
{2,2,2,4,4,4}. The accuracy value for this situation would be
0%, while it would be 100% with the ARI value, which should
be the actual result.

— minx;

max x; — minxj'

Xi:
Zij . (20)

The procedure established in the testing process is as
follows:

Step #1:

Select one of the algorithms (DBSCAN,HDBSCAN,
and Spectral Clustering)

Step #2:

Test the algorithm with randomly selected parameters
on one of the selected datasets.

Step #3:

Evaluate the cluster qualities of clusters that were
produced by the selected algorithm with clustering
validation indices (SI, DI, CH, DB, S_Dbw, DSI,
RMSSTD, and VIASCKDE).

Step #4:

Calculate the VIASCKDE Index via produced clusters
and evaluate it to see whether this is the best result so
far. If it is, we accept this value as the best one for the
VIASCKDE Index. Then, we do the same operation for
the other indices.

Step #5:

To test each index sufficiently, go to Step #2 and repeat
the cycle 100 times. If the cycle is completed go to Step
#6.


https://github.com/senolali/VIASCKDE
https://github.com/senolali/VIASCKDE
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TaBLE 2: Used datasets.

Dataset Type # of Features # of data # of classes Reference
Half-kernel Synthetic 2 1000 2 [45]
Two spirals Synthetic 2 312 3 [45]
Outlier Synthetic 2 700 4 [45]
Corners Synthetic 2 2000 4 [45]
Cluster in cluster Synthetic 2 1012 2 [45]
Crescent full moon Synthetic 2 1000 2 [45]
Moon Synthetic 2 514 4 [45]
Face Synthetic 2 322 4 [46]
Wave Synthetic 2 287 2 [46]
Aggregation Synthetic 2 788 7 [47]
Zelnik1 Synthetic 2 622 4 [48]
Zelnik5 Synthetic 2 512 4 [48]
Xclara Synthetic 2 3000 3 (48]
Banana Synthetic 2 4811 2 [48]
D2c2scl3 Synthetic 2 588 13 [48]
2sp2glob Synthetic 2 999 3 (48]
Cure-t1-200n Synthetic 2 2000 5 [48]
Thyroid Real 4 215 2 [49]
Fisher iris Real 4 150 3 [49]
Breast cancer Real 8 699 2 [49]
Face dataset Aggregation dataset Outliers dataset
300
S 200 = 200 s
AS S 5 200
:? 100 - :? 100 ZQ: 100
0 0 0 .
1 2 3 4 1 2 3 4 5 6 7 0 1 2 3
class labels class labels class labels
Thyroid dataset Crescent full moon dataset Cure-t1-2000n dataset
150 1000
S 100 s 600 s 750
= = 400 T 500
= = =
w50 * 200 * 250
0 . 0 0
1 2 3 0 1 0 1 2 3 4 5
class labels class labels class labels

FiGgure 8: The distributions of some of the used datasets.

TaBLE 3: ARI results obtained with the parametric and nonparametric methods.

Adjusted Rand Index (ARI)

Datasets Methods
Gaussian Weight KDE Weight

Half-kernel 1.0000 1.0000
Two spirals 1.0000 1.0000
Outlier 1.0000 1.0000
Corners 1.0000 1.0000
Cluster in cluster 1.0000 1.0000
Crescent full moon 1.0000 1.0000
Moon 0.7424 0.7424
Face 0.9949 1.0000

Wave 1.0000 1.0000
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TaBLE 3: Continued.
Adjusted Rand Index (ARI)
Datasets Methods
Gaussian Weight KDE Weight
Fisher iris 0.7493 0.7493
Breast cancer 0.7540 0.7540
Aggregation 0.7338 0.9118
Thyroid -0.0619 0.6783
Zelnik1 1.0000 0.9488
Zelnik5 1.0000 1.0000
Xclara 0.0001 0.0001
Banana 1.0000 1.0000
Ds2c¢2scl3 0.3187 0.5904
2sp2glob 1.0000 0.9880
Cure-t1-2000n 0.8850 0.8850
TABLE 4: Obtained results with the different kernels values.
Datasets
Obtained VIASCKDE Values with each kernel Obtained ARI Values with each kernel
Kernels Crescent Cure- Crescent Cure-
Face Aggregation Outliers Thyroid  full tl-  Face Aggregation Outliers Thyroid  full tl-
moon 200n moon 200n
Gaussian 0.7063 0.6368 0.6797 0.4947 0.6623  0.6555 0.6085 0.8246 1.0000 0.5083 1.0000 0.8850
Cosine 0.5967 0.6564 0.6499 0.1699 0.6340 0.6343 0.6085 0.8089 1.0000 0.5083 1.0000 0.8850
Exponential 0.7005 0.6371 0.6714  0.5541 0.6426 0.6653 0.0386 0.8089 1.0000 0.5034 1.0000 0.8850
Linear 0.5736 0.6427 0.6306 0.1594 0.6169 0.6371 0.6085 0.8089 1.0000 0.5083 1.0000 0.8850
Epanechnikov 0.6021 0.6562 0.6581 0.1758 0.6388 0.6295 0.6085 0.8089 1.0000 0.5083 1.0000 0.8850
Tophat 0.6457 0.6165 0.6433  0.2306 0.6664 0.6299 0.6085 0.0333 1.0000 0.5083 1.0000 0.8850
Step #6: selected. Besides, the kernel = “Gaussian” and h=0.05 were

Calculate the ARI value that corresponds to the most
successful value obtained for each of the clustering
validity indices including our proposed approach.

Step #7:

Compare the ARI values calculated by all cluster val-
idity indices. Consider the one with the highest ARI
value as the most competent one for this dataset.
Step #8:

Go to Step 2 and do the same operations for the new
dataset. If all datasets are performed, go to Step 9.

Step #9:

If all algorithms are performed, finish the procedure;
otherwise, go to Step 1.

5.4. Experimental Study

5.4.1. The Selection of Density Distribution Estimation
Method. We performed some experimental studies on the
datasets to decide which data distribution method should be
selected, either parametric or nonparametric. For the
parametric method, we selected the Gaussian method and
the KDE for the nonparametric method. We carried out
experiments with the procedure given in Section 5.3, by
using the DBSCAN in which the parameters are randomly

the parameters of KDE based on the VIASCKDE Index
approach, while the Gaussian was the method of parametric
VIASCKDE Index. According to obtained results, while the
Gaussian-based method outperformed in 15 datasets, the
KDE-based method was the best in 17 datasets, as dem-
onstrated in Table 3. Therefore, we selected the KDE-based
method as the weighting function for our approach.

5.4.2. The Kernel Selection for KDE. As mentioned in Section
4.2, there are various kernels in the literature. The Gaussian,
cosine, linear, tophat, and exponential can be given as ex-
amples, and they affect the smoothness of distribution. We
tulfilled the operation with the procedure provided in
Section 5.3 where the parameters of DBSCAN algorithm
were selected randomly. We performed the experiments by
choosing each kernel in each experimental study. As it can be
seen in Table 4, the Gaussian kernel was the best in all of the
selected datasets, when the bandwidth was 0.05.

5.4.3. Bandwidth Selection for the KDE. One of the most
important parameters of KDE is bandwidth (k). It possesses
a direct effect on the results. When the £ is too small, there
would be many wiggly structures on the density curve. On
the other hand, when the h is too large, the bumps on the
curve would be smoothed out as given in Figure 9. To find
which bandwidth is the best for our approach, we fulfilled
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FIGURE 9: Types of the kernel density estimation curves.
TaBLE 5: Obtained results with the different bandwidth values.
Datasets
Obtained VIASCKDE values with each bandwidth Obtained ARI values with each bandwidth
Bandwidth Cure- Cure-
Face Aggregation Outliers Thyroid Crescent - Face  Aggregation Outliers Thyroid Crescent -
full moon full moon
200n 200n

0.01 0.3377 0.3444 0.4650 0.0556 0.4780 0.5264 -0.0386 0.8089 1.0000 0.5277 1.0000 0.8850
0.03 0.6627 0.6565 0.6508 0.3493 0.6608 0.6421 0.6085 0.8089 1.0000 0.5034 1.0000 0.8850
0.05 0.7063 0.6388 0.6797  0.4947 0.6623 0.6555 0.6085 0.9898 1.0000 0.5034 1.0000 0.8850
0.1 0.7365 0.6225 0.6851 0.6306 0.6486 0.6565 —0.0386 0.8089 1.0000 0.5034 1.0000 0.8850
0.3 0.7857 0.5947 0.6773  0.7402 0.6143 0.6189 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
0.5 0.7586 0.5689 0.5481 0.7591 0.5945 0.6039 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
1.0 0.7412 0.5636 0.5257 0.7618 0.5927  0.6018 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
1.5 0.7362 0.5629 0.5236 0.7618 0.5923 0.6016 —0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
2 0.7339 0.5626 0.5229 0.7618 0.5921 0.6015 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
2.5 0.7328 0.5625 0.5226 0.7618 0.5920  0.6015 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
3 0.7322 0.5624 0.5225 0.7618 0.5920 0.6015 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
3.5 0.7317 0.5624 0.5223 0.7618 0.5919 0.6015 -0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
4 0.7314 0.5623 0.5222 0.7617 0.5919 0.6015 —-0.0386 0.7338 1.0000 0.2099 1.0000 0.8850
4.5 0.3377 0.3444 0.4650 0.0556 0.4780 0.5264 -0.0386 0.8089 1.0000 0.5277 1.0000 0.8850
5 0.6627 0.6565 0.6508 0.3493 0.6608  0.6421 0.6085 0.8089 1.0000 0.5034 1.0000 0.8850

some experimental studies with the procedure given in
Section 5.3 by testing it with different bandwidth values on
some datasets, which are provided in Table 2. The best
bandwidth was found to be 0.05 as it can be seen in Table 5,
when the kernel was the Gaussian.

5.4.4. The Tests on Both Synthetic and Real Datasets. In this
section, experimental works were executed on both synthetic
and real datasets. To detect nonspherical clusters in the test
process, the DBSCAN, Spectral Clustering, and HDBSCAN
were used. The DBSCAN algorithm uses two parameters
(MinPts: the clustering threshold value, and &: the accessibility
distance) and Spectral Clustering uses one parameter as input
(n_clusters: the number of clusters) if the affinity=‘near-
est_neighbors,” while the HDBSCAN Clustering uses two
parameters (min_cluster_size: the number of clusters, and
min_samples). To test each algorithm with different

parameters, we performed the random search method on the
procedure given in Section 5.3. The procedure given above with
each cluster validity index was used as the leading method to
reach better clustering results. As an example is given in
Figure 10, each index proposed various results. It means that
the cluster validation performance of each one is also different.
According to obtained results, our index was the best one. The
performance of each index in all datasets is presented in the
following tables for each clustering algorithm (Tables 6-14).

6. Evaluation of the Results and Discussion

In our approach, we used the compactness and separation
values of each data to support the arbitrary-shaped clusters.
In this case, our approach tended to divide the spherical
clusters into small partitions. To cope with this issue, we used
a density estimation method to support the compactness of
clusters. In the literature, there are two types of density
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DBSCAN {e=0.065, MinPts=13.00}

=>{ARI=0.990}

DBSCAN {e=0.065, MinPts=13.00}
=>{ARI=0.990}
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DBSCAN {¢=0.065, MinPts=13.00}
=>{ARI=0.990}
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0.00 4 0.00 + | - : 0.00 . s 3 :
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Silhouette Index Calinski-Harbasz Index Davies-Bouldin Index
DBSCAN {e=0.092, MinPts=7.00} DBSCAN {e=0.062, MinPts=12.00} DBSCAN {e=0.051, MinPts=14.00}
=>{ARI=0.734} =>{ARI=0.987} =>{ARI=0.633}
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DBSCAN {e=0.055, MinPts=14.00} DBSCAN {=0.065, MinPts=13.00}
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FIGURE 10: The clustering results suggested by each validity index when the DBSCAN algorithm was tested in the Aggregation dataset.

TaBLE 6: The best parameters for datasets that were detected by the cluster validity indices with the DBSCAN algorithm.

Best parameters detected by indices for the DBSCAN algorithm

Dataset DBSCAN parameters
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE
Half-kernel 3 0.08 0.08 0.05 0.08 0.05 0.05 0.08 0.08
MinPts 7 7 11 7 15 11 7 7
Two spirals € 0.1 0.1 0.05 0.1 0.05 0.1 0.05 0.1
MinPts 11 11 15 11 15 11 14 11
Qutlier € 0.07 0.07 0.07 0.07 0.05 0.07 0.05 0.07
MinPts 15 15 15 15 8 15 14 15
Corners € 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
MinPts 15 15 15 15 15 15 15 15
Cluster in cluster £ 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
MinPts 12 12 12 12 12 12 14 12
Crescent full moon 3 0.07 0.07 0.07 0.07 0.05 0.06 0.05 0.07
MinPts 14 14 14 14 15 12 15 14
Moon € 0.06 0.08 0.06 0.06 0.05 0.05 0.06 0.06
MinPts 7 11 9 7 9 9 15 15
Face € 0.06 0.1 0.1 0.06 0.06 0.05 0.06 0.1
MinPts 15 8 5 6 15 12 11 8
Wave 3 0.09 0.09 0.06 0.09 0.05 0.06 0.05 0.06
MinPts 12 5 12 12 9 12 15 12
Fisher iris € 0.14 0.19 0.14 0.14 0.08 0.14 0.06 0.19
MinPts 15 6 15 15 5 15 7 6
Breast cancer € 0.39 0.33 0.39 0.39 0.06 0.06 0.05 0.4
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TaBLE 6: Continued.
Best parameters detected by indices for the DBSCAN algorithm
Dataset DBSCAN parameters
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE
MinPts 8 5 8 8 5 5 14 5
Aggregation € 0.06 0.09 0.06 0.06 0.06 0.06 0.05 0.06
MinPts 13 7 13 13 14 12 14 13
Thyroid £ 0.1 0.1 0.06 0.09 0.07 0.05 0.05 0.1
MinPts 5 5 12 5 6 8 9 5
Zelnik1 £ 0.08 0.08 0.05 0.1 0.07 0.07 0.08 0.07
MinPts 6 15 14 7 5 5 15 5
Zelnik5 £ 0.06 0.1 0.05 0.1 0.06 0.05 0.05 0.1
MinPts 14 13 12 13 15 12 14 13
Xclara £ 0.05 0.08 0.09 0.05 0.05 0.05 0.08 0.05
MinPts 13 12 15 13 13 13 12 13
Banana £ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
MinPts 9 9 9 9 9 9 9 9
Ds2c2scl3 £ 0.09 0.09 0.06 0.06 0.05 0.06 0.09 0.05
MinPts 10 10 14 14 13 14 10 8
2sp2glob £ 0.1 0.1 0.05 0.07 0.08 0.1 0.06 0.07
MinPts 9 9 12 14 6 9 5 14
Cure-t1-2000n € 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
MinPts 10 10 10 10 10 10 10 10
TaBLE 7: Obtained values for each index based on the parameters given in Table 6.
Obtained values for the each index
Dataset
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE
Half -kernel 0.2010 0.0949 1.8818 127.8905 0.5419 0.5068 0.2495 0.7125
Two spirals 0.0588 0.1317 3.3241 152.9447 0.5848 0.1069 0.28 0.7903
Outlier 0.5608 0.4291 0.4037 1075.5609 0.2099 0.9654 0.1302 0.6797
Corners 0.4614 0.2872 0.7436 2020.1068 0.4976 0.6358 0.1187 0.6295
Cluster in cluster 0.2231 0.2341 208.8458 0.0169 0.8536 0.7332 0.2276 0.595
Crescent full moon 0.2784 0.1923 1.1646 285.1423 0.3255 0.6568 0.2449 0.6623
Moon 0.2371 0.1052 0.9739 244.1722 0.2081 0.8788 0.2525 0.7508
Face 0.4569 0.2217 1.1099 213.0246 0.3725 0.7627 0.2423 0.6631
Wave 0.4525 0.1291 0.7119 366.1095 0.2344 0.8935 0.2696 0.6495
Fisher iris 0.5692 0.1222 0.5234 223.6137 0.3386 0.8296 0.2527 0.443
Breast cancer 0.5698 0.1228 0.8037 900.1988 0.3606 0.9617 0.2993 0.2944
Aggregation 0.4763 0.1432 0.5461 1156.7539 0.2073 0.9442 0.1878 0.6388
Thyroid 0.433 0.0598 2.7626 16.6429 0.5343 0.7486 0.1528 0.3275
Zelnik1 0.2045 0.0992 5.6978 95.196 0.2523 0.8939 0.2171 0.6604
Zelnik5 0.4971 0.2224 0.8098 413.8835 0.3651 0.8338 0.1534 0.7739
Xclara 0.6654 0.0656 1.1863 6889.0154 0.3492 0.7462 0.229 0.8101
Banana 0.3589 0.1258 1.1322 3532.2201 0.7625 0.4334 0.2146 0.8076
Ds2c2sc13 0.5724 0.237 0.5891 1907.2388 0.1921 0.9193 0.1091 0.605
2sp2glob 0.3899 0.1278 2.7559 158.5187 0.6374 0.8003 0.2089 0.8819
Cure-t1-2000n 0.4514 0.1196 0.6775 1365.0774 0.3054 0.787 0.1721 0.6555
estimation methods, parametric and nonparametric ~ estimation as the nonparametric density estimation method

methods. To decide which one is the best for our approach,
we carried out some experiments on the datasets by using the
DBSCAN as the clustering algorithm. According to the
experimental study, the nonparametric method was better
than the parametric method, and the results of it can be seen
in Table 3. After deciding that the nonparametric method
was the best for our approach, we selected the kernel density

in order to support the multivariate (Table 4).

The second point worth discussing is the selection of
parameters of the kernel density estimation. The kernel density
estimation has two parameters: the first one is the kernel
method and the second one is the bandwidth. To find the best
parameters of the kernel density estimation, we conducted
some experimental studies. We carried out separate
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TaBLE 8: The best parameters for the datasets that were detected by the cluster validity indices with the Spectral Clustering algorithm are

given in Table 7.

Best parameters detected by indices for the Spectral Clustering algorithm

Dataset Spectral clustering parameters
DI DB CH S_Dbw DSI RMSSTD VIASCKDE

Half-kernel n_clusters 14 2 15 15 14 15 2 2
Two spirals n_clusters 15 2 15 15 15 15 2 2
Outlier n_clusters 2 4 4 13 3 4 2 4
Corners n_clusters 12 4 12 12 15 14 2 2
Cluster in cluster n_clusters 4 2 4 15 15 15 2 2
Crescent full moon n_clusters 5 2 5 13 15 14 2 6
Moon n_clusters 15 2 15 15 15 15 2 2
Face n_clusters 11 2 10 12 15 13 2 2
Wave n_clusters 7 2 15 15 15 15 2 2
Fisher iris n_clusters 2 2 2 3 15 2 2 3
Breast cancer n_clusters 2 2 2 2 11 14 15 12
Aggregation n_clusters 4 2 6 14 2 15 2 2
Thyroid n_clusters 3 2 3 3 15 15 2 3
Zelnik1 n_clusters 12 2 13 12 15 13 3 3
Zelnik5 n_clusters 8 2 8 15 15 15 2 4
Xclara n_clusters 3 2 3 3 10 3 2 3
Banana n_clusters 9 2 9 15 14 15 2 2
Ds2c2scl3 n_clusters 3 3 5 8 2 15 2 5
2sp2glob n_clusters 7 2 15 15 15 15 2 7
Cure-t1-2000n n_clusters 5 2 4 13 2 12 2 3

TaBLE 9: The best parameters for the datasets that were detected by the cluster validity indices with the HDBSCAN algorithm.

Best parameters detected by the indices for the HDBSCAN algorithm

Dataset HDBSCAN Parameter
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE
Half-kernel n_clusters_size 24 24 2 25 25 25 24 24
n_samples 6 6 10 25 25 25 6 6
Two spirals n_clusters_size 3 25 3 17 2 2 15 6
n_samples 2 17 2 7 2 2 19 12
Outlier n_clusters_size 16 16 16 16 16 16 16 16
n_samples 12 12 12 12 12 12 12 12
Corners n_clusters_size 8 8 8 8 2 2 8 8
n_samples 8 8 8 8 2 2 8 8
Cluster in cluster n_clusters_size 20 20 9 11 7 7 20 20
n_samples 10 10 2 2 3 3 10 10
Crescent full moon n_clusters_size 20 20 3 20 3 3 20 20
n_samples 12 12 2 12 2 2 12 12
Moon n_clusters_size 22 6 22 22 10 2 10 6
n_samples 3 4 3 3 24 25 24 4
Face n_clusters_size 21 13 9 21 9 9 13 9
n_samples 5 19 8 5 8 8 19 8
Wave n_clusters_size 16 6 16 16 3 4 6 2
n_samples 13 3 23 13 13 19 3 5
Fisher iris n_clusters_size 5 5 14 5 5 18 9 5
n_samples 12 12 16 12 12 21 25 12
Breast cancer n_clusters_size 11 5 2 5 2 2 22 5
n_samples 34 55 3 55 3 3 53 55
Aggregation n_clusters_size 17 12 9 12 23 2 12 2
n_samples 25 14 16 14 13 4 14 4
Thyroid n_clusters_size 3 2 3 3 3 3 2 8
n_samples 2 7 2 2 4 2 16 4
Zelnik1 n_clusters_size 11 3 5 3 20 2 14 3
n_samples 16 11 25 15 16 17 19 11
Zelnik5 n_clusters_size 20 20 20 20 20 20 20 20
n_samples 3 3 3 3 3 3 3 3
Xclara n_clusters_size 9 22 3 13 3 3 3 13
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TaBLE 9: Continued.

Best parameters detected by the indices for the HDBSCAN algorithm

Dataset HDBSCAN Parameter
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE
n_samples 2 6 3 9 3 3 3 9
Banana n_clusters_size 21 21 13 21 21 16 21 21
n_samples 14 14 16 14 14 24 14 14
Ds2c¢2scl3 n_clusters_size 22 22 16 22 4 22 24 16
n_samples 19 19 20 19 6 19 24 10
2sp2glob n_clusters_size 21 21 21 21 21 21 21 21
n_samples 22 22 22 22 22 22 22 22
Cure-t1-2000n n_clusters_size 4 4 4 4 4 4 4 25
n_samples 6 6 6 6 6 6 6 4

TaBLE 10: Obtained values for each index based on the parameters are given in Table 8.

Obtained values for the each index

Dataset
SI DI DB CH S_Dbw RMSSTD DSI VIASCKDE

Half-kernel 0.4748 0.0949 0.6066 1761.6198 0.2246 0.9163 0.2495 0.7395
Two spirals 0.3175 0.1317 1.058 1378.878 0.2857 0.7829 0.2865 0.8151
Outlier 0.6178 0.4291 0.4037 1804.463 0.1176 0.9654 0.2924 0.6863
Corners 0.5672 0.2872 0.5315 4102.5883 0.1873 0.9439 0.207 0.6575
Cluster in cluster 0.4547 0.2341 0.9465 832.9385 0.2764 0.857 0.2275 0.6052
Crescent full moon 0.4993 0.1923 0.5792 2022.7022 0.2055 0.9103 0.2423 0.6689
Moon 0.4543 0.1285 0.6781 602.0907 0.2169 0.9098 0.2689 0.7527
Face 0.4996 0.2361 0.5473 1055.0573 0.1705 0.9271 0.2481 0.7575
Wave 0.4957 0.1291 0.631 681.3681 0.1639 0.9124 0.2541 0.617
Fisher iris 0.6295 0.3581 0.4877 356.289 0.2163 0.8923 0.1432 0.4539
Breast cancer 0.5839 0.1291 0.7738 993.0158 0.1796 0.7795 0.2031 0.4341
Aggregation 0.4541 0.1091 0.589 1623.9684 0.1434 0.921 0.2966 0.6944
Thyroid 0.5517 0.0973 0.85 138.1291 0.3809 0.685 0.1309 0.4832
Zelnik1 0.5042 0.0992 0.663 194.586 0.2836 0.8614 0.2171 0.6544
Zelnik5 0.5948 0.2651 0.5353 1832.5626 0.1548 0.9495 0.2763 0.7686
Xclara 0.6946 0.023 0.4203 10843.7203 0.2779 0.946 0.1612 0.8164
Banana 0.5087 0.1258 0.5734 14012.5597 0.1806 0.9343 0.2146 0.82
Ds2c¢2scl3 0.3939 0.0639 0.8082 1133.5545 0.1434 0.9064 0.2896 0.6187
2sp2glob 0.6102 0.1456 0.6921 1548.8465 0.2544 0.8693 0.2396 0.725
Cure-t1-2000n 0.4994 0.1921 0.6581 3615.5302 0.1582 0.9016 0.2817 0.6589

TaBLE 11: ARI values were obtained from the parameters that are given in Table 6 and were proposed by each index.

Obtained ARI values for the each index

Dataset
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE

Half-kernel 1.0000 1.0000 0.9940 1.0000 0.9153 0.9940 1.0000 1.0000
Two spirals 1.0000 1.0000 0.9804 1.0000 0.9804 1.0000 0.9990 1.0000
Qutlier 1.0000 1.0000 1.0000 1.0000 0.9973 1.0000 0.8621 1.0000
Corners 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cluster in cluster 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8879 1.0000
Crescent full moon 1.0000 1.0000 0.9968 1.0000 0.9105 0.9873 0.8509 1.0000
Moon 0.9379 0.6322 0.9256 0.9379 0.7874 0.7874 0.7949 0.7949
Face 0.2645 0.9949 0.9961 0.2892 0.1304 0.1226 0.8521 0.9961
Wave 0.3514 1.0000 0.1441 0.3514 0.1913 0.1441 0.0508 0.0536
Fisher iris 0.4518 0.5503 0.4518 0.4518 0.2369 0.4518 0.0106 0.5503
Breast cancer 0.8240 0.8189 0.8240 0.8240 -0.0779 -0.0779 —-0.0780 0.8283
Aggregation 0.9898 0.7338 0.9898 0.9898 0.8770 0.9866 0.6330 0.9898
Thyroid 0.6715 0.6715 —0.0664 0.7339 0.2940 -0.1332 -0.1396 0.6715
Zelnik1 0.7708 1.0000 0.3409 0.7852 0.7724 0.7724 1.0000 0.7781
Zelnik5 0.9214 1.0000 0.9278 1.0000 0.9216 0.9126 0.9839 1.0000
Xclara 0.9813 0.0001 0.0001 0.9813 0.9813 0.9813 0.0001 0.9813
Banana 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Ds2c¢2scl3 0.3187 0.3187 0.4911 0.4911 0.5325 0.4911 0.3187 0.5904
2sp2glob 1.0000 1.0000 0.9850 0.9940 0.9985 1.0000 0.9970 0.9940

Cure-t1-2000n 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850
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TaBLE 12: ARI values, which were obtained from the parameters, were given in Table 8 and were proposed by each index.

Dataset Obtained ARI values for the each index

e I DI DB CH S Dbw  RMSSTD DSI VIASCKDE
Half-kernel 0.1514 1.0000 0.1422 0.1421 0.1515 0.1421 1.0000 1.0000
Two spirals 0.1401 1.0000 0.1435 0.1401 0.1401 0.1401 0.2047 1.0000
Outlier 0.8463 1.0000 1.0000 0.2236 0.2322 1.0000 0.2271 1.0000
Corners 0.4581 1.0000 0.4581 0.4581 0.3917 0.4199 0.3330 0.3330
Cluster in cluster 0.6584 1.0000 0.6584 0.1365 0.1368 0.1365 1.0000 1.0000
Crescent full moon 0.2934 1.0000 0.2934 0.1021 0.0869 0.0955 1.0000 0.2341
Moon 0.3629 0.2973 0.3629 0.3629 0.3092 0.3092 0.4916 0.4916
Face 0.0646 0.3662 0.0747 0.0580 0.0443 0.0538 0.3662 0.3662
Wave 0.2970 1.0000 0.1333 0.1323 0.1323 0.1356 1.0000 1.0000
Fisher iris 0.5681 0.5681 0.5681 0.7445 0.2395 0.5681 0.5681 0.7445
Breast cancer 0.8933 0.8933 0.8933 0.8933 0.2875 0.1779 0.0669 0.2534
Aggregation 0.7975 0.0646 0.9066 0.4453 0.0486 0.4156 0.1149 0.0646
Thyroid 0.6307 0.4204 0.6307 0.6307 0.0830 0.0830 0.4204 0.6307
Zelnik1 0.3170 0.4352 0.3004 0.3170 0.2225 0.3007 1.0000 1.0000
Zelnik5 0.6567 0.3096 0.6567 0.3638 0.3790 0.3638 0.5003 1.0000
Xclara 0.9939 0.6270 0.9939 0.9939 0.3602 0.9939 0.6270 0.9939
Banana 0.2394 1.0000 0.2394 0.1369 0.1463 0.1369 1.0000 1.0000
Ds2c2sc13 0.3267 0.3267 0.2766 0.4531 0.0244 0.5344 0.0244 0.2394
2sp2glob 0.7852 0.5709 0.3226 0.3195 0.3185 0.3226 0.5709 0.7852
Cure-t1-2000n 0.6334 0.3423 0.7818 0.3303 0.1757 0.3546 0.1757 0.8427

TaBLE 13: Obtained values for each index based on the parameters given in Table 9.
Obtained values for the each index
Dataset
SI DI DB CH S_Dbw DSI RMSSTD VIASCKDE

Half-kernel 0.201 0.0949 1.8878 171.8984 0.5589 0.4662 0.2495 0.7125
Two spirals 0.4071 0.1317 1.1858 259.0349 0.0136 0.9957 0.28 0.8151
Outlier 0.5608 0.4291 0.4037 1075.5609 0.2099 0.9654 0.1235 0.6881
Corners 0.4614 0.2872 0.7436 2020.1068 0.0437 0.9791 0.1187 0.6268
Cluster in cluster 0.2231 0.2341 4.4083 2.5624 0.0642 0.947 0.2275 0.6052
Crescent full moon 0.2784 0.1923 1.0934 285.1423 0.0527 0.9829 0.2423 0.6623
Moon 0.2371 0.0794 1.1729 244.1722 0.3243 0.7021 0.2628 0.7002
Face 0.417 0.2217 0.9539 204.5665 0.4031 0.8557 0.2339 0.6654
Wave 0.3746 0.1291 1.1785 168.9936 0.3155 0.7862 0.2541 0.617
Fisher iris 0.6295 0.3581 0.4659 353.3674 0.4488 0.9296 0.1478 0.4722
Breast cancer 0.4306 0.1125 1.1919 493.4632 0.1958 0.9575 0.2983 0.0143
Aggregation 0.4925 0.1432 0.6452 778.9448 0.2701 0.8481 0.1497 0.6108
Thyroid 0.4359 0.0683 1.68 38.4235 0.6519 0.7913 0.1532 0.3833
Zelnik1 0.0008 0.0992 13.2535 12.7433 0.3022 0.7287 0.2171 0.541
Zelnik5 0.4663 0.2224 1.0459 413.8835 0.4593 0.7425 0.1493 0.7739
Xclara 0.6745 0.0295 1.213 7008.8746 0.0475 0.9918 0.1114 0.7814
Banana 0.3589 0.1258 1.0288 3532.2201 0.7625 0.7003 0.2146 0.82
Ds2c2sc13 0.5724 0.237 0.5829 1785.9002 0.1831 0.8928 0.1093 0.6045
2sp2glob 0.3899 0.1278 2.7973 158.408 0.6374 0.8003 0.2088 0.7146
Cure-t1-2000n 0.4514 0.1196 0.6775 1365.0774 0.3054 0.787 0.1721 0.655
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TaBLE 14: ARI values, which were obtained from the parameters, are given in Table 9 and were proposed by each index.
Dataset Obtained ARI values for the each index
aase st DI DB CH S_Dbw DSI RMSSTD  VIASCKDE

Half-kernel 1.0000 1.0000 0.9980 0.7901 0.7901 0.7901 1.0000 1.0000
Two spirals 0.0079 1.0000 0.0079 0.7524 0.0076 0.0076 0.9990 1.0000
Outlier 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Corners 1.0000 1.0000 1.0000 1.0000 0.8261 0.8261 1.0000 1.0000
Cluster in cluster 1.0000 1.0000 0.5285 0.5360 0.5274 0.5274 1.0000 1.0000
Crescent full moon 1.0000 1.0000 0.1160 1.0000 0.1160 0.1160 1.0000 1.0000
Moon 0.9379 1.0000 0.9379 0.9379 0.2933 0.3697 0.2933 1.0000
Face 0.1883 0.9949 1.0000 0.1883 1.0000 1.0000 0.9949 1.0000
Wave 0.2609 1.0000 0.1709 0.2609 0.2528 0.2140 1.0000 1.0000
Fisher iris 0.5681 0.5681 0.5657 0.5681 0.5681 0.5638 0.5482 0.5682
Breast cancer 0.8349 0.8522 0.0011 0.8522 0.0011 0.0011 -0.0707 0.8522
Aggregation 0.7962 0.7338 0.7323 0.7338 0.8154 0.8089 0.7338 0.8089
Thyroid 0.4885 0.5662 0.4885 0.4885 0.4880 0.4885 -0.0255 0.4873
Zelnik1 0.9313 1.0000 0.3207 0.8880 1.0000 0.9680 0.9771 1.0000
Zelnik5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Xclara 0.9861 0.9904 0.3936 0.9880 0.3936 0.3936 0.3936 0.9904
Banana 1.0000 1.0000 0.8308 1.0000 1.0000 0.8278 1.0000 1.0000
Ds2c2sc13 0.3187 0.3187 0.3180 0.3187 0.7624 0.3187 0.3165 0.4260
2sp2glob 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cure-t1-2000n 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850

TaBLE 15: The number of highest ARI values that each index reached.

Index

# of datasets that each index was the best on the different algorithms

DBSCAN Spectral Clustering HDBSCAN Total
SI 11 4 9 24
DI 13 10 16 39
DB 7 5 6 18
CH 13 4 8 25
S_Dbw 5 0 9 14
DSI 8 7 5 20
RMSSTD 5 3 11 19
VIASCKDE (proposed index) 15 15 17 47

experiments for each parameter by using the procedure given
in Section 5.3 by using the DBSCAN with randomly selected
parameters. As it can be seen in Tables 4 and 5, the Gaussian
was the best kernel method and the h=0.05 was the best
bandwidth. These parameters were the parameters that were
used in experimental studies, which were used to compare our
approach with the other indices.

One of the advantages of the proposed VIASCKDE Index
is that it can realistically evaluate the clustering performance
regardless of the cluster shape. To test the success of our index
on different cluster types, we used the DBSCAN, Spectral
Clustering, and HDBSCAN algorithms with the procedure
given in Section 5.3. The highest ARI values found as the best
value by each index are given in Tables 11, 12 and 14. As it can
be seen in the tables, the VIASCKDE Index reaches the highest
ARI values on most of the datasets. The VIASCKDE Index
reaches the highest ARI values in 47 of the 60 experiments, as
given in Table 15. In addition, the ARI value of our index was
very high, even if it was not the index that had the highest ARI
value. In addition, when our index was compared with the

density-based two indices, which were the S_Dbw and DSI,
better results were obtained, and they are demonstrated in
Table 15.

The other important advantage of our approach is that it
considers the density of each cluster independently. For
example, the Aggregation dataset has a nonhomogeneous
density as it can be seen in Figure 4, and each cluster also
may have a nonhomogeneous distribution as it was given in
Figure 4(b). So, our approach does not assume all data inside
any cluster has homogeneous distribution and also does not
weight each data equally. It gives more importance to the
data in the denser regions by multiplying those data with a
coefficient that is detected by the KDE. Doing that supports
the compactness of clusters. In other words, this approach
made our index got better results.

Since the VIASCKDE Index has a density-based ap-
proach, it can also be used to evaluate the performance of the
algorithms that are based on a microcluster structure, which
is used by the majority of density-based clustering algo-
rithms because such algorithms use the center of each of the
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microclusters as the actual data in the offline phase.
Therefore, the VIASCKDE Index can also be used to evaluate
the performance of micro-cluster-based clustering
algorithms.

7. Conclusion and Future Works

In the present study, we proposed a cluster validation index,
which is called the VIASCKDE Index to validate the clusters
quality of both the spherical and nonspherical clusters. Our
approach draws its strength from considering the distri-
bution of data inside the clusters by using the KDE. Doing
that supports the compactness of clusters irrespective of the
cluster center, and thus, the shape of the cluster can be in the
form of arbitrary cluster. Most of the cluster validity indices
in the literature can only do a realistic cluster quality
evaluation when the cluster shape is spherical. However, in
many instances, the cluster shape is not spherical. Our
proposed approach calculates the compactness and sepa-
ration values only based on the data. This approach makes it
possible to evaluate cluster quality irrespective of its shape.
Experimental studies revealed that the VIASCKDE Index
reached the highest ARI values in most of the datasets. This
means that the approach we proposed is the most successful
one among the others. It has been planned to carry out
studies to decrease the runtime complexity of the proposed
index in the future.

Data Availability

Python implementation of the proposed index is shared on
GitHub (https://github.com/senolali/VIASCKDE).
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